1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
|
/*
* =========================================================================
* drawmap - A program to draw maps using data from USGS geographic data files.
* Copyright (c) 1997,1998,1999,2000,2001 Fred M. Erickson
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
* =========================================================================
*
*
* Program to process 250K Digital Elevation Model (DEM),
* 24K Digital Elevation Model,
* 100K (optional-format) Digital Line Graph (DLG),
* 24K Digital Line Graph,
* and Geographic Names Information System (GNIS)
* files and produce colored maps in SUN Rasterfile format.
*
* At the time this program was written, some DEM, DLG, and GNIS files were available
* for free download by following appropriate links from http://mapping.usgs.gov/
*/
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <math.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <errno.h>
#include <time.h>
#include <string.h>
#include "drawmap.h"
#include "raster.h"
#include "colors.h"
#include "dem.h"
#include "font_5x8.h"
#include "font_6x10.h"
#define VERSION "Version 2.3"
/*
* data from the header of a dem file
*/
struct dem_record_type_a dem_a;
struct dem_record_type_c dem_c;
long x_prime;
long bottom_border = BOTTOM_BORDER;
extern long right_border; // Defined and initialized in dlg.c because needed in programs that don't include drawmap.o
// long histogram[256]; /* For debugging. */
// long angle_hist[100000]; /* For debugging. */
// long total; /* For debugging. */
#define CONTOUR_INTVL (100.0)
long get_factor(double);
void add_text(struct image_corners *, char *, long, long, long, unsigned char *, long, long, long, long);
void get_short_array(short **, long, long);
void gen_texture(long, long, struct color_tab *, char *);
void
usage(char *program_name)
{
fprintf(stderr, "\nDrawmap, %s.\n\n", VERSION);
fprintf(stderr, "Usage: %s [-L]\n", program_name);
fprintf(stderr, " [-o output_file.sun] [-l latitude1,longitude1,latitude2,longitude2]\n", program_name);
fprintf(stderr, " [-d dem_file1 [-d dem_file2 [...]]] [-a attribute_file] [-z] [-w]\n");
fprintf(stderr, " [-c contour_interval] [-C contour_interval] [-g gnis_file] [-t]\n");
fprintf(stderr, " [-x x_size] [-y y_size] [-r relief_factor] [-m relief_mag] [-i] [-h]\n");
fprintf(stderr, " [-n color_table_number] [dlg_file1 [dlg_file2 [...]]]\n");
fprintf(stderr, "\nNote that the DLG files are processed in order, and each one overlays the\n");
fprintf(stderr, "last. If you want (for example) roads on top of streams, put the\n");
fprintf(stderr, "transportation data after the hydrography data. Note also that\n");
fprintf(stderr, "latitude/longitude values are in decimal degrees, and that east and north\n");
fprintf(stderr, "are positive, while west and south are negative.\n");
fprintf(stderr, "A contour interval specified with the -c or -C option must be in meters.\n");
}
void
license(void)
{
fprintf(stderr, "This program is free software; you can redistribute it and/or modify\n");
fprintf(stderr, "it under the terms of the GNU General Public License as published by\n");
fprintf(stderr, "the Free Software Foundation; either version 2, or (at your option)\n");
fprintf(stderr, "any later version.\n\n");
fprintf(stderr, "This program is distributed in the hope that it will be useful,\n");
fprintf(stderr, "but WITHOUT ANY WARRANTY; without even the implied warranty of\n");
fprintf(stderr, "MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n");
fprintf(stderr, "GNU General Public License for more details.\n\n");
fprintf(stderr, "You should have received a copy of the GNU General Public License\n");
fprintf(stderr, "along with this program; if not, write to the Free Software\n");
fprintf(stderr, "Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.\n");
}
main(int argc, char *argv[])
{
long i, j, k, l, m, n;
long tick_width;
double f;
long file_index;
long xx, yy;
double red, green, blue;
unsigned char a, b, c, d;
long *lptr;
long lsize;
long smooth[SMOOTH_MAX + SMOOTH_MAX + 1][SMOOTH_MAX + SMOOTH_MAX + 1];
long smooth_size;
double gradient, gradient1, gradient2, gradient3;
double fraction;
double latitude;
double longitude;
long factor;
long angle;
long sum;
long sum_count;
struct rasterfile hdr;
unsigned char map[3][256];
int dem_fdesc;
int gnis_fdesc;
int dlg_fdesc;
int output_fdesc;
ssize_t ret_val;
long length;
long start_x, start_y;
unsigned char buf[DEM_RECORD_LENGTH];
char *ptr;
unsigned char *tok_ptr;
unsigned char *font;
long font_width, font_height;
time_t time_val;
unsigned char dem_name[135];
long dem_flag;
long contour_flag;
long capital_c_flag;
long seacoast_flag;
long info_flag;
long height_field_flag;
long color_table_number;
long smooth_data_flag;
long smooth_image_flag;
long z_flag;
long tick_flag;
double relief_factor;
double relief_mag;
double y_gp_1, x_gp_1, y_gp_2, x_gp_2;
double latitude1, longitude1, latitude2, longitude2;
long tmp_width, tmp_height, tmp_x, tmp_y;
char *dem_files[NUM_DEM];
long num_dem, num_dlg;
char *gnis_file;
char *attribute_file;
char *output_file;
long option;
long x_low, x_high, y_low, y_high;
double res_y, res_xy;
short *image_tmp;
short *image_in = (short *)0;
long gz_flag, lat_flag;
double contour_trunc;
double contour_intvl = CONTOUR_INTVL;
long max_elevation = -100000, min_elevation = 100000;
long min_e_lat;
long min_e_long;
long max_e_lat;
long max_e_long;
unsigned char *gnis_feature_name;
char save_byte;
struct image_corners image_corners;
struct dem_corners dem_corners;
double res_x_data, res_y_data, res_x_image, res_y_image;
long c_index_sea;
struct color_tab *color_tab;
short *sptr, *sptr2, *sptr_down, *tmp_row;
short s0, s1, s2;
ssize_t (*read_function)();
FILE *pgm_stream;
struct datum datum = {
/* Fill in the datum parameters for the default program-wide datum: NAD-27. */
NAD27_SEMIMAJOR,
NAD27_SEMIMINOR,
NAD27_E_SQUARED,
NAD27_F_INV,
UTM_K0,
NAD27_A0,
NAD27_A2,
NAD27_A4,
NAD27_A6,
};
struct datum dem_datum; // The datum of a given DEM file
long sdts_flag; // When nonzero, we are processing an SDTS file
long gtopo30_flag; // When nonzero, we are processing a GTOPO30 file
long byte_order;
if (argc == 1) {
usage(argv[0]);
exit(0);
}
/* Process arguments */
image_corners.x = -1;
image_corners.y = -1;
image_corners.sw_lat = 91.0;
image_corners.sw_long = 181.0;
image_corners.ne_lat = -91.0;
image_corners.ne_long = -181.0;
gnis_file = (char *)0;
attribute_file = (char *)0;
output_file = (char *)0;
num_dem = 0;
dem_flag = 0; /* When set to 1, this flag says that at least some DEM data was read in. */
contour_flag = 0; /* When set to 1, this flag says that we should produce contours instead of shaded relief. */
capital_c_flag = 0; /* When set to 1, this flag indicates that the user specified '-C' instead of '-c' */
lat_flag = 0; /* When set to 1, this flag says that either the user explicitly specified the map boundaries, or we took them from the DEM data. */
seacoast_flag = 0; /* When set to 1, drawmap attempts to fill in the sea with B_BLUE */
info_flag = 0; /* When set to 1, drawmap prints out information about DEM and DLG files and does nothing else */
z_flag = 0; /* When set to 1, drawmap adjusts the elevations in the color table so as to use the entire table */
tick_flag = 1; /* When set to 1, tick marks and numeric latitudes/longitudes are added around the map. */
height_field_flag = 0; /* When set to 1, drawmap generates a height-field file instead of an image. */
color_table_number = 2; /* Select default color scheme. */
opterr = 0; /* Shut off automatic unrecognized-argument messages. */
relief_factor = -1.0; /* Valid values are real numbers between 0 and 1, inclusive. Initialize to invalid value. */
relief_mag = 1.0; /* Valid values are real numbers between 0 and 1, inclusive. Initialize to default value. */
while ((option = getopt(argc, argv, "o:d:c:C:g:a:x:y:r:m:l:n:Lwihzt")) != -1) {
switch(option) {
case 'o':
if (output_file != (char *)0) {
fprintf(stderr, "More than one output file specified with -o\n");
usage(argv[0]);
exit(0);
}
if (optarg == (char *)0) {
fprintf(stderr, "No output file specified\n");
usage(argv[0]);
exit(0);
}
output_file = optarg;
break;
case 'd':
if (num_dem >= NUM_DEM) {
fprintf(stderr, "Out of storage for DEM file names (max %d)\n", NUM_DEM);
exit(0);
}
if (optarg == (char *)0) {
fprintf(stderr, "No DEM file specified with -d\n");
usage(argv[0]);
exit(0);
}
dem_files[num_dem++] = optarg;
break;
case 'C':
capital_c_flag = 1;
case 'c':
if (contour_flag != 0) {
fprintf(stderr, "More than one -c or -C option given\n");
usage(argv[0]);
exit(0);
}
if (optarg == (char *)0) {
fprintf(stderr, "No contour interval specified with -c\n");
usage(argv[0]);
exit(0);
}
contour_intvl = atof(optarg);
contour_flag = 1;
break;
case 'g':
if (gnis_file != (char *)0) {
fprintf(stderr, "More than one GNIS file specified\n");
usage(argv[0]);
exit(0);
}
if (optarg == (char *)0) {
fprintf(stderr, "No GNIS file specified with -g\n");
usage(argv[0]);
exit(0);
}
gnis_file = optarg;
break;
case 'a':
if (attribute_file != (char *)0) {
fprintf(stderr, "More than one attribute file specified\n");
usage(argv[0]);
exit(0);
}
if (optarg == (char *)0) {
fprintf(stderr, "No attribute file specified with -a\n");
usage(argv[0]);
exit(0);
}
attribute_file = optarg;
break;
case 'x':
if (image_corners.x >= 0) {
fprintf(stderr, "More than one -x value specified\n");
usage(argv[0]);
exit(0);
}
if (optarg == (char *)0) {
fprintf(stderr, "No value specified with -x\n");
usage(argv[0]);
exit(0);
}
image_corners.x = atoi(optarg);
break;
case 'y':
if (image_corners.y >= 0) {
fprintf(stderr, "More than one -y value specified\n");
usage(argv[0]);
exit(0);
}
if (optarg == (char *)0) {
fprintf(stderr, "No value specified with -y\n");
usage(argv[0]);
exit(0);
}
image_corners.y = atoi(optarg);
break;
case 'r':
if (relief_factor >= 0.0) {
fprintf(stderr, "More than one -r value specified\n");
usage(argv[0]);
exit(0);
}
if (optarg == (char *)0) {
fprintf(stderr, "No value specified with -r\n");
usage(argv[0]);
exit(0);
}
relief_factor = atof(optarg);
if ((relief_factor < 0.0) || (relief_factor > 1.0)) {
fprintf(stderr, "The relief factor given with -r must be a real number between 0 and 1, inclusive.\n");
exit(0);
}
break;
case 'm':
if (relief_mag != 1.0) {
fprintf(stderr, "More than one -m value specified\n");
usage(argv[0]);
exit(0);
}
if (optarg == (char *)0) {
fprintf(stderr, "No value specified with -m\n");
usage(argv[0]);
exit(0);
}
relief_mag = atof(optarg);
if (relief_mag < 1.0) {
fprintf(stderr, "The relief magnification given with -m must be a real number greater than or equal to 1.\n");
exit(0);
}
break;
case 'l':
if ((image_corners.sw_lat != 91.0) || (image_corners.sw_long != 181.0) ||
(image_corners.ne_lat != -91.0) || (image_corners.ne_long != -181.0)) {
fprintf(stderr, "More than one set of -l values specified\n");
usage(argv[0]);
exit(0);
}
if (optarg == (char *)0) {
fprintf(stderr, "No values specified with -l\n");
usage(argv[0]);
exit(0);
}
ptr = optarg;
if (*ptr != '\0') {
image_corners.sw_lat = strtod(ptr, &ptr);
}
ptr++;
if (*ptr != '\0') {
image_corners.sw_long = strtod(ptr, &ptr);
}
ptr++;
if (*ptr != '\0') {
image_corners.ne_lat = strtod(ptr, &ptr);
}
ptr++;
if (*ptr != '\0') {
image_corners.ne_long = strtod(ptr, &ptr);
}
if ((image_corners.sw_lat == 91.0) || (image_corners.sw_long == 181.0) ||
(image_corners.ne_lat == -91.0) || (image_corners.ne_long == -181.0)) {
fprintf(stderr, "Incomplete set of -l values specified\n");
usage(argv[0]);
exit(0);
}
/* Used to check against the limits [-80,84] but GTOPO30 data can fall outside that. */
if ((image_corners.sw_lat < -90.0) || (image_corners.sw_lat > 90.0) ||
(image_corners.ne_lat < -90.0) || (image_corners.ne_lat > 90.0)) {
fprintf(stderr, "Latitude must fall between -90 and 90 degrees, inclusive\n");
usage(argv[0]);
exit(0);
}
if ((image_corners.sw_long < -180.0) || (image_corners.sw_long > 180.0) ||
(image_corners.ne_long < -180.0) || (image_corners.ne_long > 180.0)) {
fprintf(stderr, "Longitude must fall between -180 and 180 degrees, inclusive\n");
usage(argv[0]);
exit(0);
}
if (image_corners.sw_lat > image_corners.ne_lat) {
f = image_corners.sw_lat;
image_corners.sw_lat = image_corners.ne_lat;
image_corners.ne_lat = f;
}
if (image_corners.sw_long > image_corners.ne_long) {
f = image_corners.sw_long;
image_corners.sw_long = image_corners.ne_long;
image_corners.ne_long = f;
}
(void)redfearn(&datum, &image_corners.sw_x_gp, &image_corners.sw_y_gp, &image_corners.sw_zone,
image_corners.sw_lat, image_corners.sw_long, 1);
(void)redfearn(&datum, &image_corners.ne_x_gp, &image_corners.ne_y_gp, &image_corners.ne_zone,
image_corners.ne_lat, image_corners.ne_long, 0);
lat_flag = 1;
break;
case 'n':
if (optarg == (char *)0) {
fprintf(stderr, "No color table number specified with -n\n");
usage(argv[0]);
exit(0);
}
color_table_number = atoi(optarg);
if ((color_table_number < 1) || (color_table_number > NUM_COLOR_TABS)) {
fprintf(stderr, "Invalid color table number specified with -n, valid range is [1-%d]\n", NUM_COLOR_TABS);
usage(argv[0]);
exit(0);
}
break;
case 'L':
license();
exit(0);
break;
case 'w':
seacoast_flag = 1;
break;
case 'i':
info_flag = 1;
break;
case 'h':
height_field_flag = 1;
break;
case 'z':
z_flag = 1;
break;
case 't':
tick_flag = 0;
break;
default:
usage(argv[0]);
exit(0);
break;
}
}
num_dlg = argc - optind;
/*
* If info_flag is non-zero, then don't bother checking the other options.
* They will be ignored, except for -d.
*/
if (info_flag == 0) {
/* Clean up the options. */
if (output_file == (char *)0) {
if (height_field_flag != 0) {
output_file = "drawmap.pgm";
}
else {
output_file = "drawmap.sun";
}
}
if ((image_corners.x < 0) && (num_dem != 1)) {
/*
* The user didn't specify an x value. Provide one that is half
* of full resolution for a 1-degree DEM.
*
* If there is only one DEM file, the x and y values will be selected later, based on its contents.
*/
if (lat_flag != 0) {
image_corners.x = round(0.5 * (image_corners.ne_long - image_corners.sw_long) * (double)(ONE_DEGREE_DEM_SIZE - 1));
}
else {
image_corners.x = (ONE_DEGREE_DEM_SIZE - 1) >> 1;
}
fprintf(stderr, "x-width of actual map area set to %d pixels. (%d elevation samples)\n",
image_corners.x, image_corners.x + 1);
}
if ((image_corners.x > 0) && (image_corners.x & 1)) {
/*
* Odd dimensions are potential problems. Make them even.
* Absorb the odd-ness in the border.
*/
right_border++;
}
if ((image_corners.y < 0) && (num_dem != 1)) {
/*
* The user didn't specify a y value. Provide one that is half
* of full resolution for a 1-degree DEM.
*
* If there is only one DEM file, the x and y values will be selected later, based on its contents.
*/
if (lat_flag != 0) {
image_corners.y = round(0.5 * (image_corners.ne_lat - image_corners.sw_lat) * (double)(ONE_DEGREE_DEM_SIZE - 1));
}
else {
image_corners.y = (ONE_DEGREE_DEM_SIZE - 1) >> 1;
}
fprintf(stderr, "y-height of actual map area set to %d pixels. (%d elevation samples)\n",
image_corners.y, image_corners.y + 1);
}
if ((image_corners.y > 0) && (image_corners.y & 1)) {
/*
* Odd dimensions are potential problems (although not generally in the vertical direction).
* Absorb the odd-ness in the border.
*/
bottom_border++;
}
if (((image_corners.x > 0) && (image_corners.x < 4)) || ((image_corners.y > 0) && (image_corners.y < 4))) {
/*
* Avoid nonsensically small x or y. The reason for this is that
* the code was written under the assumption that the image is at
* least of a certain minimal size. By checking the size once,
* at the top, we don't have to check it throughout the body of the code.
*/
fprintf(stderr, "x and or y dimension too small.\n");
exit(0);
}
if ((num_dem != 1) && (lat_flag == 0)) {
fprintf(stderr, "The -l option is required unless there is exactly one -d option given.\n");
usage(argv[0]);
exit(0);
}
if (contour_intvl <= 0.0) {
fprintf(stderr, "The -c option includes a non-positive contour value (%f).\n", contour_intvl);
usage(argv[0]);
exit(0);
}
if (relief_factor < 0.0) {
relief_factor = 1.0;
}
}
/*
* Set up the rasterfile color map. See colors.h for a description of the map.
*
* Begin by setting up the initial colors in each color band.
*/
if (color_table_number == 1) {
color_tab = color_tab_neutral;
c_index_sea = C_INDEX_SEA_NEUTRAL;
}
else if (color_table_number == 2) {
color_tab = color_tab_natural;
c_index_sea = C_INDEX_SEA_NATURAL;
}
else if (color_table_number == 3) {
color_tab = color_tab_textbook;
c_index_sea = C_INDEX_SEA_TEXTBOOK;
}
else if (color_table_number == 4) {
color_tab = color_tab_spiral;
c_index_sea = C_INDEX_SEA_SPIRAL;
}
// If you want to define your own color table, add it to colors.h,
// increase NUM_COLOR_TABS (in colors.h) to 5,
// and uncomment the following four lines.
// else if (color_table_number == 5) {
// color_tab = color_tab_my_table;
// c_index_sea = C_INDEX_SEA_MY_TABLE;
// }
for (i = 0; i < MAX_VALID_BANDS; i++) {
map[0][color_tab[i].c_index] = color_tab[i].red;
map[1][color_tab[i].c_index] = color_tab[i].green;
map[2][color_tab[i].c_index] = color_tab[i].blue;
}
/* Put black into the unused part of the table. */
if (MAX_VALID_BANDS == 14) {
map[0][color_tab[MAX_VALID_BANDS].c_index] = 0;
map[1][color_tab[MAX_VALID_BANDS].c_index] = 0;
map[2][color_tab[MAX_VALID_BANDS].c_index] = 0;
}
/* Initialize the special color block to black. We will put in the individual colors later. */
map[0][color_tab[15].c_index] = 0;
map[1][color_tab[15].c_index] = 0;
map[2][color_tab[15].c_index] = 0;
/*
* We have the most intense color values inserted into the table.
* Now insert progressively less intense versions of each color.
* Each color decreases in intensity all the way to black.
*/
for (i = 0; i < 16; i++) {
red = relief_factor * (double)map[0][color_tab[i].c_index] / 15.0;
blue = relief_factor * (double)map[1][color_tab[i].c_index] / 15.0;
green = relief_factor * (double)map[2][color_tab[i].c_index] / 15.0;
for (j = 1; j <= 15; j++) {
map[0][color_tab[i].c_index + j] = map[0][color_tab[i].c_index] - (unsigned char)round(((double)j * red));
map[1][color_tab[i].c_index + j] = map[1][color_tab[i].c_index] - (unsigned char)round(((double)j * blue));
map[2][color_tab[i].c_index + j] = map[2][color_tab[i].c_index] - (unsigned char)round(((double)j * green));
}
if (relief_factor == 1.0) {
/*
* Make sure that we shade all the way exactly to black when
* the relief factor is at its default value of 1.0.
*/
map[0][color_tab[i].c_index + 15] = 0;
map[1][color_tab[i].c_index + 15] = 0;
map[2][color_tab[i].c_index + 15] = 0;
}
}
/* Insert miscellaneous colors for drawing roads, streams, and such. */
for (i = 0; i < 16; i++) {
map[0][brights[i].c_index] = brights[i].red;
map[1][brights[i].c_index] = brights[i].green;
map[2][brights[i].c_index] = brights[i].blue;
}
/* If an attribute file was specified, then parse it now. */
if ((info_flag == 0) && (attribute_file != (char *)0)) {
process_attrib(attribute_file);
}
/*
* Before we begin processing map data, here is a short lecture on the
* Universal Transverse Mercator (UTM) coordinate system, which is commonly
* used in topographical maps, and by the military (it has been adopted by
* NATO and is used by the US military for ground operations). UTM coordinates
* take the place of latitude and longitude, which can be cumbersome to deal
* with in the context of a small-area map.
*
* (UTM coordinates are used in the optional-format DLG files, and in the
* 24K DEM files, and there is some reference to them in the 250K DEM files.
* Old-style GNIS files use latitude and longitude, in DDDMMSS format,
* while new ones have both DDDMMSS and decimal degrees.)
*
* The UTM system begins by dividing the earth into 60 zones, each of
* which represents a slice (like a colored panel in a beach ball) that
* spans 6 degrees of longitude. Zone 1 runs from 180 degrees West
* Longitude to 174 degrees West Longitude. Zone 2 runs from 175W to
* 168W. Zone 60 runs from 174E to 180E.
*
* UTM is only used from 84N to 80S. At the poles, the Universal Polar
* Stereographic (UPS) projection is used.
*
* In each zone, points are represented by rectangular (x,y) coordinates
* that give distances, in meters, from the zone reference point. This
* reference point is at the intersection of the Equator and the Central
* Meridian (the longitude line that runs down the center of the zone).
* The (x,y) coordinates give the distance in meters to the east and north
* of the reference point.
*
* In order to avoid having negative values for the UTM coordinates,
* some adjustments are made. In the northern hemisphere, the y
* coordinate is simply measured from zero at the equator, but the
* Central Meridian is assigned a value of 500,000 meters (called a
* false easting), meaning that the distance (to the east) of a
* given point in the zone is the UTM x coordinate minus 500,000.
* In the southern hemisphere, the Central Meridian is again assigned
* a false easting of 500,000 meters; but the equator is no longer
* assigned a value of 0, and rather is assigned a value of 10,000,000
* meters north (called a false northing).
*
* Note that a Mercator projection can be visualized by imagining
* a cylinder, sitting on one of its ends, with a globe inside.
* If a light is shined from, say, the center of the globe, the longitude
* lines will be projected onto the cylinder as vertical lines, and the
* latitude lines will be projected as circles around the cylinder.
* The longitude lines will be evenly spaced, but the latitude lines
* will be farther apart as the latitude increases. One advantage
* of this projection is that it is conformal, meaning that angles and
* shapes are preserved during the transformation, for any given small
* region of the map.
*
* The Transverse Mercator projection is the same deal, except that the
* cylinder is tipped on its side and the desired Central Meridian is
* aligned so that it is vertical and tangent to the cylinder wall.
* Because of this orientation, shapes and areas near the Central
* Meridian are preserved, while shapes and areas distant from it
* are less accurate, especially when the top and/or bottom of the map
* is close to one of the poles so that the zone slice must be considerably
* stretched to form a rectangular grid. Within a given UTM zone, however,
* the distortion is relatively small.
*
* UTM is a Transverse Mercator projection, standardized for international
* use.
*/
/*
* This large loop processes elevation data in DEM format, SDTS DEM format,
* and GTOPO30 DEM format. By the time the loop ends, the data from all
* files has all been consolidated into a single internal array, image_in.
*
* Ordinary DEM files have a lot of header information, much of which we
* throw away. Initially, we simply read in the header and use it to figure
* out which type of DEM file we have, normally either a 1-degree DEM or a
* 7.5-minute DEM.
*
* In 1-degree DEMs, at least for the contiguous 48 United States, the
* elevations are stored as samples separated one from another by 3 arc
* seconds, making it easy to store the data in a latitude/longitude grid.
* In 7.5-minute DEMs, the data samples are separated by 10 meters or 30
* meters, and locations are in terms of UTM coordinates. These files are
* considerably more difficult to translate onto a latitude/longitude grid.
*
* SDTS files contain the same types of data as DEM files, just in a
* radically different format, spanning multiple files.
*
* GTOPO30 files have samples spaced 30 arc-seconds apart.
* They have yet another special format, so we provide a separate routine
* to convert them into data that looks like it came from a DEM file.
*/
dem_name[0] = '\0';
file_index = 0;
smooth_image_flag = 0;
if ((info_flag == 0) && (image_corners.x > 0) && (image_corners.y > 0)) {
get_short_array(&image_in, image_corners.x, image_corners.y);
}
while (file_index < num_dem) {
length = strlen(dem_files[file_index]);
/*
* We begin by figuring out if the file is gzip-compressed or not, and then we open it.
*/
if ((length > 3) && ((strcmp(&dem_files[file_index][length - 3], ".gz") == 0) ||
(strcmp(&dem_files[file_index][length - 3], ".GZ") == 0))) {
gz_flag = 1;
if ((dem_fdesc = buf_open_z(dem_files[file_index], O_RDONLY)) < 0) {
fprintf(stderr, "Can't open %s for reading, errno = %d\n", dem_files[file_index], errno);
exit(0);
}
read_function = buf_read_z;
}
else {
gz_flag = 0;
if ((dem_fdesc = buf_open(dem_files[file_index], O_RDONLY)) < 0) {
fprintf(stderr, "Can't open %s for reading, errno = %d\n", dem_files[file_index], errno);
exit(0);
}
read_function = buf_read;
}
if (info_flag == 0) {
fprintf(stderr, "Processing DEM file: %s\n", dem_files[file_index]);
}
file_index++;
sdts_flag = 0;
gtopo30_flag = 0;
/*
* Files in Spatial Data Transfer System (SDTS) format are markedly
* different from the old DEM files. (As a side note, there does not
* appear to be a specific name for the DEM format. Most documents
* just call it DEM format, and use "SDTS DEM", or some equivalent
* when they refer to SDTS formatted files. I usually just call it
* the ordinary DEM format.
*
* Since SDTS files are so different, we detect them and then do
* all of the initial parsing in a separate function.
*
* We insist that the user specify one, single, SDTS file (with the
* -d option on the command line) for each SDTS DEM layer.
* The file must be the one whose name has the form ????CEL?.DDF
* (or ????cel?.ddf), and it may have a .gz on the end if it is gzip
* compressed.
*
* We allow the files to be gzip-compressed, and they can have either
* ".gz" or ".GZ" on the end. However, we insist that the rest of
* the file name have consistent case. That is, if the 'F' or 'f'
* in the ".DDF" or ".ddf" is in a given case, the rest of the file
* had better be in that same case.
*
* If the following "if" test succeeds, we assume we have an SDTS file.
*/
if (((length >= 15) && (gz_flag != 0) &&
((strncmp(&dem_files[file_index - 1][length - 7], ".ddf", 4) == 0) ||
(strncmp(&dem_files[file_index - 1][length - 7], ".DDF", 4) == 0))) ||
((length >= 12) && (gz_flag == 0) &&
((strcmp(&dem_files[file_index - 1][length - 4], ".ddf") == 0) ||
(strcmp(&dem_files[file_index - 1][length - 4], ".DDF") == 0)))) {
/* SDTS file */
/* Close the file. We will reopen it in parse_dem_sdts(). */
if (gz_flag == 0) {
buf_close(dem_fdesc);
}
else {
buf_close_z(dem_fdesc);
}
/*
* Check that the file name takes the form that we expect.
*/
if (((gz_flag != 0) &&
((strncmp(&dem_files[file_index - 1][length - 11], "ce", 2) != 0) &&
(strncmp(&dem_files[file_index - 1][length - 11], "CE", 2) != 0))) ||
((gz_flag == 0) &&
(strncmp(&dem_files[file_index - 1][length - 8], "ce", 2) != 0) &&
(strncmp(&dem_files[file_index - 1][length - 8], "CE", 2) != 0))) {
fprintf(stderr, "The file %s looks like an SDTS file, but the name doesn't look right. Ignoring file.\n", dem_files[file_index - 1]);
continue;
}
/*
* The file name looks okay. Let's launch into the information parsing.
*/
if (parse_dem_sdts(dem_files[file_index - 1], &dem_a, &dem_c, &dem_datum, gz_flag) != 0) {
continue;
}
sdts_flag = 1;
}
/*
* Files in GTOPO30 format are in their own format. It is similar
* to SDTS format in that the data is spread through a number of
* files. (However, any similarities end there.) We only need to
* look at two files, the file whose name ends in ".HDR" and the
* file whose name ends in ".DEM".
*
* We insist that the user specify one, single, GTOPO30 file (with the
* -d option on the command line) for each GTOPO30 file collection.
* The file must be the one whose name has the form *.HDR
* (or *.hdr), and it may have a .gz on the end if it is gzip
* compressed.
*
* We allow the files to be gzip-compressed, and they can have either
* ".gz" or ".GZ" on the end. However, we insist that the rest of
* the file name have consistent case. That is, if the 'R' or 'r'
* in the ".HDR" or ".hdr" is in a given case, the rest of the file
* had better be in that same case.
*
* If the following "if" test succeeds, we assume we have an GTOPO30 file.
*/
else if (((length > 7) && (gz_flag != 0) &&
((strncmp(&dem_files[file_index - 1][length - 7], ".hdr", 4) == 0) ||
(strncmp(&dem_files[file_index - 1][length - 7], ".HDR", 4) == 0))) ||
((length > 4) && (gz_flag == 0) &&
((strcmp(&dem_files[file_index - 1][length - 4], ".hdr") == 0) ||
(strcmp(&dem_files[file_index - 1][length - 4], ".HDR") == 0)))) {
/* GTOPO30 file */
/* Close the file. We will reopen it in parse_gtopo30(). */
if (gz_flag == 0) {
buf_close(dem_fdesc);
}
else {
buf_close_z(dem_fdesc);
}
gtopo30_flag = 1;
}
else {
/* Not an SDTS file or GTOPO30 file */
/*
* Some people (in apparent violation of the DEM standards documents) put
* a newline immediately after the last valid data item in a record
* (rather than padding with blanks to make the record 1024 bytes long.
* This may simply be due to blocking the files with the:
* dd if=inputfilename of=outputfilename ibs=4096 cbs=1024 conv=unblock
* command, and then forgetting to convert them back.
*
* We read the first record (the Type A header record) a byte at a time,
* searching for a newline, trying to determine if this is one of those files.
*
* We attempt to handle such files, but we don't try very hard. There are
* many ways to add newlines to the files, and some pathological patterns
* will probably cause drawmap to give up and exit. I didn't deem it worth
* a lot of effort to try to support every possible non-standard file.
*/
for (i = 0; i < DEM_RECORD_LENGTH; i++) {
if ((ret_val = read_function(dem_fdesc, &buf[i], 1)) != 1) {
fprintf(stderr, "read from DEM file returns %d, expected 1\n", ret_val);
exit(0);
}
if ((buf[i] == '\n') || (buf[i] == '\r')) {
if (read_function == buf_read) {
read_function = get_a_line;
}
else {
read_function = get_a_line_z;
}
break;
}
}
/* Set ret_val as if we had done one big read. */
ret_val = i;
/*
* Parse all of the data from the header that we care about.
* Rather than make parse_dem_a() handle variable length
* header records, pad the record out to 1024.
*/
for (i = ret_val; i < DEM_RECORD_LENGTH; i++) {
buf[i] = ' ';
}
parse_dem_a(buf, &dem_a, &dem_datum);
}
/*
* Depending on the type of data, call the appropriate
* routine to allocate space for the data and read it in.
* Note that we must later free the space pointed to by dem_corners.ptr.
*/
dem_corners.ptr = (short *)0;
if (sdts_flag != 0) {
ret_val = process_dem_sdts(dem_files[file_index - 1], &image_corners, &dem_corners, &dem_a, &dem_datum);
}
else if (gtopo30_flag != 0) {
ret_val = process_gtopo30(dem_files[file_index - 1], &image_corners, &dem_corners, &dem_a, &dem_datum, info_flag);
}
else if (dem_a.plane_ref == 0) { // Check for Geographic Planimetric Reference System
/*
* Note that this function has a side effect: it converts the
* latitude/longitude code in dem_a.title into all spaces.
* This is done so that the code won't be included as part of
* the DEM name when we capture the DEM name a few lines hence.
* The routine has the additional side effect of setting
* dem_a->zone to a valid value. The zone field in the DEM file
* header is zero for Geographic DEMs.
*
* Files with this Planimetric Reference System code are: 30-minute, 1-degree, and Alaska DEMs.
* I have no samples of 30-minute files, so I don't know of process_geo_dem will work with
* them. It should work for 1-degree and Alaska DEMs.
*/
ret_val = process_geo_dem(dem_fdesc, read_function, &image_corners, &dem_corners, &dem_a, &dem_datum);
}
else if (dem_a.plane_ref == 1) { // Check for UTM Planimetric Reference System
/*
* Files with this Planimetric Reference System code are: 7.5-minute DEMs.
*/
ret_val = process_utm_dem(dem_fdesc, read_function, &image_corners, &dem_corners, &dem_a, &dem_datum);
/*
* We must choose whether to keep these data in UTM coordinates or
* inverse project them onto a latitude/longitude grid.
*
* We choose here to inverse project onto a latitude/longitude grid.
* This will be done below.
*/
}
else {
fprintf(stderr, "Unsupported Planimetric Reference System (code = %d) in DEM file. File ignored.\n", dem_a.plane_ref);
ret_val = 1; // Simulate error return from processing function.
}
if ((sdts_flag == 0) && (gtopo30_flag == 0)) {
if (gz_flag == 0) {
buf_close(dem_fdesc);
}
else {
buf_close_z(dem_fdesc);
}
}
/*
* Print all of the parsed header data.
*/
// print_dem_a(&dem_a);
if (info_flag != 0) {
/*
* We only need to print out some information about the DEM file.
* We aren't going to produce an image.
*/
if (ret_val != 0) {
dem_corners.y = -1; // If parsing failed, we may not know the y dimension
}
else {
free(dem_corners.ptr);
}
fprintf(stdout, "%s\t%40.40s\t%g:%g:%g:%g\t%d:%d\t%d:%d\t%s\n",
dem_files[file_index - 1], dem_a.title,
dem_corners.se_lat, dem_corners.se_long, dem_corners.nw_lat, dem_corners.nw_long,
dem_a.min_elev, dem_a.max_elev, dem_a.cols, dem_corners.y,
(read_function == get_a_line || read_function == get_a_line_z) ? "linefeeds=yes" : "linefeeds=no");
continue;
}
if (ret_val == 0) {
dem_flag = 1;
}
else {
continue;
}
/*
* If the user didn't specify an image size, and there is only one DEM,
* initialize the image size from the DEM size.
*/
if (num_dem == 1) {
/* There was only one DEM file. */
if (image_corners.x < 0) {
/*
* The user didn't specify an x value. Select it to display.
* the single DEM file at full resolution.
*/
image_corners.x = dem_corners.x - 1;
fprintf(stderr, "x-width of actual map area set to %d pixels. (%d elevation samples)\n",
image_corners.x, image_corners.x + 1);
if (image_corners.x & 1) {
/*
* Odd dimensions are potential problems. Make them even
* by absorbing the odd-ness in the border.
*/
right_border++;
}
}
if (image_corners.y < 0) {
/*
* The user didn't specify an x value. Select it to display.
* the single DEM file at full resolution.
*/
image_corners.y = dem_corners.y - 1;
fprintf(stderr, "y-width of actual map area set to %d pixels. (%d elevation samples)\n",
image_corners.y, image_corners.y + 1);
if (image_corners.y & 1) {
/*
* Odd dimensions are potential problems. Make them even
* by absorbing the odd-ness in the border.
*/
bottom_border++;
}
}
}
/*
* If user did not provide the -l option, then initialize image boundary specifications.
* Note that, in this case, we know there is only a single DEM file, because we
* explicitly checked for this when we checked the input arguments.
* Thus it is safe to simply initialize the image corners from the dem corners.
*/
if (lat_flag == 0) {
image_corners.sw_y_gp = dem_corners.sw_y_gp;
image_corners.sw_lat = dem_corners.sw_lat;
image_corners.sw_x_gp = dem_corners.sw_x_gp;
image_corners.sw_long = dem_corners.sw_long;
image_corners.sw_zone = dem_a.zone;
image_corners.ne_y_gp = dem_corners.ne_y_gp;
image_corners.ne_lat = dem_corners.ne_lat;
image_corners.ne_x_gp = dem_corners.ne_x_gp;
image_corners.ne_long = dem_corners.ne_long;
image_corners.ne_zone = dem_a.zone;
lat_flag = 1;
}
/*
* We at last are sure that we have enough information to allocate space
* for the big DEM data array. Allocate it now, so that it will
* be ready for use.
*/
if (image_in == (short *)0) {
get_short_array(&image_in, image_corners.x, image_corners.y);
}
/*
* Save the name of the DEM block for later use.
*
* This is more difficult than it might at first appear.
* People put all kinds of free-form text into the beginning
* of a DEM header record. Only some of it can really be called a
* name. (For example, there may be latitude/longitude information,
* or various codes describing aspects of the DEM file that people think
* should be remembered but don't have a legitimate place for in the
* standard record structure.)
* In an attempt to get just the name, we assume that it comes first in the record
* (which is not always true), and take everything up until 40 characters
* or until we come across three blanks in a row.
*/
if (dem_name[0] == '\0') {
i = 0;
for (j = 0; j < 40; j++) {
if (dem_a.title[j] != ' ') {
/* If the character is not a space, just copy it. */
dem_name[i++] = dem_a.title[j];
}
else {
/* Allow a maximum of two spaces in a row */
if ((dem_a.title[j ] == ' ') &&
(dem_a.title[j + 1] == ' ') &&
(dem_a.title[j + 2] == ' ')) {
break;
}
else {
dem_name[i++] = dem_a.title[j];
}
}
}
dem_name[i] = '\0';
}
else {
strcpy(dem_name, "Data from multiple DEM files");
}
/*
* Figure out the area of the image that will be covered by this set of DEM file data.
* Fill in that area with data from corners.ptr.
*
* Because the relative sizes can take any ratio (in either the x or y direction)
* we simply choose the point from corners.ptr that lies closest to the relative
* location in the covered area. The exception to this is when the image is
* being subsampled, in which case we smooth the data to get average representative data points.
* (If the data is being oversampled, we will smooth it later to get rid of the
* checkerboard effect that occurs when whole blocks of the image are at the same
* elevation.)
*/
latitude1 = max3(-91.0, dem_corners.sw_lat, image_corners.sw_lat);
longitude1 = max3(-181.0, dem_corners.sw_long, image_corners.sw_long);
latitude2 = min3(91.0, dem_corners.ne_lat, image_corners.ne_lat);
longitude2 = min3(181.0, dem_corners.ne_long, image_corners.ne_long);
tmp_width = round((double)(dem_corners.x - 1) * (longitude2 - longitude1) /
(dem_corners.ne_long - dem_corners.sw_long));
tmp_height = round((double)(dem_corners.y - 1) * (latitude2 - latitude1) /
(dem_corners.ne_lat - dem_corners.sw_lat));
tmp_x = round((double)(dem_corners.x - 1) * (longitude1 - dem_corners.sw_long) /
(dem_corners.ne_long - dem_corners.sw_long));
tmp_y = (dem_corners.y - 1) - round((double)(dem_corners.y - 1) * (latitude2 - dem_corners.sw_lat) /
(dem_corners.ne_lat - dem_corners.sw_lat));
x_low = round((double)image_corners.x * (longitude1 - image_corners.sw_long) /
(image_corners.ne_long - image_corners.sw_long));
x_high = round((double)(image_corners.x + 1) * (longitude2 - image_corners.sw_long) /
(image_corners.ne_long - image_corners.sw_long));
y_low = image_corners.y - round((double)image_corners.y * (latitude2 - image_corners.sw_lat) /
(image_corners.ne_lat - image_corners.sw_lat));
y_high = image_corners.y + 1 - round((double)image_corners.y * (latitude1 - image_corners.sw_lat) /
(image_corners.ne_lat - image_corners.sw_lat));
if ((x_low < 0) || (x_high > (image_corners.x + 1)) || (y_low < 0) || (y_high > (image_corners.y + 1))) {
fprintf(stderr, "One of x_low=%d, x_high=%d, y_low=%d, y_high=%d out of range\n",
x_low, x_high, y_low, y_high);
exit(0);
}
// For debugging.
// fprintf(stderr, "image_corners.x=%d image_corners.y=%d dem_corners.x=%d dem_corners.y=%d\n x_low=%d x_high=%d y_low=%d y_high=%d\n",
// image_corners.x, image_corners.y, dem_corners.x, dem_corners.y, x_low, x_high, y_low, y_high);
// fprintf(stderr, "dem_corners: (%g %g) (%g %g) (%d %d)\n image_corners: (%g %g) (%g %g) (%d %d)\n tmp_width=%d tmp_height=%d tmp_x=%d tmp_y=%d\n",
// dem_corners.sw_x_gp, dem_corners.sw_y_gp, dem_corners.ne_x_gp, dem_corners.ne_y_gp, dem_corners.x, dem_corners.y,
// image_corners.sw_x_gp, image_corners.sw_y_gp, image_corners.ne_x_gp, image_corners.ne_y_gp, image_corners.x, image_corners.y,
// tmp_width, tmp_height, tmp_x, tmp_y);
/*
* Calculate some ratios that we use to determine whether or not
* smoothing is required.
*
* If we have DEM data of greater resolution than the target image,
* then we smooth the DEM data (average data points over small areas)
* so that each target image pixel represents an average of the available
* DEM data points for locations near that pixel. This throws away
* some of the "crispness" of the data, so we don't want do it willy-nilly.
* (However, if the resolutions are very much different, then the
* terrain can look quite peculiar without smoothing, because elevation
* samples from widely-separated areas can be thrown next to each other
* on the image.)
*
* If we have DEM data of lesser resolution than the target image,
* then we smooth the target image to reduce the stairstep effect
* that comes from spreading too little data over too large an area.
* In this case, the data is a little too "crisp", in the sense that
* we don't have enough of it, so we need to spread the available
* data out to fill the desired image.
*
* If the data and image resolution are nearly the same, we don't do
* any smoothing. Thus we check to make sure that the two resolutions
* differ by at least a certain amount. For data smoothing, the amount
* is 50%, because we don't want to smear up the data unless we
* have a good reason. For image smoothing, we are a lot less
* tolerant, because even a relatively small resolution difference can
* create image stairstepping.
*
* The decision of whether or not to smooth is somewhat subjective,
* so our choice may not always make everyone happy. However, the user
* can always display the data at full resolution if the smoothing results
* don't meet expectations.
*
* We check the x and y resolutions separately, and do the smoothing
* if either direction meets the criterion.
*
* There is still an image glitch that isn't dealt with here. When
* the resolutions of the target image and the DEM data are close,
* but not identical (roughly within 30% of each other), then there
* may be a tiny checkerboard pattern on the areas of the image that
* represent low-gradient terrain. This appears to be caused by the
* process by which indexes into the DEM data are derived from indexes
* into the target image. Since the indexes are approximately congruent,
* (but not quite) a set of image indexes (in, say, the x direction) like:
* 0 1 2 3 4 5 6 7 ...
* can translate into a set of DEM indexes like:
* 0 1 3 4 6 7 9 10 ...
* This means that the target image contains pairs of adjacent elevations
* that come from adjacent locations in the DEM data. Adjacent to each
* of these pairs (on the target image) are pairs that came from not-quite-
* adjacent data in the DEM data. This creates small-scale stairstepping
* in the target image, where each pair of elevations is bounded by pairs
* that have small elevation discontinuities. The result are anomalous
* bands of light or shadow at the discontinuities. The problem only
* shows up in areas where the elevation is changing slowly (that is, the gradient
* has a small magnitude) because only in those regions does a small elevation
* change result in a relatively large color change.
* I tried various simple things to eliminate this problem, including
* various filters, and even some simple jittering of the data. None
* of these techniques improved the image enough to be worthwhile
* (at least in my subjective opinion). Until I figure out a good way
* to approach this problem, the manual page simply says not to select
* nearly-the-same-but-not-the-same source and target resolutions.
* It seems unlikely that people would want to do this very often anyway.
*/
smooth_data_flag = 0;
res_x_data = (double)(dem_corners.x - 1) / (dem_corners.ne_long - dem_corners.sw_long);
res_x_image = (double)image_corners.x / (image_corners.ne_long - image_corners.sw_long);
res_y_data = (double)(dem_corners.y - 1) / (dem_corners.ne_lat - dem_corners.sw_lat);
res_y_image = (double)image_corners.y / (image_corners.ne_lat - image_corners.sw_lat);
if (((1.5 * res_y_image) < res_y_data) || ((1.5 * res_x_image) < res_x_data)) {
smooth_data_flag = 1;
}
if (((1.05 * res_y_data) < res_y_image) || ((1.05 * res_x_data) < res_x_image)) {
smooth_image_flag = 1;
}
/*
* Prepare a smoothing kernel in case we have more data than pixels to display it.
* The kernel is a square, a maximum of 2*SMOOTH_MAX+1 on a side.
*
* Here is one possible kernel, that I have tried:
* If a kernel element is a distance of sqrt(k*k + l*l) from the
* center, then its weight is 10*1.5^(-x/2)
* Implemented by:
* smooth[k + smooth_size][l + smooth_size] = round(10.0 * pow(1.5, - sqrt(k * k + l * l) / 2.0));
*
* For now, we just take the straight average over the kernel, since it seems to work reasonbly
* well.
*
* The kernel width/height will be 1+2*smooth_size pixels.
* In the calculation of smooth_size, we take the minimum of SMOOTH_MAX,
* pixels_per_degree_resolution_of_source_data_in_y_direction / pixels_per_degree_resolution_of_target_image_in_y_direction - 1, and
* pixels_per_degree_resolution_of_source_data_in_x_direction / pixels_per_degree_resolution_of_target_image_in_x_direction - 1
*
* The more excess data we have, the more source pixels we average to get a single
* data point for the target image.
*/
if (smooth_data_flag != 0) {
smooth_size = round(min3(SMOOTH_MAX,
-1.0 + res_y_data / res_y_image,
-1.0 + res_x_data / res_x_image));
if (smooth_size < 1) {
/*
* If the y resolution and x resolution differ,
* it is possible for one to call for smoothing and the other not.
* This would result in smooth_size = 0, which we don't want.
* We correct that problem here.
*/
smooth_size = 1;
}
for (k = -smooth_size; k <= smooth_size; k++) {
for (l = -smooth_size; l <= smooth_size; l++) {
smooth[k + smooth_size][l + smooth_size] = 1;
}
}
}
/*
* This is the loop that transfers the data for a single DEM into the image_in array.
* The image_in array will eventually hold the data from all DEM files given by the user.
*
* Note: The mapping of DEM data into the image is done by simple linear interpolation
* from the edges of the DEM data. Strictly speaking, this is not quite correct for
* 7.5-minute DEM data, because it treats the boundaries of the DEM data as a perfect rectangle.
* However, I implemented a much more complicated method that went like this:
*
* Use the (i, j) location in the image to determine an accurate latitude/longitude.
* Map the latitude/longitude into UTM coordinates with the redfearn() function.
* Use these UTM coordinates, along with the known UTM coordinates of the first
* point in the first profile of the DEM, to accurately determine the correct
* (k, l) point in the DEM data that corresponds to the specified latitude/longitude.
* Use that correct point (and the surrounding points) to produce an elevation
* value to stuff into the (i, j) location in the image.
*
* Technically speaking, this is about as accurate a job as can be done without implementing
* some between-point interpolation. It made a minor difference in the image, but
* it wasn't clearly better (in my opinion), just slightly different. I thus reverted
* back to this, simpler, more-efficient approach.
*/
for (i = y_low; i < y_high; i++) {
k = tmp_y + round((double)(tmp_height * (i - y_low)) / (double)(y_high - 1 - y_low));
for (j = x_low; j < x_high; j++) {
l = tmp_x + round((double)(tmp_width * (j - x_low)) / (double)(x_high - 1 - x_low));
if ((l < 0) || (l > (dem_corners.x - 1)) || (k < 0) || (k > (dem_corners.y - 1))) {
fprintf(stderr, "One of l=%d, k=%d out of range, (i=%d, j=%d, tmp_y=%d, tmp_x=%d, tmp_height=%d, tmp_width=%d)\n",
l, k, i, j, tmp_y, tmp_x, tmp_height, tmp_width);
exit(0);
}
if (*(dem_corners.ptr + k * dem_corners.x + l) == HIGHEST_ELEVATION) {
/*
* It is possible, for 7.5-minute DEMs, to have some samples
* at HIGHEST_ELEVATION around the non-rectangular boundaries
* of the DEM data. Don't attempt copy these into the image array.
*/
continue;
}
if (smooth_data_flag != 0) {
/*
* We have DEM data whose resolution, in pixels per degree,
* is greater than the resolution of the target image. Since
* we have excess data, do some smoothing of the data so that
* the elevation of a point in the target image is an average
* over a group of points in the source DEM data.
*/
sum = 0;
sum_count = 0;
for (m = -smooth_size; m <= smooth_size; m++) {
for (n = -smooth_size; n <= smooth_size; n++) {
if (((k + m) < 0) || ((k + m) >= dem_corners.y) || ((l + n) < 0) || ((l + n) >= dem_corners.x)) {
continue;
}
if (*(sptr = dem_corners.ptr + (k + m) * dem_corners.x + l + n) == HIGHEST_ELEVATION) {
continue;
}
sum += *sptr * smooth[m + smooth_size][n + smooth_size];
sum_count += smooth[m + smooth_size][n + smooth_size];
/*
* Here, we are trying to find the latitude and longitude of the
* high and low elevation points in the map.
* When there is heavy smoothing, the derived location may
* be pretty approximate.
* Note also that there may be more than one point in the
* map that takes on the highest (or lowest) elevation.
* We only select the first one we find.
*
* It is somewhat inefficient to do these checks here,
* since data points will generally get checked multiple
* times; but doing it here lets us easily associate
* a given DEM data point with values of i and j,
* which give us the latitude/longitude of the point.
*/
if (*sptr < min_elevation) {
min_elevation = *sptr;
min_e_lat = i;
min_e_long = j;
}
if (*sptr > max_elevation) {
max_elevation = *sptr;
max_e_lat = i;
max_e_long = j;
}
}
}
*(image_in + i * (image_corners.x + 1) + j) = round((double)sum / (double)sum_count);
}
else {
/*
* We have an image that is either one-to-one with the DEM data, or that needs
* more pixels per degree of longitude than the DEM data can supply.
*
* Don't do any smoothing. Simply pick the nearest
* point from dem_corners.ptr.
*
* If the x and y image size, given by the user, is
* not related by an integer factor to the number of elevation samples
* in the available data, then the image will contain some
* stripy anomalies because the rounding (above) to arrive
* at the k and l values will periodically give two k or
* l values in a row that have the same value. Since
* the image color at a given point depends on changes in
* elevation around that point, having repeated elevation
* values can result in anomalous flat areas (with a neutral
* color) in an area of generally steep terrain (with generally
* bright or dark colors). We can do some smoothing later
* in an attempt to lessen this problem.
*/
if (*(sptr = dem_corners.ptr + k * dem_corners.x + l) == HIGHEST_ELEVATION) {
continue;
}
*(image_in + i * (image_corners.x + 1) + j) = *sptr;
/*
* Here, we are trying to find the latitude and longitude of the
* high and low elevation points in the map.
* Note that there may be more than one point in the
* map that takes on the highest (or lowest) elevation.
* We only select the first one we find.
*/
if (*sptr < min_elevation) {
min_elevation = *sptr;
min_e_lat = i;
min_e_long = j;
}
if (*sptr > max_elevation) {
max_elevation = *sptr;
max_e_lat = i;
max_e_long = j;
}
}
}
}
free(dem_corners.ptr);
}
/*
* If we have reached this point and we still don't know the image dimensions,
* then just give up and exit. We could put in a big slug of code here
* and come up with some image dimensions, but we have reached the point of
* diminishing returns.
*
* If we reach this point without image dimensions, it probably means that
* the user has provided a single DEM file, but that it falls outside of
* the specified latitude/longitude range. We could limp along under these
* conditions, and process the DLG or GNIS information (if any), but it
* doesn't seem worthwhile. It is usually best to localize decisions, to the
* extent possible. We have violated that rule here, with the laudable goal
* of trying to not force the user to specify image dimensions and latitude/longitude
* ranges. However, the image-size decision has been smeared over enough of the
* code to make it hard to understand and maintain. (There are even little bits
* of it slopped over into dem.c.) It is time to call a halt. (Perhaps past time.)
*/
if ((info_flag == 0) && ((image_corners.x < 0) || (image_corners.y < 0))) {
fprintf(stderr, "Image dimensions are ambiguous. There may be a problem with -l, -x, and/or -y.\n");
fprintf(stderr, "If you provide a single DEM file, you can leave out -l, -x, and -y,\n");
fprintf(stderr, "and drawmap will choose them for you.\n");
exit(0);
}
/*
* When dealing with 7.5-minute DEMs, there are sometimes gaps between the data
* for a pair of adjacent DEMs. This is sometimes because it is difficult to
* choose image dimensions so that there is an exact correspondence between data
* points and image points --- under these conditions, rounding quantization can
* cause a small gap to occur between quads.
* Occasionally, there are also actual gaps between the data in adjacent files.
* Either of these difficulties can result white gaps in the image,
* between the data for adjacent quads.
*
* We fill in these voids by averaging neighboring points that contain valid data.
* We look for spots on the image where a non-valid point has valid points, on either
* side, in diametric opposition.
*
* We stretch out further to the left and right because the quads are generally
* fairly even on top and bottom, but ragged on the left and right. Thus, any
* gaps usually show up at the vertical joints between quads, and the gaps can
* be two pixels wide, when the joints are particularly ragged.
*
* The purpose of this block of code is to get rid of gaps that occur when
* the target image resolution is about the same as the data resolution.
* (We will call this the resolution-parity case.) When the target image
* resolution is considerably smaller than the data resolution, then the
* data smoothing (performed above) should eliminate any gaps. When
* the target image resolution is considerably greater than the data
* resolution, then we have to rely on the image smoothing (performed later)
* to fill the gaps, because the gaps can be magnified in width by oversampling.
* The current block of code falls between the two extremes. Unlike either of
* the smoothing operations, this code does its job without modifying
* any existing elevation data. It steps lightly, and only modifies
* the empty regions between blocks of valid data. (Of course, this
* current block of code may also fill in some gaps that would otherwise
* have been filled in by the image smoothing below.)
*
* We could combine this operation with the image smoothing operation, below,
* but the latter operation is currently written to require a complete extra
* copy of the image. By doing a separate interpolation operation here, we
* avoid having to double our memory needs for images that have approximate
* resolution parity with the data. This is important, because such images
* are often quite large, sometimes several times as large as can be displayed on
* a single screen. Since the image smoothing operation is used when
* a small amount of data is blown up into a larger size, the images there
* are likely to be more than moderate in size, perhaps comparable to the
* size of a display screen. Thus, in the image-smoothing case, the doubled
* memory requirements are an acceptable trade off for simpler code; while,
* in the resolution-parity case, it is worthwhile to try to minimize memory
* use and thus maximize the size of the allowable maps.
*
*
* We don't want to allocate space for another image, so we allocate space for
* another image row. We use this temporary space, and the variables s0, s1, and s2,
* to save the data we have already looked at, so that we can change the data
* in the image array itself, but still have a copy of the old data to do our
* searching and averaging with. This adds a small amount of complexity to
* this block of code, but can greatly decrease our memory needs.
*
* sptr is the pointer to the row we are currently examining and changing.
* sptr_down is a pointer to the next row down the image (the row we will examine next).
* tmp_row holds a pre-change version of the previously examined row.
* s2 holds the pre-change version of the point we are currently looking at.
* s1 holds the pre-change version of the previous point.
* s0 holds the pre-change version of the point before s1.
*/
if (info_flag == 0) {
tmp_row = (short *)malloc(sizeof(short) * (image_corners.x + 1));
if (tmp_row == (short *)0) {
fprintf(stderr, "malloc of tmp_row failed\n");
exit(0);
}
sptr = image_in - image_corners.x - 1;
sptr_down = image_in;
for (i = 0; i <= image_corners.y; i++) {
sptr += (image_corners.x + 1);
sptr_down += (image_corners.x + 1);
for (j = 0; j <= image_corners.x; j++) {
s2 = sptr[j];
if (s2 == HIGHEST_ELEVATION) {
f = 0.0;
k = 0;
if ((j > 0) && (j < image_corners.x)) {
if ((sptr[j - 1] != HIGHEST_ELEVATION) && (sptr[j + 1] != HIGHEST_ELEVATION)) {
f += sptr[j - 1];
f += sptr[j + 1];
k = k + 2;
}
if ((i > 0) && (i < image_corners.y)) {
if ((tmp_row[j - 1] != HIGHEST_ELEVATION) && (sptr_down[j + 1] != HIGHEST_ELEVATION)) {
f += tmp_row[j - 1];
f += sptr_down[j + 1];
k = k + 2;
}
if ((tmp_row[j + 1] != HIGHEST_ELEVATION) && (sptr_down[j - 1] != HIGHEST_ELEVATION)) {
f += tmp_row[j + 1];
f += sptr_down[j - 1];
k = k + 2;
}
if ((j > 1) && (j < (image_corners.x - 1))) {
if ((tmp_row[j - 2] != HIGHEST_ELEVATION) && (sptr_down[j + 2] != HIGHEST_ELEVATION)) {
f += tmp_row[j - 2];
f += sptr_down[j + 2];
k = k + 2;
}
if ((tmp_row[j + 2] != HIGHEST_ELEVATION) && (sptr_down[j - 2] != HIGHEST_ELEVATION)) {
f += tmp_row[j + 2];
f += sptr_down[j - 2];
k = k + 2;
}
}
}
if ((j > 1) && (j < (image_corners.x - 1))) {
if ((sptr[j - 2] != HIGHEST_ELEVATION) && (sptr[j + 2] != HIGHEST_ELEVATION)) {
f += sptr[j - 2];
f += sptr[j + 2];
k = k + 2;
}
}
}
if ((i > 0) && (i < image_corners.y) &&
(tmp_row[j] != HIGHEST_ELEVATION) && (sptr_down[j] != HIGHEST_ELEVATION)) {
f += tmp_row[j];
f += sptr_down[j];
k = k + 2;
}
if (k > 1) {
sptr[j] = f / (double)k;
}
}
if (j > 1) {
tmp_row[j - 2] = s0;
}
s0 = s1;
s1 = s2;
}
tmp_row[j - 2] = s0;
tmp_row[j - 1] = s1;
}
free(tmp_row);
}
/*
* If the image data has been oversampled (meaning that we have spread too little actual
* DEM data over too many image pixels), then we smooth it out a little so that there isn't
* a checkerboard effect from the sparse data. The size of the smoothing kernel, and
* its shape, are heuristically chosen to produce pleasing results. However, the whole
* process is inherently imperfect, so don't expect amazing results. After all, there
* really isn't any way to accurately interpolate the data that isn't there. We are just
* trying to get rid of some of the annoying artifacts of the oversampling process. This
* makes the image look better, but it does so essentially by removing some false data,
* and adding new more-pleasant-looking false data to replace it.
*/
if (info_flag == 0) {
if ((dem_flag != 0) && (smooth_image_flag != 0)) {
/*
* Prepare a smoothing kernel.
* The kernel is a square, a maximum of 2*SMOOTH_MAX+1 on a side.
*
* If a kernel element is a distance of sqrt(k*k + l*l) from the
* center, then its weight is:
* smooth[k + smooth_size][l + smooth_size] = round(10.0 * exp(- (k * k + l * l) / (2.0 * (smooth_size / 2.0) * (smooth_size / 2.0))));
*
* This is basically a gaussian distribution, with a mean of zero and a variance of
* (smooth_size / 2.0)^2
*
* The parameters of the equation were chosen by trial and error.
*
* We choose smooth_size in the same way that we chose it above,
* except that the two ratios are inverted.
*/
smooth_size = round(min3(SMOOTH_MAX, res_y_image / res_y_data, res_x_image / res_x_data));
if (smooth_size < 1) {
/*
* If the y resolution and x resolution differ,
* it is possible for one to call for smoothing and the other not.
* This could result in smooth_size = 0, which we don't want.
* We correct that problem here.
*/
smooth_size = 1;
}
for (k = -smooth_size; k <= smooth_size; k++) {
for (l = -smooth_size; l <= smooth_size; l++) {
smooth[k + smooth_size][l + smooth_size] = round(10.0 * exp(- (k * k + l * l) / (2.0 * (smooth_size / 2.0) * (smooth_size / 2.0))));
}
}
/*
* We need a new block of memory so that we can read the source data
* from one block and write smoothed data into the other.
*/
// get_short_array(&image_tmp, image_corners.x, image_corners.y);
image_tmp = (short *)malloc(sizeof(short) * (image_corners.y + 1) * (image_corners.x + 1));
if (image_tmp == (short *)0) {
fprintf(stderr, "malloc of image_tmp failed\n");
exit(0);
}
/*
* Do the smoothing.
*
* Slop over slightly into the areas that are set to HIGHEST_ELEVATION
* so that we can fill in any remaining gaps between 7.5-minute quads.
*/
for (i = 0; i <= image_corners.y; i++) {
for (j = 0; j <= image_corners.x; j++) {
sum = 0;
sum_count = 0;
for (m = -smooth_size; m <= smooth_size; m++) {
for (n = -smooth_size; n <= smooth_size; n++) {
if (((i + m) < 0) || ((i + m) > image_corners.y) || ((j + n) < 0) || ((j + n) > image_corners.x)) {
continue;
}
sptr = (image_in + (i + m) * (image_corners.x + 1) + j + n);
if (*sptr == HIGHEST_ELEVATION) {
continue;
}
sum += *sptr * smooth[m + smooth_size][n + smooth_size];
sum_count += smooth[m + smooth_size][n + smooth_size];
}
}
if (sum_count == 0) {
*(image_tmp + i * (image_corners.x + 1) + j) = HIGHEST_ELEVATION;
}
else {
*(image_tmp + i * (image_corners.x + 1) + j) = round((double)sum / (double)sum_count);
}
}
}
free(image_in);
image_in = image_tmp;
}
}
/*
* If height_field_flag is non-zero, then we don't generate an image.
* Instead we create a file full of height field information for use
* by other programs, such as the povray ray tracer.
*
* The file is a Portable Graymap (PGM) format file
* which is a simple ASCII dump of the elevation data.
*/
if ((info_flag == 0) && (height_field_flag != 0)) {
if ((pgm_stream = fopen(output_file, "w+")) < 0) {
fprintf(stderr, "Can't create %s for writing, errno = %d\n", output_file, errno);
exit(0);
}
/*
* We need to recalculate the maximium and minimum elevations
* since they may have been altered by the smoothing
* operations, and we need to print out the new values.
*/
min_elevation = 100000;
max_elevation = -100000;
l = 0;
k = 0;
for (i = 0; i <= image_corners.y; i++) {
for (j = 0; j <= image_corners.x; j++) {
if (*(image_in + i * (image_corners.x + 1) + j) == HIGHEST_ELEVATION) {
*(image_in + i * (image_corners.x + 1) + j) = 0;
k = 1;
continue;
}
if (*(image_in + i * (image_corners.x + 1) + j) < 0) {
*(image_in + i * (image_corners.x + 1) + j) = 0;
l = 1;
}
if (*(image_in + i * (image_corners.x + 1) + j) > max_elevation) {
max_elevation = *(image_in + i * (image_corners.x + 1) + j);
}
if (*(image_in + i * (image_corners.x + 1) + j) < min_elevation) {
min_elevation = *(image_in + i * (image_corners.x + 1) + j);
}
}
}
fprintf(stderr, "minimum elevation = %d, maximum elevation = %d%s%s\n", min_elevation, max_elevation,
k != 0 ? ",\nSome points that didn't contain valid data had their elevations set to zero." : "",
l != 0 ? ",\nSome points with elevations below zero had their elevations set to zero." : "");
fprintf(pgm_stream, "P2\n");
fprintf(pgm_stream, "%d %d %d\n", image_corners.x + 1, image_corners.y + 1, max_elevation);
for (i = 0; i <= image_corners.y; i++) {
for (j = 0; j <= image_corners.x; j++) {
// This print statement is for use when you want elevations normalized to 65535.
// fprintf(pgm_stream, "%d\n", (int)(65535.0 * (double)(*(image_in + i *
// (image_corners.x + 1) + j) - min_elevation) /
// (double)(max_elevation == min_elevation ? 0.01 : max_elevation - min_elevation)));
fprintf(pgm_stream, "%d\n", *(image_in + i * (image_corners.x + 1) + j));
}
}
fprintf(pgm_stream, "# Height-field map of Digital Elevation Model data. Output by drawmap program.\n");
fprintf(pgm_stream, "# %g %g %g %g Latitude/longitude of southeast and northwest corners\n",
image_corners.sw_lat, image_corners.ne_long,
image_corners.ne_lat, image_corners.sw_long);
fprintf(pgm_stream, "# %d %d Mimimum and maximum elevations%s%s\n",
min_elevation, max_elevation,
k != 0 ? "\n# Some points that didn't contain valid data had their elevations set to zero." : "",
l != 0 ? "\n# Some points with elevations below zero had their elevations set to zero." : "");
fclose(pgm_stream);
/*
* Produce a povray texture map, suitable for use
* with the height-field data.
*/
gen_texture(min_elevation, max_elevation, color_tab, output_file);
exit(0);
}
if ((info_flag == 0) && (dem_flag != 0)) {
fprintf(stderr, "minimum elevation = %ld, maximum elevation = %ld\n", min_elevation, max_elevation);
}
/*
* Get memory for the actual output image. We need space for the map itself,
* and for the white borders that go around it. Note that the code indexes
* through the map portion of the image area as though there were no borders
* around the map. Then, when the indexes are actually used to index into
* the image_corners.ptr array, the code adds the border widths to the index values
* to arrive at true indices. This makes the code look messy, but it allows
* us to separate the task of navigating around the map area from the task
* of navigating around the output image area. This makes it easier (for me)
* to understand what is going on. On the image, the x index increases toward
* the right and the y index increases going toward the bottom. latitude
* increases going from bottom to top, and longitude increases going from
* left to right. (Remember, though, that west longitudes are negative,
* so that 109W is actually smaller than 108W, when treated as -109 and -108.)
*
* The index values (that is, the unbordered-map area index values), in the "y" and
* "x" directions, can each be -1 (when the latitude goes to image_corners.ne_lat or
* the longitude goes to image_corners.sw_long, respectively).
* We allow this negative index because it makes it conceptually easier to
* translate latitudes and longitudes into x and y index values.
* We depend on the borders around the image to absorb these negative values
* so that we don't scribble memory outside the memory assigned to image_corners.ptr.
*
* Example:
* Say that we have an image that covers a 1x1 degree block, and a map area of
* 1200x1200 pixels. Thus, we have a map area 1200x1200 pixels in extent, but
* we have actual DEM data that extends over 1201x1201 samples. (250K DEM files
* are mostly 1201x1201 samples in extent.) Obviously, some
* of the available data won't fit on the image. One could just make the image area
* be 1201x1201 pixels wide, but I chose a different approach. I make the map area
* span slightly less than 1 degree by 1 degree, so that some of the DEM data won't
* fit on the image. This is accomplished by aligning the DEM data with two edges
* of the image, and letting the DEM data that slop over the other two edges be discarded.
*
* It makes sense that we assign image_corners.sw_lat to pixels along
* the bottom edge of the map area. It would also make esthetic sense to put
* image_corners.sw_long along the pixels that run down the left side of the map area.
* However, early in development (when I was still treating west longitudes as
* positive numbers) I decided to put image_corners.ne_long down the right-hand side of
* the map area. (When I was treating west longitude as a positive number, the
* roles of image_corners.sw_long and image_corners.ne_long were reversed.) I decided not
* to change this convention when I started using negative longitudes.
* Thus, in the current program, the point represented by image_corners.sw_lat/image_corners.ne_long
* is exactly the bottom right-hand corner of the map area, with map-area (x, y)
* index values of (1199, 1199). image_corners.ne_lat/image_corners.sw_long is just outside the upper
* left corner of the map area, with map-area (x, y) index values of (-1, -1).
*
* If you think about it, it makes sense that image_corners.ne_lat and image_corners.sw_long are actually
* outside the image space. Adjacent DEM files overlap by the width of one elevation sample
* along their common boundary. Thus, it is natural to assign the boundary to one of the 1x1
* degree blocks but not to the other. I have chosen to include the boundaries along the
* bottom and right-hand sides of each DEM block, and to assign the other two boundaries to
* adjacent DEM blocks. Thus, if you display only a single DEM block, the left-hand and top
* edges of the DEM data won't appear, since they fall at index values of -1. Actually, they
* wouldn't appear in any case. The raw DEM data is converted into image data by cycling
* through all of the DEM points and finding the elevation gradient at each point by taking
* differences between adjacent elevation samples. This gradient operation reduces the
* 1201x1201 DEM array to a 1200x1200 set of image points. Thus, the gradient operation
* gobbles up either the top or bottom row, and either the left or right column, of the raw
* DEM data. I arbitrarily chose to gobble up the top row and left column. The resulting
* array of image points exactly fits into the available 1200x1200 image array. Thus, two
* edges of the DEM block would naturally fall on the negative index values, but they don't
* because we discard them in the gradient operation.
*
* So why make such a fuss about the negative index values, since they don't get used
* anyway? The answer lies in the handling of DLG data. Those data aren't array-based
* the way the DEM data are. Instead, they are vector data --- that is, they are sequences
* of points that define piecewise-linear "curves" (like roads, streams, and so on) on the
* map. The points are given in terms of UTM coordinates, but we convert them to
* latitude/longitude coordinates for entry on the map. (I could have defined the map area
* in terms of UTM coordinates instead of latitude/longitude coordinates, but latitudes and
* longitudes seemed more natural --- particularly since a map could span multiple UTM zones,
* which could get confusing.) The subroutines that plot DLG data make use of the negative
* index values, since roads and such can go right up to the edge of the map. Thus, when
* all of the DLG data are plotted, there will generally be roads and streams that overlap
* the two white strips represented by the negative index values. To clean up these two
* strips, we fill them in with WHITE after the DLG plotting is done.
*
* If you look closely at a map for a 1 degree by 1 degree block, you
* will note that the tick marks for the low longitude and high latitude
* are actually one pixel beyond the edge of the map area, at the locations
* that would be specified by horizontal and vertical indices of -1.
*/
if (info_flag == 0) {
x_prime = image_corners.x + LEFT_BORDER + right_border;
image_corners.ptr = (unsigned char *)malloc((image_corners.y + TOP_BORDER + bottom_border) * x_prime);
if (image_corners.ptr == (unsigned char *)0) {
fprintf(stderr, "malloc of image_corners.ptr failed\n");
exit(0);
}
}
/*
* For areas of flat terrain, most of the color table goes unused,
* and the shaded relief is pretty boring, with only a few colors
* (or even only a single color) and not much shading. When the
* "-z" option is given by the user, we adjust the elevation
* thresholds in the color table so that the full color table is
* used to span the elevations between min_elevation and max_elevation.
*/
if (z_flag != 0) {
for (k = 0; k < (MAX_VALID_BANDS - 1); k++) {
i = min_elevation < 0 ? 0 : min_elevation;
color_tab[k].max_elevation = i + round((double)((k + 1) * (max_elevation - i)) / (double)MAX_VALID_BANDS);
}
color_tab[MAX_VALID_BANDS - 1].max_elevation = HIGHEST_ELEVATION;
}
/*
* Do the big calculation for processing the DEM data.
*
* This is where we transform elevation data into pixel colors,
* or elevation contours, in the output image.
*
* Note that the zeroeth row and zeroeth column of the elevation data
* (in image_in) are discarded during this process. They consist of the
* data that would be plotted at the -1 horizontal and vertical index values
* in image_corners.ptr.
*/
if (info_flag == 0) {
if (contour_flag == 0) {
/*
* Produce a shaded relief map.
*/
for (i = 1; i <= image_corners.y; i++) {
for (j = 1; j <= image_corners.x; j++) {
/*
* When producing shaded relief, we vary the shade of the DEM data to
* correspond to the gradient of the terrain at each point. The gradient
* calculations determine the slope in two directions and choose the
* largest of the two.
*
* The basic idea is to assume that the sun is shining from the northwest
* corner of the image. Then, terrain with a negative gradient (toward
* the northwest or west) will be brightly colored, and terrain with a
* positive gradient will be dark, and level terrain will be somewhere in between.
*
* In order to find the gradient, the numerator is the difference in elevation
* between two adjacent pixels. The denominator is the horizontal ground distance
* between the locations represented by those two pixels. In the DEM data,
* elevations are expressed in meters. We also need to find the ground distance
* in meters.
*
* We can readily find the ground distance in terms of degrees (of latitude/longitude)
* per pixel. We do that now, using the geometry of the target image.
* (Note that this calculation is pretty bogus, because we are treating latitudes
* and longitudes as rectangular coordinates. However, we only need a crude
* result since the goal is to produce color shadings that give a subjective
* view of the gradient of the terrain. We aren't trying to make the shadings
* correspond exactly to some gradient metric --- we are only trying to give the
* impression of a gradient.)
*/
res_y = (double)(image_corners.ne_lat - image_corners.sw_lat) / (double)image_corners.y;
res_xy = sqrt((pow(image_corners.ne_lat - image_corners.sw_lat, 2.0) + pow(image_corners.ne_long - image_corners.sw_long, 2.0)) /
(pow((double)image_corners.x, 2.0) + pow((double)image_corners.y, 2.0)));
/*
* Now we need to convert our ground distance, in degrees per pixel,
* into a distance in meters per pixel. This requires that we know
* how many meters per degree a latitude/longitude respresents.
*
* 4.0076594e7 meters is the equatorial circumference of the earth.
* 3.9942e7 meters is the polar circumference of the earth.
*
* Thus, along the equator, there are 1.1132e5 meters per degree.
* Along a line of longitude, there are 1.1095e5 meters per degree.
* (The Earth has a slightly irregular shape, so these numbers are to
* a first approximation only.)
* The latter number should be reasonably accurate for any latitude,
* anywhere on the earth. The former number is only accurate near
* the equator. As we move further north or south, the number changes
* according to the cosine of the latitude: 1.1132e5 * cos(latitude).
*
* Thus, we need to multiply res_y by 1.1095e5 to get the resolution
* in terms of meters per pixel. For res_xy, we use a more complicated
* factor:
* sqrt((1.1095e5)^2 + (1.1132e5 * cos(latitude))^2)
*/
res_y *= 1.1095e5;
/*
* f is the latitude (in degrees), found by interpolation.
* We still need to convert it to radians, which we do inside
* the cosine function call.
*/
f = image_corners.ne_lat - ((double)i / (double)image_corners.y) * (image_corners.ne_lat - image_corners.sw_lat);
res_xy *= sqrt(pow(1.1095e5, 2.0) + pow(1.1132e5 * cos(f * M_PI / 180.0), 2.0));
/*
* Now we are ready to find the gradients.
* However, if we are at the edge of the image and one or more of the
* gradient points is invalid, then don't find the gradient.
* Just set that point in the map image to WHITE.
*/
sptr = image_in + (i - 1) * (image_corners.x + 1) + j;
sptr2 = image_in + i * (image_corners.x + 1) + j;
if ((*sptr == HIGHEST_ELEVATION) || (*(sptr - 1) == HIGHEST_ELEVATION) ||
(*sptr2 == HIGHEST_ELEVATION)) {
*(image_corners.ptr + (i - 1 + TOP_BORDER) * x_prime + j - 1 + LEFT_BORDER) = WHITE;
continue;
}
else {
gradient1 = (((double)*(sptr - 1)) - ((double)*sptr2)) / res_xy;
gradient2 = (((double)*sptr) - ((double)*sptr2)) / res_y;
gradient3 = -10000000000.0;
gradient = relief_mag * max3(gradient1, gradient2, gradient3);
factor = get_factor(gradient);
// histogram[factor]++; /* Information for debugging. */
}
/*
* Set the color based on the elevation and the factor
* retrieved from the gradient calculations.
* This is called a "factor" for historical reasons.
* At one time, I experimented with finding a multiplicative
* factor instead of the current additive modifier.
* It wasn't worth going through the code and changing the name.
* Besides, I might want to try a factor again someday.
*
* See the file "colors.h" for a description of the color
* scheme. The information is collected there so that it
* is easy to change the color scheme, if desired.
*
* We do a few special cases and then launch into a loop to
* check the bulk of the cases.
*/
if (*(sptr = image_in + i * (image_corners.x + 1) + j) < 0) {
/*
* Elevations can theoretically be less than 0, but it's unusual, so report it.
* Below sea level, we shade everything with CYAN.
*/
// fprintf(stderr, "An elevation was less than 0: %d\n", *(image_in + i * (image_corners.x + 1) + j));
*(image_corners.ptr + (i - 1 + TOP_BORDER) * x_prime + j - 1 + LEFT_BORDER) = c_index_sea + factor;
}
else if (*sptr == 0) {
/*
* Special case for sea level. If things are totally flat,
* assume it's water. Otherwise treat it like it's Death Valley.
*
* The reason for this special case is that the DLG files for coastal regions
* don't appear to treat oceans as bodies of water. This was resulting
* in the ocean areas being set to GREEN (the normal color for sea-level land).
* Thus, I kludged in this special check; and it appears to work fine, in general.
*
* I later made it an option since, for example, sacramento-w.gz gets colored
* oddly, because there are areas below sea level within areas that meet the
* criterion for ocean.
*/
if (seacoast_flag != 0) {
if (gradient == 0.0) {
*(image_corners.ptr + (i - 1 + TOP_BORDER) * x_prime + j - 1 + LEFT_BORDER) = B_BLUE;
}
else {
*(image_corners.ptr + (i - 1 + TOP_BORDER) * x_prime + j - 1 + LEFT_BORDER) = c_index_sea + factor;
}
}
else {
*(image_corners.ptr + (i - 1 + TOP_BORDER) * x_prime + j - 1 + LEFT_BORDER) = C_INDEX_0 + factor;
}
}
else if (*sptr == HIGHEST_ELEVATION) {
/*
* Special case for creating WHITE areas by setting the
* DEM elevation data to exactly HIGHEST_ELEVATION.
*/
*(image_corners.ptr + (i - 1 + TOP_BORDER) * x_prime + j - 1 + LEFT_BORDER) = WHITE;
}
else {
for (k = 0; k < MAX_VALID_BANDS; k++) {
if (*sptr <= color_tab[k].max_elevation) {
*(image_corners.ptr + (i - 1 + TOP_BORDER) * x_prime + j - 1 + LEFT_BORDER) = color_tab[k].c_index + factor;
break;
}
}
}
}
}
}
else {
/*
* Instead of a shaded relief map, produce a contour map.
* Note that some regions have hypsographic DLG files
* that can be used to produce a contour map. However, these
* tend to be too dense for my taste, and it seems easier to produce
* a contour map from scratch than to try to winnow out the
* relevant chunks from a DLG file. Producing the contour maps
* from scratch has the added advantage that it works even if
* there is no DLG hypsography data available.
*/
/*
* In this pair of nested loops, we round all of the elevation
* data to the nearest contour interval.
*/
for (i = 0; i <= image_corners.y; i++) {
for (j = 0; j <= image_corners.x; j++) {
contour_trunc = floor((double)*(image_in + i * (image_corners.x + 1) + j) / contour_intvl);
*(image_in + i * (image_corners.x + 1) + j) = (short)round(ceil(contour_trunc * (double)contour_intvl));
}
}
/*
* In this pair of nested loops, we use the rounded elevation
* data to produce a set of contours. The algorithm is simple:
* If the elevation at the center of a 3x3 square is greater than
* at any of the locations on the border of the square, then we
* plot an L_ORANGE contour point. Otherwise, we make the point WHITE
* (if capital_c_flag==0), or set the point to a color from the color table
* (if capital_c_flag!=0) where the colors are chosen by rotation.
*/
for (i = 1; i < image_corners.y; i++) {
for (j = 1; j < image_corners.x; j++) {
k = *(image_in + (i ) * (image_corners.x + 1) + j );
if ((k > (*(image_in + (i - 1) * (image_corners.x + 1) + j - 1))) ||
(k > (*(image_in + (i - 1) * (image_corners.x + 1) + j ))) ||
(k > (*(image_in + (i - 1) * (image_corners.x + 1) + j + 1))) ||
(k > (*(image_in + (i ) * (image_corners.x + 1) + j - 1))) ||
(k > (*(image_in + (i ) * (image_corners.x + 1) + j + 1))) ||
(k > (*(image_in + (i + 1) * (image_corners.x + 1) + j - 1))) ||
(k > (*(image_in + (i + 1) * (image_corners.x + 1) + j ))) ||
(k > (*(image_in + (i + 1) * (image_corners.x + 1) + j + 1)))) {
*(image_corners.ptr + (i - 1 + TOP_BORDER) * x_prime + j - 1 + LEFT_BORDER) = L_ORANGE;
}
else {
if (capital_c_flag == 0) {
*(image_corners.ptr + (i - 1 + TOP_BORDER) * x_prime + j - 1 + LEFT_BORDER) = WHITE;
}
else {
/*
* We divide by (MAX_VALID_BANDS-1), rather than by MAX_VALID_BANDS,
* so as to exclude the color in slot MAX_VALID_BANDS.
* Since this color is normally bright white, which
* can be a bit intrusive, we exclude it on esthetic grounds.
*/
k = round(floor((double)k / contour_intvl)) % (MAX_VALID_BANDS - 1);
*(image_corners.ptr + (i - 1 + TOP_BORDER) * x_prime + j - 1 + LEFT_BORDER) = color_tab[k].c_index;
}
}
}
}
/*
* Set the pixels along the right side and bottom of the image to WHITE.
* They have not yet had a color defined.
*
* Note that this is only half a loaf. If the DEM data supplied by the user
* doesn't cover the latitude/longitude area spanned by the image, then there
* will be WHITE areas within the image. Unfortunately, there will normally
* be incorrect contour lines around the boundaries of these WHITE areas because
* the elevation in each WHITE area is initialized to HIGHEST_ELEVATION. Thus,
* there will be a discontinuity in elevation between areas with valid DEM
* data and areas without valid DEM data. This produces a contour line
* at the boundary. This is a bummer, but it is a minor cosmetic bummer,
* and I'm not in the mood to fix it at this time.
*/
for (i = 0; i <= image_corners.y; i++) {
*(image_corners.ptr + (i - 1 + TOP_BORDER) * x_prime + image_corners.x - 1 + LEFT_BORDER) = WHITE;
}
for (j = 0; j <= image_corners.x; j++) {
*(image_corners.ptr + (image_corners.y - 1 + TOP_BORDER) * x_prime + j - 1 + LEFT_BORDER) = WHITE;
}
}
free(image_in);
}
/*
* Process any DLG files.
* These files contain line and area information, for drawing
* things like streams, roads, boundaries, lakes, and such.
*/
file_index = 0;
while (file_index < num_dlg) {
length = strlen(argv[optind + file_index]);
if ((length > 3) && ((strcmp(&argv[optind + file_index][length - 3], ".gz") == 0) ||
(strcmp(&argv[optind + file_index][length - 3], ".GZ") == 0))) {
gz_flag = 1;
}
else {
gz_flag = 0;
}
/*
* Files in Spatial Data Transfer System (SDTS) format are markedly
* different from the optional-format DLG files.
*
* Since SDTS files are so different, we must detect them handle
* them separately.
*
* We insist that the user specify one, single, SDTS file on the command
* line for each SDTS DLG directory. The file must be the one whose
* name has the form ????LE??.DDF (or ????le??.ddf), and it may have
* a .gz on the end if it is gzip compressed.
*
* We allow the files to be gzip-compressed, and they can have either
* ".gz" or ".GZ" on the end. However, we insist that the rest of
* the file name have consistent case. That is, if the 'f' or 'F'
* in the ".DDF" or ".ddf" is in a given case, the rest of the file
* had better be in that same case.
*
* If the following "if" test succeeds, we assume we have an SDTS file.
*/
if (((length >= 15) && (gz_flag != 0) &&
((strncmp(&argv[optind + file_index][length - 7], ".ddf", 4) == 0) ||
(strncmp(&argv[optind + file_index][length - 7], ".DDF", 4) == 0))) ||
((length >= 12) && (gz_flag == 0) &&
((strcmp(&argv[optind + file_index][length - 4], ".ddf") == 0) ||
(strcmp(&argv[optind + file_index][length - 4], ".DDF") == 0)))) {
/* SDTS file */
/*
* Check that the file name takes the form that we expect.
*/
if (((gz_flag != 0) &&
(strncmp(&argv[optind + file_index][length - 11], "le", 2) != 0) &&
(strncmp(&argv[optind + file_index][length - 11], "LE", 2) != 0)) ||
((gz_flag == 0) &&
(strncmp(&argv[optind + file_index][length - 8], "le", 2) != 0) &&
(strncmp(&argv[optind + file_index][length - 8], "LE", 2) != 0))) {
fprintf(stderr, "The file %s looks like an SDTS file, but the name doesn't look right. Ignoring file.\n", argv[optind + file_index]);
file_index++;
continue;
}
/* If info_flag is nonzero, then just print some info about the DLG file. */
if (info_flag == 0) {
fprintf(stderr, "Processing DLG file: %s\n", argv[optind + file_index]);
}
else {
fprintf(stdout, "%s", argv[optind + file_index]);
}
/*
* The file name looks okay. Let's launch into the information parsing.
*/
(void)process_dlg_sdts(argv[optind + file_index], (char *)0, gz_flag, &image_corners, info_flag, 0);
}
else {
/* Not an SDTS file. */
if (gz_flag != 0) {
if ((dlg_fdesc = buf_open_z(argv[optind + file_index], O_RDONLY)) < 0) {
fprintf(stderr, "Can't open %s for reading, errno = %d\n", argv[optind + file_index], errno);
exit(0);
}
}
else {
if ((dlg_fdesc = buf_open(argv[optind + file_index], O_RDONLY)) < 0) {
fprintf(stderr, "Can't open %s for reading, errno = %d\n", argv[optind + file_index], errno);
exit(0);
}
}
/* If info_flag is nonzero, then just print some info about the DLG file. */
if (info_flag == 0) {
fprintf(stderr, "Processing DLG file: %s\n", argv[optind + file_index]);
}
else {
fprintf(stdout, "%s", argv[optind + file_index]);
}
/*
* With the DEM files, we parsed the header first, and then
* called a separate processing function, and then did some
* more processing here in the main body of drawmap. DLG files are
* more complicated to parse, and we don't need to return any DLG
* data to this main processing loop. Thus, we just encapsulate
* all parsing and processing into a single function call.
*/
process_dlg_optional(dlg_fdesc, gz_flag, &image_corners, info_flag);
if (gz_flag == 0) {
buf_close(dlg_fdesc);
}
else {
buf_close_z(dlg_fdesc);
}
}
file_index++;
}
if (info_flag != 0) {
exit(0);
}
/* Select a font size, based on the image size. */
if ((image_corners.x >= 1000) && (image_corners.y >= 1000)) {
font_width = 6;
font_height = 10;
font = &font_6x10[0][0];
}
else {
font_width = 5;
font_height = 8;
font = &font_5x8[0][0];
}
/*
* Process any GNIS data.
* GNIS data consists of place names, with specific latitude/longitude
* coordinates, and other data. We put a cursor at each given location
* and add the place name beside it.
*/
if (gnis_file != (char *)0) {
if (strcmp(gnis_file + strlen(gnis_file) - 3, ".gz") == 0) {
gz_flag = 1;
if ((gnis_fdesc = buf_open_z(gnis_file, O_RDONLY)) < 0) {
fprintf(stderr, "Can't open %s for reading, errno = %d\n", gnis_file, errno);
exit(0);
}
}
else {
gz_flag = 0;
if ((gnis_fdesc = buf_open(gnis_file, O_RDONLY)) < 0) {
fprintf(stderr, "Can't open %s for reading, errno = %d\n", gnis_file, errno);
exit(0);
}
}
fprintf(stderr, "Processing GNIS file: %s\n", gnis_file);
while ( 1 ) {
/*
* There are two kinds of GNIS files at the http://mapping.usgs.gov/
* web site. I call them old-style and new-style, because for years the
* old-style files were all that were available; and then, in 1998, the new-style
* files appeared as well. In the old-style files each record is fixed length
* (147 bytes with a newline, or 148 bytes with a newline and carriage return).
* The fields are at fixed positions within this record, with white-space padding
* between the fields. Here is a sample (I added the <> delimiters at the beginning
* and end of the record):
*
* <MT Blue Mountain Saddle locale Missoula 464828N 1141302W 5640 Blue Mountain >
*
* New style records are similar, but have delimiters of the form ',' as shown in
* this sample:
*
* <"MT","Blue Mountain Saddle","locale","Missoula","30","063","464828N","1141302W","46.80778","-114.21722","","","","","5640","","Blue Mountain">
*
* We attempt to handle both formats here.
*
*
* HISTORICAL NOTE:
* Apparently, early in 2000 (although I am not sure exactly when), the format of both
* the old and new style GNIS files changed. Here (simply for historical completeness)
* are some samples of the pre-change versions:
* <Blue Mountain Saddle locale Missoula 30063464828N1141302W 5640Blue Mountain >
* <Blue Mountain Saddle','locale','Missoula','30','063','464828N','1141302W','46.80778','-114.21722','','','','','5640','','Blue Mountain >
* Beginning with drawmap version 1.10, these older versions are no longer handled.
*/
if (gz_flag == 0) {
if ((ret_val = get_a_line(gnis_fdesc, buf, MAX_GNIS_RECORD - 1)) <= 0) {
break;
}
}
else {
if ((ret_val = get_a_line_z(gnis_fdesc, buf, MAX_GNIS_RECORD - 1)) <= 0) {
break;
}
}
buf[ret_val] = '\0';
/* Strip off trailing CR and/or LF */
if ((buf[ret_val - 1] == '\n') || (buf[ret_val - 1] == '\r')) {
ret_val--;
buf[ret_val] = '\0';
}
if ((buf[ret_val - 1] == '\n') || (buf[ret_val - 1] == '\r')) {
ret_val--;
buf[ret_val] = '\0';
}
/*
* We need to figure out whether it is an old-style or new-style record.
*/
if ((tok_ptr = strstr(buf, "\",\"")) != (unsigned char *)0) {
/* New-style record. */
if ((tok_ptr + 3) < (buf + ret_val)) {
tok_ptr += 3;
gnis_feature_name = tok_ptr;
}
else {
fprintf(stderr, "Defective GNIS record: <%s>\n", buf);
continue;
}
for (i = 0; i < 7; i++) {
if (((tok_ptr = strstr(tok_ptr, "\",\"")) != (unsigned char *)0) && (*tok_ptr != '\0')) {
if (i == 0) {
/*
* Capture the feature name for later use.
* Skip over the state name at the front.
*/
length = tok_ptr - gnis_feature_name;
}
if ((tok_ptr + 3) < (buf + ret_val)) {
tok_ptr += 3;
}
else {
break;
}
}
else {
break;
}
}
if (i != 7) {
/*
* If i != 7, then we ran out of data before finding
* the latitude. Skip the record.
*/
fprintf(stderr, "Defective GNIS record: <%s>\n", buf);
continue;
}
latitude = atof(tok_ptr);
if (((tok_ptr = strstr(tok_ptr, "\",\"")) != (unsigned char *)0) && (*tok_ptr != '\0') && (*(tok_ptr + 3) != '\0')) {
tok_ptr += 3;
longitude = atof(tok_ptr);
}
else {
fprintf(stderr, "Defective GNIS record: <%s>\n", buf);
continue;
}
}
else {
/* Old-style record. */
if (ret_val < 96) {
/* The record is too short to process. Ignore it. */
fprintf(stderr, "Defective GNIS record: <%s>\n", buf);
continue;
}
/*
* Capture the feature name for later use.
* Begin by skipping over the state name at the front.
*/
gnis_feature_name = buf;
while (*gnis_feature_name != ' ') gnis_feature_name++;
while (*gnis_feature_name == ' ') gnis_feature_name++;
/* Work backwards from the end of the field to remove trailing blanks. */
for (length = 53; length >= 0; length--) {
if (buf[length] != ' ') {
break;
}
}
length++;
length = length - (gnis_feature_name - buf);
/*
* Note: We assume latitude_low, longitude_low, latitude_high, and longitude_high
* were entered in decimal degrees.
* latitude and longitude from the old-style GNIS files, however are in DDDMMSS format, and
* require special conversion functions.
*/
if ((buf[86] != 'N') && (buf[86] != 'S')) {
/* Defective record */
fprintf(stderr, "Defective GNIS record: <%s>\n", buf);
continue;
}
if ((buf[95] != 'E') && (buf[95] != 'W')) {
/* Defective record */
fprintf(stderr, "Defective GNIS record: <%s>\n", buf);
continue;
}
latitude = lat_conv(&buf[80]);
longitude = lon_conv(&buf[88]);
}
/* Ignore this entry if it is out of the map area. */
if ((latitude < image_corners.sw_lat) || (latitude > image_corners.ne_lat)) {
continue;
}
if ((longitude < image_corners.sw_long) || (longitude > image_corners.ne_long)) {
continue;
}
/* draw a cursor at the specified point */
xx = - 1 + round((longitude - image_corners.sw_long) * (double)image_corners.x / (image_corners.ne_long - image_corners.sw_long));
yy = image_corners.y - 1 - round((latitude - image_corners.sw_lat) * (double)image_corners.y / (image_corners.ne_lat - image_corners.sw_lat));
a = WHITE;
for (i = -3; i <= 3; i++) {
if (((xx + i) >= 0) && ((xx + i) <= (image_corners.x - 1))) {
if (*(image_corners.ptr + (yy + TOP_BORDER) * x_prime + xx + LEFT_BORDER + i) == WHITE) {
a = BLACK;
break;
}
}
if (((yy + i) >= 0) && ((yy + i) <= (image_corners.y - 1))) {
if (*(image_corners.ptr + (yy + TOP_BORDER + i) * x_prime + xx + LEFT_BORDER) == WHITE) {
a = BLACK;
break;
}
}
}
for (i = -3; i <= 3; i++) {
if (((xx + i) >= 0) && ((xx + i) <= (image_corners.x - 1))) {
*(image_corners.ptr + (yy + TOP_BORDER) * x_prime + xx + LEFT_BORDER + i) = a;
}
if (((yy + i) >= 0) && ((yy + i) <= (image_corners.y - 1))) {
*(image_corners.ptr + (yy + TOP_BORDER + i) * x_prime + xx + LEFT_BORDER) = a;
}
}
/* If there was a feature name, then put it into the image near the cursor */
if (length > 0) {
if ((xx + 5 + length * font_width) >= image_corners.x) {
start_x = xx - 5 - length * font_width;
}
else {
start_x = xx + 5;
}
if ((yy + (font_height >> 1) - 1) >= image_corners.y) {
start_y = image_corners.y - font_height;
}
else if ((yy - (font_height >> 1)) < 0) {
start_y = 0;
}
else {
start_y = yy - (font_height >> 1);
}
gnis_feature_name[length] = '\0';
add_text(&image_corners, gnis_feature_name, length, start_x + LEFT_BORDER,
start_y + TOP_BORDER, font, font_width, font_height, WHITE, -1);
}
}
if (gz_flag == 0) {
buf_close(gnis_fdesc);
}
else {
buf_close_z(gnis_fdesc);
}
}
/*
* Put a white border around the edges of the output image.
* Note that this will cover up the one-pixel slop over the left
* and top edges that is the result of the fact that we
* set the latitude and longitude to whole-number values, while
* the pixels don't quite cover that whole area.
* This was discussed at length in a previous comment.
*
* Note that the DEM file data don't slop over the edges because,
* when we process them, they are already in the form of an array of
* points, and we can cleanly discard the data we don't need.
* However, the DLG and GNIS data are in the form of
* latitude/longitude or UTM grid coordinates, and it is possible
* for array index values of -1 to crop up at the image edges.
* (In the case of GNIS data, we explicitly check for this and
* don't slop over. For DLG data, we don't bother because it is
* cheaper in CPU time to just null out the border here.)
*/
for (i = 0; i < TOP_BORDER; i++) {
for (j = 0; j < (image_corners.x + LEFT_BORDER + right_border); j++) {
*(image_corners.ptr + i * x_prime + j) = WHITE;
}
}
for (i = image_corners.y + TOP_BORDER; i < (image_corners.y + TOP_BORDER + bottom_border); i++) {
for (j = 0; j < (image_corners.x + LEFT_BORDER + right_border); j++) {
*(image_corners.ptr + i * x_prime + j) = WHITE;
}
}
for (i = TOP_BORDER; i < (image_corners.y + TOP_BORDER); i++) {
for (j = 0; j < LEFT_BORDER; j++) {
*(image_corners.ptr + i * x_prime + j) = WHITE;
}
}
for (i = TOP_BORDER; i < (image_corners.y + TOP_BORDER); i++) {
for (j = image_corners.x + LEFT_BORDER; j < (image_corners.x + LEFT_BORDER + right_border); j++) {
*(image_corners.ptr + i * x_prime + j) = WHITE;
}
}
/*
* Add a copyright notice to the image if, when the program was compiled, the
* makefile contained a non-null COPYRIGHT_NAME.
*/
if (COPYRIGHT_NAME[0] != '\0') {
time_val = time((time_t *)0);
sprintf(buf, "Copyright (c) %4.4s %s", ctime(&time_val) + 20, COPYRIGHT_NAME);
length = strlen(buf);
add_text(&image_corners, buf, length, image_corners.x + LEFT_BORDER + right_border - (length * font_width + 4),
image_corners.y + TOP_BORDER + bottom_border - font_height - 4, font, font_width, font_height, BLACK, WHITE);
}
if (tick_flag != 0) {
/*
* Put some latitude/longitude tick marks on the edges of the image.
*
* The purpose of the 0.049999999999 is to round the latitude/longitude up to
* the nearest tenth. Since we put a tick mark every tenth of a degree,
* we need to find the first round tenth above image_corners.sw_lat/image_corners.sw_long.
*/
i = (long)round((image_corners.sw_lat + 0.049999999999) * 10.0);
for (; i <= ((image_corners.ne_lat + 0.0000001) * 10.0); i++) {
k = TOP_BORDER - 1 + image_corners.y - round((double)image_corners.y * ((double)i * 0.1 - image_corners.sw_lat) / (image_corners.ne_lat - image_corners.sw_lat));
if (((i % 10) == 0) || ((i % 10) == 5) || ((i % 10) == -5)) {
tick_width = 6;
sprintf(buf, "%.2f%c", fabs((double)i / 10.0), i < 0 ? 'S' : 'N');
length = strlen(buf);
add_text(&image_corners, buf, length, image_corners.x + LEFT_BORDER + 7, k - (font_height >> 1), font, font_width, font_height, BLACK, WHITE);
add_text(&image_corners, buf, length, LEFT_BORDER - 8 - font_width * length, k - (font_height >> 1), font, font_width, font_height, BLACK, WHITE);
}
else {
tick_width = 4;
}
for (j = LEFT_BORDER - 1; j > (LEFT_BORDER - 1 - tick_width); j--) { /* Left side */
*(image_corners.ptr + k * x_prime + j) = BLACK;
}
for (j = image_corners.x + LEFT_BORDER; j < (image_corners.x + LEFT_BORDER + tick_width); j++) { /* Right side */
*(image_corners.ptr + k * x_prime + j) = BLACK;
}
}
i = (long)round((image_corners.sw_long + 0.049999999999) * 10.0);
for (; i <= ((image_corners.ne_long + 0.0000001) * 10.0); i++) {
k = LEFT_BORDER - 1 + round((double)image_corners.x * ((double)i * 0.1 - image_corners.sw_long) / (image_corners.ne_long - image_corners.sw_long));
if (((i % 10) == 0) || ((i % 10) == 5) || ((i % 10) == -5)) {
if (((i % 10) == 0) || (res_x_image > ((double)font_width * 15.0))) {
tick_width = 6;
sprintf(buf, "%.2f%c", fabs((double)i / 10.0), i < 0 ? 'W' : 'E');
length = strlen(buf);
add_text(&image_corners, buf, length, k - ((length * font_width) >> 1), image_corners.y + TOP_BORDER + 6, font, font_width, font_height, BLACK, WHITE);
add_text(&image_corners, buf, length, k - ((length * font_width) >> 1), TOP_BORDER - 7 - font_height, font, font_width, font_height, BLACK, WHITE);
}
}
else {
tick_width = 4;
}
for (j = TOP_BORDER - 1; j > (TOP_BORDER - 1 - tick_width); j--) { /* Top */
*(image_corners.ptr + j * x_prime + k) = BLACK;
}
for (j = image_corners.y + TOP_BORDER; j < (image_corners.y + TOP_BORDER + tick_width); j++) { /* Bottom */
*(image_corners.ptr + j * x_prime + k) = BLACK;
}
}
}
/* Add some information at the top of the image, as an image label (if there is room). */
if (dem_name[0] != '\0') {
sprintf(buf, "%s --- ", dem_name);
}
else {
buf[0] = '\0';
}
sprintf(buf + strlen(buf), "%.5g%c, %.6g%c to %.5g%c, %.6g%c",
fabs(image_corners.sw_lat), image_corners.sw_lat < 0 ? 'S' : 'N',
fabs(image_corners.sw_long), image_corners.sw_long < 0 ? 'W' : 'E',
fabs(image_corners.ne_lat), image_corners.ne_lat < 0 ? 'S' : 'N',
fabs(image_corners.ne_long), image_corners.ne_long < 0 ? 'W' : 'E');
length = strlen(buf);
if ((length * font_width) <= (image_corners.x + LEFT_BORDER + right_border - 2)) {
add_text(&image_corners, buf, length, (image_corners.x >> 1) + LEFT_BORDER - 1 - ((length * font_width) >> 1),
(TOP_BORDER >> 1) - 1 - (font_height >> 1) - font_height, font, font_width,
font_height, BLACK, WHITE);
if ((max_elevation != -100000) && (min_elevation != 100000)) {
/*
* If the max/min elevation data is valid, then indicate
* the maximum/minimum elevation
*/
latitude1 = image_corners.sw_lat + (image_corners.ne_lat - image_corners.sw_lat) * (double)(image_corners.y - min_e_lat) / (double)image_corners.y;
longitude1 = image_corners.sw_long + (image_corners.ne_long - image_corners.sw_long) * (double)min_e_long / (double)image_corners.x;
latitude2 = image_corners.sw_lat + (image_corners.ne_lat - image_corners.sw_lat) * (double)(image_corners.y - max_e_lat) / (double)image_corners.y;
longitude2 = image_corners.sw_long + (image_corners.ne_long - image_corners.sw_long) * (double)max_e_long / (double)image_corners.x;
sprintf(buf, "Elevations: %dm (%dft) at %.5g%c %.6g%c, %dm (%dft) at %.5g%c %.6g%c",
min_elevation,
round((double)min_elevation * 3.28084),
fabs(latitude1), latitude1 < 0 ? 'S' : 'N',
fabs(longitude1), longitude1 < 0 ? 'W' : 'E',
max_elevation,
round((double)max_elevation * 3.28084),
fabs(latitude2), latitude2 < 0 ? 'S' : 'N',
fabs(longitude2), longitude2 < 0 ? 'W' : 'E');
length = strlen(buf);
if ((length * font_width) <= (image_corners.x + LEFT_BORDER + right_border - 2)) {
add_text(&image_corners, buf, length, (image_corners.x >> 1) + LEFT_BORDER - 1 - ((length * font_width) >> 1),
(TOP_BORDER >> 1) - 1 - (font_height >> 1) + 2, font, font_width,
font_height, BLACK, WHITE);
}
}
}
if (contour_flag == 0) {
/* Add an elevation color chart at the bottom of the image, if there is room. */
if ((num_dem > 0) && ((image_corners.x + LEFT_BORDER + right_border - 2) >= COLOR_CHART_WIDTH) &&
(bottom_border >= (30 + 3 * font_height))) {
for (i = 0; i < COLOR_CHART_WIDTH; i++) {
for (j = 0; j < 16; j++) {
/*
* To represent a given range of elevation, we draw a square of
* a given color. We pick one of the 16 possible colors for each elevation.
* This is not perfect, but it at least gives the user some
* clue as to how to decode the image. I tried filling in
* all 16 colors within each elevation square, but it didn't
* look all that good.
*/
*(image_corners.ptr + (TOP_BORDER + image_corners.y + (bottom_border >> 1) - ((16 + 4 + font_height * 2) >> 1) + j) * x_prime +
LEFT_BORDER + (image_corners.x >> 1) - (COLOR_CHART_WIDTH >> 1) + i) = (i & ~0xf) + 3;
}
if ((i & 0xf) == 0) {
/* Add a tick mark */
*(image_corners.ptr + (TOP_BORDER + image_corners.y + (bottom_border >> 1) + 6 - font_height) * x_prime +
LEFT_BORDER + (image_corners.x >> 1) - (COLOR_CHART_WIDTH >> 1) + (i & 0xf0)) = BLACK;
*(image_corners.ptr + (TOP_BORDER + image_corners.y + (bottom_border >> 1) + 7 - font_height) * x_prime +
LEFT_BORDER + (image_corners.x >> 1) - (COLOR_CHART_WIDTH >> 1) + (i & 0xf0)) = BLACK;
*(image_corners.ptr + (TOP_BORDER + image_corners.y + (bottom_border >> 1) + 8 - font_height) * x_prime +
LEFT_BORDER + (image_corners.x >> 1) - (COLOR_CHART_WIDTH >> 1) + (i & 0xf0)) = BLACK;
if (z_flag == 0) {
/* Put a text label under the tick mark. */
sprintf(buf, "%d", (i >> 4));
length = strlen(buf);
add_text(&image_corners, buf, length, LEFT_BORDER + (image_corners.x >> 1) - (COLOR_CHART_WIDTH >> 1) + (i & 0xf0) - ((font_width * length) >> 1),
TOP_BORDER + image_corners.y + (bottom_border >> 1) + 9 - font_height,
font, font_width, font_height, BLACK, WHITE);
}
}
}
/* Add a tick mark at the right end of the scale */
*(image_corners.ptr + (TOP_BORDER + image_corners.y + (bottom_border >> 1) + 6 - font_height) * x_prime +
LEFT_BORDER + (image_corners.x >> 1) - (COLOR_CHART_WIDTH >> 1) + (i & 0xf0)) = BLACK;
*(image_corners.ptr + (TOP_BORDER + image_corners.y + (bottom_border >> 1) + 7 - font_height) * x_prime +
LEFT_BORDER + (image_corners.x >> 1) - (COLOR_CHART_WIDTH >> 1) + (i & 0xf0)) = BLACK;
*(image_corners.ptr + (TOP_BORDER + image_corners.y + (bottom_border >> 1) + 8 - font_height) * x_prime +
LEFT_BORDER + (image_corners.x >> 1) - (COLOR_CHART_WIDTH >> 1) + (i & 0xf0)) = BLACK;
if (z_flag == 0) {
/* Put in an "infinity" sign by jamming two 'o' characters together. */
sprintf(buf, "o");
length = strlen(buf);
add_text(&image_corners, buf, length, LEFT_BORDER + (image_corners.x >> 1) - (COLOR_CHART_WIDTH >> 1) + (i & 0xf0) - 1,
TOP_BORDER + image_corners.y + (bottom_border >> 1) + 9 - font_height,
font, font_width, font_height, BLACK, -2);
add_text(&image_corners, buf, length, LEFT_BORDER + (image_corners.x >> 1) - (COLOR_CHART_WIDTH >> 1) + (i & 0xf0) - ((font_width * length) >> 1) - 2,
TOP_BORDER + image_corners.y + (bottom_border >> 1) + 9 - font_height,
font, font_width, font_height, BLACK, -2);
}
else {
/*
* If z_flag is set, then we have altered the elevations in the color
* map so that the entire color map gets used between min_elevation
* and max_elevation. In this case, we don't try to label every
* tick mark. We just label the two end tick marks with min_elevation
* and max_elevation.
*/
i = min_elevation < 0 ? 0 : min_elevation;
sprintf(buf, "%-5.4g", (double)round((double)i * 3.28084) / 1000.0);
length = strlen(buf);
add_text(&image_corners, buf, length, LEFT_BORDER + (image_corners.x >> 1) - (COLOR_CHART_WIDTH >> 1) - (font_width >> 1),
TOP_BORDER + image_corners.y + (bottom_border >> 1) + 9 - font_height,
font, font_width, font_height, BLACK, WHITE);
sprintf(buf, "%5.4g", (double)round((double)max_elevation * 3.28084) / 1000.0);
length = strlen(buf);
add_text(&image_corners, buf, length, LEFT_BORDER + (image_corners.x >> 1) - (COLOR_CHART_WIDTH >> 1) + (COLOR_CHART_WIDTH & 0xf0) - (font_width >> 1) * ((length << 1) - 1),
TOP_BORDER + image_corners.y + (bottom_border >> 1) + 9 - font_height,
font, font_width, font_height, BLACK, WHITE);
}
/* Add a line to describe the units. */
sprintf(buf, "Thousands of feet.");
length = strlen(buf);
add_text(&image_corners, buf, length, (image_corners.x >> 1) + LEFT_BORDER - 1 - ((length * font_width) >> 1),
TOP_BORDER + image_corners.y + (bottom_border >> 1) + 9, font, font_width,
font_height, BLACK, WHITE);
}
}
else {
/* Add a message about the contour interval at the bottom of the image, if there is room. */
if (num_dem > 0) {
sprintf(buf, "Contour interval is %.2f meters (%.2f feet).", contour_intvl, contour_intvl * 3.28084);
length = strlen(buf);
if ((length * font_width) <= (image_corners.x + LEFT_BORDER + right_border - 2)) {
add_text(&image_corners, buf, length, (image_corners.x >> 1) + LEFT_BORDER - 1 - ((length * font_width) >> 1),
TOP_BORDER + image_corners.y + (bottom_border >> 1) + 1 + (font_height >> 1), font, font_width,
font_height, BLACK, WHITE);
}
}
}
/* Create the output file. */
if ((output_fdesc = open(output_file, O_WRONLY | O_CREAT | O_TRUNC, 0644)) < 0) {
fprintf(stderr, "Can't create %s for writing, errno = %d\n", output_file, errno);
exit(0);
}
/* Initialize SUN rasterfile header. */
hdr.magic = MAGIC;
hdr.width = image_corners.x + LEFT_BORDER + right_border;
hdr.height = image_corners.y + TOP_BORDER + bottom_border;
hdr.depth = 8;
hdr.length = (image_corners.x + LEFT_BORDER + right_border) * (image_corners.y + TOP_BORDER + bottom_border);
hdr.type = STANDARD;
hdr.maptype = EQUAL_RGB;
hdr.maplength = 768;
/*
* Write SUN rasterfile header and color map.
* My X86 Linux machine (LITTLE_ENDIAN) requires some swabbing
* (byte swapping) in the rasterfile header.
* You may have a BIG_ENDIAN machine (which should require no
* swabbing at all), a PDP_ENDIAN machine (which requires a
* more complicated swabbing), or something else (with its
* own form of swabbing).
*/
byte_order = swab_type();
if (byte_order == 0) {
/* BIG_ENDIAN: Do nothing */
}
else if (byte_order == 1) {
/* LITTLE_ENDIAN */
lsize = sizeof(struct rasterfile) / 4;
lptr = (long *)&hdr;
for (i = 0; i < lsize; i++) {
LE_SWAB(lptr);
lptr++;
}
}
else if (byte_order == 2) {
/* PDP_ENDIAN */
lsize = sizeof(struct rasterfile) / 4;
lptr = (long *)&hdr;
for (i = 0; i < lsize; i++) {
PDP_SWAB(lptr);
lptr++;
}
}
else {
/* Unknown */
fprintf(stderr, "Unknown machine type: you will need to modify drawmap.c to do proper swabbing.\n");
exit(0);
}
write(output_fdesc, &hdr, sizeof(struct rasterfile));
write(output_fdesc, map, sizeof(map));
/* Output the image data. */
for (i = 0; i < (image_corners.y + TOP_BORDER + bottom_border); i++) {
write(output_fdesc, image_corners.ptr + i * x_prime, image_corners.x + LEFT_BORDER + right_border);
}
free(image_corners.ptr);
close(output_fdesc);
/* For debugging. */
/* for (i = 0; i < 256; i++) {
/* if (histogram[i] != 0) {
/* fprintf(stderr, "histogram[%3d] = %d\n", i, histogram[i]);
/* }
/* }
*/
}
/*
* Convert elevation gradient information into an index that
* can be used to select a color from the color table.
* This routine was largely developed by trial and error.
* There is no deep theory associated with the numeric values
* contained herein.
*/
long
get_factor(double gradient)
{
double angle, fraction;
long i;
/*
* A table that works fairly well:
*
* 0.405,
* 0.445,
* 0.470,
* 0.485,
* 0.495,
* 0.497,
* 0.499,
* 0.500,
* 0.501,
* 0.503,
* 0.505,
* 0.515,
* 0.530,
* 0.555,
* 0.595,
*
* The table is duplicated in this comment so that we can
* play with the actual table without losing track of a set of
* values that work reasonably well.
*/
double table[15] = {
0.405,
0.445,
0.470,
0.485,
0.495,
0.497,
0.499,
0.500,
0.501,
0.503,
0.505,
0.515,
0.530,
0.555,
0.595,
};
/* One possible way to create the table automatically. */
// for (i = 0; i < 15; i++) {
// table[i] = table[0] + (table[14] - table[0]) * pow((table[i] - table[0]) / (table[14] - table[0]), 0.9);
// }
angle = atan(gradient) + (M_PI/2.0);
fraction = angle / (M_PI);
// angle_hist[round(fraction * 100000.0)]++; /* For debugging. */
// total++; /* For debugging. */
if (fraction > 1.0) {
fprintf(stderr, "bad fraction in get_factor(%f): %f\n", gradient, fraction);
}
if (fraction < table[0]) {
return(0);
}
else if (fraction < table[1]) {
return(1);
}
else if (fraction < table[2]) {
return(2);
}
else if (fraction < table[3]) {
return(3);
}
else if (fraction < table[4]) {
return(4);
}
else if (fraction < table[5]) {
return(5);
}
else if (fraction < table[6]) {
return(6);
}
else if (fraction < table[7]) {
return(7);
}
else if (fraction < table[8]) {
return(8);
}
else if (fraction < table[9]) {
return(9);
}
else if (fraction < table[10]) {
return(10);
}
else if (fraction < table[11]) {
return(11);
}
else if (fraction < table[12]) {
return(12);
}
else if (fraction < table[13]) {
return(13);
}
else if (fraction < table[14]) {
return(14);
}
else {
return(15);
}
}
/*
* Write a text string into the image.
*/
void
add_text(struct image_corners *image_corners, char *text_string, long text_string_length, long top_left_x,
long top_left_y, unsigned char *font, long font_width, long font_height, long foreground, long background)
{
long i, j, k;
long bit;
/*
* Cycle through the font table for each given character in the text string.
* Characters are represented as bit maps, with a 1 indicating part of the
* character, and a 0 indicating part of the background.
*/
for (i = 0; i < text_string_length; i++) {
for (j = 0; j < font_width; j++) {
for (k = 0; k < font_height; k++) {
bit = (*(font + k * 128 + *(text_string + i)) >> (font_width - 1 - j)) & 1;
if (bit != 0) {
/* foreground */
*(image_corners->ptr + (top_left_y + k) * x_prime + top_left_x + i * font_width + j) = foreground;
}
else {
/* background */
if (background < 0) {
/*
* If the background color map index is -1, then
* we don't insert a specific background value, but rather
* reduce the existing background in intensity.
*
* If the background color map index is any other negative
* number, then we use a clear background.
*/
if (background == -1) {
*(image_corners->ptr + (top_left_y + k) * x_prime + top_left_x + i * font_width + j) +=
(16 - (*(image_corners->ptr + (top_left_y + k) * x_prime + top_left_x + i * font_width + j) & 0xf)) >> 1;
}
}
else {
*(image_corners->ptr + (top_left_y + k) * x_prime + top_left_x + i * font_width + j) = background;
}
}
}
}
}
}
/*
* This routine prepares a storage array for DEM data.
* Since the code is fairly long, and appears several times
* in the program, it has been encapsulated here.
*/
void
get_short_array(short **ptr, long x, long y)
{
long i, j;
/*
* Get memory for the DEM data.
*
* As all of the DEM files are read in, their data
* eventually get combined into this storage area.
* On the way, the data may get cropped, smoothed, or
* subsampled.
*/
*ptr = (short *)malloc(sizeof(short) * (y + 1) * (x + 1));
if (*ptr == (short *)0) {
fprintf(stderr, "malloc of *ptr failed\n");
exit(0);
}
/*
* Before reading in the DEM data, initialize the entire image to
* HIGHEST_ELEVATION, which will eventually be translated to the color WHITE.
* This is because we don't know, in advance, which parts of the image will
* be covered with data from the various DEM files. The user does not have
* to provide enough DEM files to fully tile the user-specified range of
* latitude and longitude.
*/
for (i = 0; i <= y; i++) {
for (j = 0; j <= x; j++) {
*(*ptr + i * (x + 1) + j) = HIGHEST_ELEVATION;
}
}
}
/*
* This function produces a texture map, for use with the "povray"
* ray tracing package, that corresponds to the height-field map
* produced in response to the "-h" option.
*
* If you aren't familiar with ray tracing, and povray, this
* function probably won't mean much to you. If you are
* familiar with povray, then the function's purpose should be
* fairly obvious.
*/
void
gen_texture(long min_elevation, long max_elevation, struct color_tab *color_tab, char *output_file)
{
FILE *texture_stream;
long i;
double inflection;
if ((texture_stream = fopen("drawmap.pov", "w+")) < 0) {
fprintf(stderr, "Can't create %s for writing, errno = %d\n", "drawmap.pov", errno);
exit(0);
}
/*
* Put some useful comments at the top of the file.
*/
fprintf(texture_stream, "// Povray (version 3) file, generated by drawmap.\n");
fprintf(texture_stream, "// Assuming that you have povray3 installed in the normal place,\n// this file should be render-able by typing:\n");
fprintf(texture_stream, "// x-povray +L/usr/local/lib/povray3/include +A +I drawmap.pov +O drawmap.tga +SP8 +EP1 +H600 +W600 +D11\n");
fprintf(texture_stream, "// The file will probably require manual editing to get things the way you want them.\n\n");
fprintf(texture_stream, "#include \"colors.inc\"\n\n");
/*
* Generate a texture entry for sea-level, using bright blue from the color map.
*/
fprintf(texture_stream, "#declare TextureSea = texture { pigment { color rgb<%g, %g, %g> } finish { ambient 0.1 diffuse 0.4 brilliance 1.0 reflection 1.0 phong 1.0 phong_size 30.0 }}\n",
((double)brights[2].red) / 255.0, ((double)brights[2].green) / 255.0, ((double)brights[2].blue) / 255.0);
/*
* Generate texture entries for other elevations, using whichever color map is currently in use.
*/
for (i = 0; i < MAX_VALID_BANDS; i++) {
fprintf(texture_stream, "#declare Texture%d = texture { pigment { color rgb<%g, %g, %g> } finish { ambient 0.1 diffuse 0.4 brilliance 1.0 reflection 1.0 phong 1.0 phong_size 30.0 }}\n", i,
(double)color_tab[i].red / 255.0, (double)color_tab[i].green / 255.0, (double)color_tab[i].blue / 255.0);
}
/*
* Generate the main body of the file, including the texture map.
*/
fprintf(texture_stream, "camera{\n\tlocation <0.5, 15, -16>\n\tlook_at 0\n\tangle 30\n}\n\n");
fprintf(texture_stream, "light_source{ <-1000,1000,-1000> White }\n\n");
fprintf(texture_stream, "// height field generated for source data with elevations ranging from %d to %d.\n",
min_elevation, max_elevation);
fprintf(texture_stream, "// Points with negative elevations in the original data may have been set to zero.\n");
fprintf(texture_stream, "// Points with undefined elevations in the original data may have been set to zero.\n");
fprintf(texture_stream, "height_field {\n\tpgm \"%s\" water_level %g\n\tsmooth\n\ttexture {\n",
output_file, (double)min_elevation / (double)max_elevation);
fprintf(texture_stream, "\t\tgradient y\n");
fprintf(texture_stream, "\t\ttexture_map {\n");
fprintf(texture_stream, "\t\t[ 0.0 TextureSea ]\n");
fprintf(texture_stream, "\t\t[ 0.000001 Texture0 ]\n");
for (i = 1; i < MAX_VALID_BANDS; i++) {
inflection = (double)color_tab[i - 1].max_elevation / (double)max_elevation;
if (inflection > 1.0) {
break;
}
fprintf(texture_stream, "\t\t[ %g Texture%d ]\n", inflection, i);
}
fprintf(texture_stream, "\t\t}\n\t}\n");
fprintf(texture_stream, "//\tThe middle scale factor in the \"scale\" line controls how much the terrain is stretched vertically.\n");
fprintf(texture_stream, "\ttranslate <-0.5, -0.5, -0.5>\n\tscale <10, 0.8, 10>\n}\n");
fclose(texture_stream);
}
|