File: sdts_utils.c

package info (click to toggle)
drawmap 2.5-1
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 1,164 kB
  • ctags: 683
  • sloc: ansic: 13,087; makefile: 106
file content (1717 lines) | stat: -rw-r--r-- 67,956 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
/*
 * =========================================================================
 * sdts_utils.c - Utility routines for SDTS files.
 * Copyright (c) 2000,2001  Fred M. Erickson
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 * =========================================================================
 */

#include <fcntl.h>
#include <math.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <string.h>
#include "drawmap.h"
#include "sdts_utils.h"


/*
 * The routines in this file are used to open, read, and close
 * files in the Spatial Data Transfer System (SDTS) format.
 * Specifically, they read files in the ISO 8211 encoding format.
 * The truly SDTS-specific stuff is handled at a higher layer.
 *
 *
 * There is a lot of code in this file, but only three
 * functions that are normally used as entry points:
 *
 *	int begin_ddf(char *file_name)
 *
 *	long get_subfield(struct subfield *subfield)
 *
 *	void end_ddf()
 *
 * Call begin_ddf(), with the name of an SDTS file as argument,
 * to begin parsing an ISO 8211 file.  Call end_ddf() when you are
 * done with that file.  YOU CAN ONLY HAVE ONE FILE OPEN AT ONCE.
 *
 * get_subfield() returns the subfields of the file, one at a time.
 * If you call it, and it returns 1, then you have retrieved a
 * subfield.  If it returns 0, you have reached end of file.
 * If there is an error, the function calls exit().
 *
 * If you want to try parsing some sample DDF files, there is a
 * commented-out test program at the end of this file which
 * will try to read and print out the contents of a DDF file.
 * It illustrates the use of the three functions.
 *
 *
 * Note that these routines are nowhere near a complete
 * implementation of the ISO 8211 standard.  Large chunks are
 * missing, since the purpose of these routines is only to parse
 * USGS-formatted SDTS files.  Furthermore, the routines may
 * contain errors due to me misunderstanding the standard.  (I
 * don't have a copy of the standard, and have gleaned the information
 * contained here via various tutorials on the Internet.)  Also,
 * some sections of code remain untested because I don't have any
 * sample files to test them against.  (The code to read records
 * longer than 100000 bytes is a case in point.)  Thus,
 * you might be ill-advised to try to use these routines to parse
 * randomly-selected ISO 8211 files.  There are library packages
 * available to do that sort of thing.  fips123 and sdts++ are
 * two possible starting points, but I don't know how complete
 * their ISO 8211 support is.  Furthermore, there are at least
 * two versions of ISO 8211, a 1985 version, and a newer 1994
 * version.  We attempt to support only the older version here.
 */


/*
 * We begin with a general description of SDTS, in an attempt to
 * demystify things a bit.  Be warned that my understanding of SDTS
 * has not reached a high-enough level for me to be considered an
 * expert on it.  Furthermore, I have never seen a copy of the ISO 8211
 * standard, which is probably necessary for a full understanding of SDTS.
 * The information here is gleaned from tutorial sources on the Internet,
 * and by prying various SDTS files apart to look at the insides.
 * Thus, any or all of the description that follows may be wrong.  (The
 * information was, however, sufficient to write a program that can obtain
 * useful data from SDTS files.)  In particular, be wary of any
 * terminology or acronyms.  In some cases, I had to guess what the correct
 * terminology might be, since the sources I looked at varied in the names
 * they called things.
 *
 * First of all, SDTS is intended as a standard for data transfer between
 * dissimilar machines.  It is designed to package spatial data into a
 * commonly-readable form so that the data can be passed back and forth
 * between users with different computer systems.  As such, it is conceptually
 * similar to parts of many other protocol suites, like the ISO 7-layer transfer
 * protocols, the TCP/IP suite used on the Internet, morse code, and so on.
 * In fact, I have seen ISO 8211 described as a possible implementation of
 * the Presentation Layer (layer 6) of the ISO protocol.  I guess that would
 * make SDTS an Application Layer (layer 7) protocol.  The 8211 standard is
 * similar in form and function to other transfer encodings, such as Abstract
 * Syntax Notation One (ASN.1), which is used in (among other things) the SNMP
 * network-management suite.
 *
 * An SDTS transfer is composed of a number of files, all with the same
 * basic format.  The files are called modules, and their names all end with the
 * letters ".DDF" which stand for Data Definition File.  (This may not be
 * a true statement for the 1994 version of ISO 8211.)  The files are
 * structured according to the ISO/IEC 8211 standard.  There have been at
 * least two versions of this standard, 1985 and 1994.  I think that SDTS files
 * are restricted to the 1985 version, but can't claim this with certainty.
 *
 * In general, the file names have the form AAAABBBB.DDF, where AAAA is a name
 * unique to the specific transfer, like HY01 for a DLG hydrography transfer.
 * The BBBB part of the name identifies the various modules in the transfer.
 * For example, there is a HY01CATD.DDF file, which is a catalog of all of the
 * modules in the transfer.  A 100K DLG hydrography transfer might contain four
 * separate linear feature data files, named HY01LE01.DDF, HY01LE02.DDF,
 * HY01LE03.DDF, and HY01LE04.DDF.  (I think that, in SDTS jargon, these
 * would be called separate layers or separate topological manifolds, but I am
 * not sure of the terminology.)  Each of these files corresponds to one of the
 * four files in a hydrography directory under the old optional format.  However,
 * unlike the old optional-format files, these files are not self-contained DLG
 * packages.  Some of the information has been split off into other files.
 * For example, in order to find the polygonal areas,
 * we need to examine the polygon files, named HY01PC01.DDF, HY01PC02.DDF,
 * HY01PC03.DDF, and HY01PC04.DDF.  These files contain record IDs that
 * cross-reference attributes in the attribute file HY01AHYF.DDF.
 *
 * This brief description may not make much sense unless you are familiar with
 * the contents of the old optional-format DLG files, so let's look into them a bit.
 * (This is a simplified description.  Not horribly simplified, but simplified.
 * Documents are available from the USGS web sites that describe the DLG format.)
 * Each optional-format DLG file has a large header, which contains things like
 * the latitude/longitude of the four corners of the data, and other global
 * information.  Most, or all, of this has been moved into the SDTS HY01AHDR.DDF
 * module.  Following the header are a list of Node records, which define all
 * of the nodal points in the data.  (The points may define locations where line
 * segments meet, or they may be points were small point-sized features are
 * located, like a tiny pond, and so on.)  Each node is defined by a pair of
 * UTM coordinates, and contains cross-references to the lines that
 * intersect the node.  Following the nodes are the areas.
 * Each area includes a pair of UTM coordinates that define a representative
 * point for the area.  There are also a set of cross references to the lines
 * that bound the area.  Following this may be one or more attribute codes
 * that describe the type of area (e.g. a lake, or a marsh).  Following the areas
 * are the linear features.  These contain sets of UTM coordinates that
 * define a sequence of line segments that form (say) a river or road,
 * or that form part or all of the boundary of (say) a lake.
 * The linear features may also have attributes associated with them.
 *
 * In SDTS, all of this stuff gets swept into separate files.  The linear features
 * are defined in one file, which also contains cross-references to attributes in another
 * file, cross-references to polygons in yet another file, and cross-references to
 * nodes in yet another file still.  It isn't so hard to understand how everything
 * fits together, but it can be painful to chase down all of the data you need
 * in the various files.
 *
 * Within each file, all of this information is encoded according to the 8211
 * standard.  This standard is concerned with how to represent different types of data,
 * and agglomerate them into larger structures.  Files (modules) are composed of
 * records, records are composed of fields, and fields are composed of subfields.
 * (This can be somewhat confusing, since common usage would lean more toward calling
 * the smallest subdivision a field, and would then construct composite records
 * from these fields.  C'est la vie.)
 *
 * The first record in a module is the Data Definition Record (or Data Descriptive
 * Record, depending on who you talk to), and is called the DDR for short.  It
 * contains some general information, and also a definition of the types of data
 * contained in the various fields.
 *
 * This is followed by one or more Data Records (DRs).  These contain actual
 * fields and subfield data.
 *
 * Whether it is a DDR or a DR, each record consists of a Leader, a Directory, and a
 * Field Area.  The record starts with a leader, which contains some general info about
 * the record, such as its length.  This is followed by a Directory, which contains
 * (for each field) a tag, a data length, and an offset into the Field Area at which
 * additional information appears.  For the DDR, the Field Area contains information
 * that describes a particular field and the data it will contain.  For the DR,
 * the Field Area contains the actual data for the field (which may include
 * multiple chunks of data if the field is composed of several subfields).
 *
 * The 8211 standard defines how data is encoded for storage or transmission.
 * However, at a higher level we need to define what that data is.  That is,
 * we need to define all of the various tags, data types, data lengths, and
 * so on, that constitute a DEM transfer, or a DLG transfer, or whatever.
 * This is where SDTS provides "value-added".  It defines various kinds of
 * modules that collectively allow the transfer of spatial data.  This is
 * the modulization that we discussed above, in connection with a hypothetical
 * hydrography transfer.  However, even this is not yet enough.  We still need
 * more detail about the various subfields.  For example, in DLG files from
 * the USGS, in SDTS format, the horizontal datum is stored in the XREF
 * module, in the XREF field, in the HDAT subfield, as a three-character
 * ASCII string.  If the string is "NAS", then the datum is NAD-27.  If
 * the string is "NAX", then the datum is NAD-83.  Etcetera.
 * As I understand it, this kind of information is not part of the SDTS
 * standard, per se.  It is defined by the end users of the standard,
 * in this case the USGS.  Thus, we need to understand SDTS at three
 * levels:  (1) the low-level data encoding of ISO 8211, defined in the
 * ISO 8211 standards document, (2) the higher level of abstraction of SDTS
 * modules, defined in the SDTS standards document, and (3) the particular
 * data encoding for a particular application, such as a DEM or DLG file.
 * Each of these things is documented separately and, to a large extent,
 * independently.
 *
 * Part of item (3), above, is the definition of SDTS "profiles".  These
 * are specific implementations of SDTS, for specific purposes, that
 * restrict SDTS to specific subsets of the possible options.  As far as
 * I know, there are two such profiles:  the Topological Vector Profile (TVP)
 * for vector information (such as DLG data); and the Raster Profile for information
 * that naturally falls on a grid (such as DEM data).
 *
 * SDTS isn't conceptually difficult, but the details needed for a full
 * understanding are scattered hither and yon.
 */




#define FIELD_TERMINATOR	0x1e
#define UNIT_TERMINATOR		0x1f
#define REC_LEN_LEN		5
#define REC_LEADER_LEN		24
#define MAX_TAGS		10	// Maximum number of field tags *we* allow in a record (not an ISO 8211 limit)
#define MAX_SUBFIELDS		100	// Maximum number of subfield labels *we* allow in a user record (not an ISO 8211 limit)



/*
 * Some global state variables used by many of the subroutines.
 *
 * Note that the fact that these are global means that we can only
 * have one DDF file open at once.
 *
 * If it becomes necessary to have more than one file open at once,
 * we could put these variables into an array of structures, indexed
 * by the file descriptor.
 */
static leaderless_flag;		// When non-zero, we have encountered a record leader with a Leader ID of 'R'
static char *ddr_buf = (char *)0;	// DDR record buffer.
static char *dr_buf = (char *)0;	// DR record buffer.
static long gz_flag;	// If non-zero, we are reading a gzip-compressed file.
static ssize_t (*read_function)(int, void *, size_t);
static int fdesc;	// File descriptor of the open DDF file.
static long dr_tag;	// Next-available field in the DR.
static long dr_label;	// Next-available subfield in the field.


/*
 * SDTS files are organized into records, fields, and subfields.
 * The basic structure of each record, whether it is the DDR, or one of the
 * DRs, is the same.  (The low-level details differ.)
 *
 * We begin by describing the DDR.
 *
 * The record begins with a 24-byte Leader, containing general information
 * about the record.
 */
struct record_leader  {
	long length;		// Record Length.  Integer stored as five ASCII bytes.
	long ichg_level;	// Interchange Level.  Integer stored as one ASCII byte.
				// '1', '2', or '3' for DDR. ' ' for DR.
				//
	char leader_id;		// Leader Identifier.  A single ASCII byte.  Must be 'L' for DDR, 'D' or 'R' for DR.
	char ice_ind;		// Inline Code Extension.  A single ASCII byte.
	char reserved_space;	// Reserved Space.  A single ASCII byte.
	char application;	// Application Indicator.  A single ASCII byte.
	long field_cntrl_len;	// Field Control Indicator.  Integer stored as two ASCII bytes.
				// (In the DDR, must be 0 if Interchange Level is 1, must be 6 for
				// Interchange Level 2 or 3.  In DR, it appears to always be "  ".)
				//
	long fa_addr;		// Base address of Field Area.  Integer stored as 5 ASCII bytes.
				// (Addresses start at zero.)
				//
	char ccs[3];		// Code Character Set Indicator.  Three ASCII bytes.
	long field_len_len;	// Size of Field Length.  Integer stored as one ASCII byte.  (1 <= length <=9)
	long field_pos_len;	// Size of Field Position.  Integer stored as one ASCII byte.  (1 <= length <=9)
	long reserved_digit;	// Reserved Digit.  Integer stored as one ASCII byte.
				// (As near as I can tell, this is simply reserved for future use.)
				//
	long field_tag_len;	// Size of Field Tag.  Integer stored as one ASCII byte.  (1 <= length <=7)
				// Subfield labels are not restricted by this length.
};
/*
 * Following this is the DDR Directory,
 * whose length is equal to the Base Address of the Field Area
 * minus the Leader length minus 1.  The minus 1 is for the field terminator,
 * which immediately follows the Directory.
 *
 * The Directory consists of consecutive instances of the triple
 * (tag, field length, field position), one triple for each tag defined.
 *
 * Following the Directory, there is a Field Area, containing information
 * about each field.  This area contains the Field Control string,
 * Field Name, subfield labels (similar to tags), and subfield formats.
 * Although not technically part of the directory, these items are also
 * included in the ddr_directory structure so that everything is in one place.
 *
 * Not all of the extra items will be present for each field.
 * Rather than do a bunch of malloc/free operations to
 * allocate appropriate space, we just provide arrays of pre-defined
 * size, which are hopefully big enough for all files we will encounter.
 * This is somewhat wasteful, and subtracts from the generality of the
 * code, but also makes it easier to write and debug the code.
 * Later, after the code is more seasoned, we can change it to be more
 * efficient (and more general) if we wish.
 *
 * We don't provide storage space for subfield labels and formats.
 * Instead, we will just provide pointers into the storage buffer
 * for the entire DDR.
 */
struct ddr_directory  {
	/*
	 * Tag "0000" indicates a file-control entry.
	 *    If Interchange Level is 2 or 3, we need to read 6-byte field control.
	 * Tag "0001" indicates the DDF Record Identifier.
	 *    If Interchange Level is 2 or 3, we need to read 6-byte field control.
	 * Tag "0002" indicates user-augmented file description.
	 *    No field control, as far as I know.
	 * Tag "????" indicates user data.
	 *    If Interchange Level is 2 or 3, we need to read 6-byte field control.
	 */
	char *tag;		// Tag.  ASCII bytes.  Its length is specified by the
				// Size of Field Tag in the record_leader.  I think these are
				// restricted to 7 bytes, and we include an extra byte for a null.
	long field_len;		// Field Length.  Integer stored as ASCII bytes.
				// Its length is specified by the Size of Field Length in the record_leader.
	long field_pos;		// Field Position.  Integer stored as ASCII bytes.  Its length is
				// specified by the Size of Field Position in the record_leader.
	char *field_cntrl;	// Field Control.  ASCII bytes.  Its length is specified by the Field
				// Control Indicator in the record_leader.
	char *name;		// The human-friendly name of the field.
	char *labels[MAX_SUBFIELDS];	// Labels (similar to tags) for subfields.
	char *formats[MAX_SUBFIELDS];	// Formats for subfields.
	int  sizes[MAX_SUBFIELDS];	// The sizes from the formats, if they were provided.  (0 if they were not.)
	char cartesian[MAX_SUBFIELDS];	// Cartesian delimiter flag.  If non-zero, the label had a '*' in front of it.
	long num_labels;	// The number of user subfield labels in the record.
	long num_formats;	// The number of user subfield formats in the record.
};


/*
 * This is a structure for the DDR contents.
 * It includes space for the Leader and Directory, but the
 * contents of the Field Area reside in the DDR buffer, ddr_buf.
 */
static struct ddr  {
	struct record_leader record_leader;
	struct ddr_directory f0000;	// DDR Directory entry for file-control entry
//	struct ddr_directory f0002;	// DDR Directory entry for user-augmented file description (currently unsupported)
	struct ddr_directory user[MAX_TAGS]; // DDR Directory entry for user data entry
	long num_tags;		// Total number of field tags stored in user[]
} ddr;



/*
 * The Data Records also contain directories, but the Field Area
 * contains actual data, rather than field description information.
 * Thus we define a directory structure for the DRs that doesn't
 * contain the extra field description information.
 */
struct dr_directory  {
	char *tag;		// Tag.  ASCII bytes.  Its length is specified by the
				// Size of Field Tag in the record_leader.  I think these are
				// restricted to 7 bytes, and we include an extra byte for a null.
	long field_len;		// Field Length.  Integer stored as ASCII bytes.
				// Its length is specified by the Size of Field Length in the record_leader.
	long field_pos;		// Field Position.  Integer stored as ASCII bytes.  Its length is
				// specified by the Size of Field Position in the record_leader.
};


/*
 * This is a structure for the DR contents.
 * It includes space for the Leader and Directory, but the
 * contents of the Field Area reside in the DR buffer, dr_buf.
 */
static struct dr  {
	struct record_leader record_leader;
	struct dr_directory user[MAX_TAGS]; // DR Directory entries
	long num_tags;		// Total number of field tags stored in user[]
} dr;




/*
 * Read in an ISO 8211 record.
 * Fill in the record leader structure.
 */
static long
read_record(struct record_leader *record_leader, char **rec_buf)
{
	long i;
	char tmp[REC_LEN_LEN + 1];
	char *ptr, *end_ptr;
	ssize_t ret_val;
	char save_byte;
	long long_record_flag = 0;
	long field_pos, field_len;

	/*
	 * Read in the record length, which is the first thing in the
	 * record.
	 */
	if ((ret_val = read_function(fdesc, tmp, REC_LEN_LEN)) != REC_LEN_LEN)  {
		if (ret_val == 0)  {
			return 0;
		}
		else  {
			fprintf(stderr, "Couldn't read record size from SDTS record.\n");
			return -1;
		}
	}
	tmp[REC_LEN_LEN] = '\0';
	record_leader->length = strtol(tmp, (char **)0, 10);
	if (record_leader->length == 0)  {
		/*
		 * Note: If the record length is zero, then that means the
		 * record is over 100,000 bytes.  The procedure to deal with
		 * this is to read and parse the Directory and find
		 * the field length and field position of the last Directory
		 * entry (the one just before the field terminator).
		 * Adding these to the base address of the Field Area
		 * yields the record length.  We will do this after
		 * we parse the leader.  For now, we just set the record
		 * length to be long enough for the Leader.
		 *
		 * However, before we give do this, make sure that
		 * the record length is actually zero.  There may be
		 * non-numeric characters where the record length is supposed
		 * to be.  strtol() will ignore these and return zero, which
		 * isn't strictly-speaking the correct interpretation of
		 * a garbage-filled record length.
		 */
		for (i = 0; i < REC_LEN_LEN; i++) {
			/* Check for leading blanks. */
			if (tmp[i] != ' ') break;
		}
		for ( ; i < REC_LEN_LEN; i++)  {
			/* Check for all zeros, following the blanks. */
			if (tmp[i] != '0') break;
		}
		if (i < REC_LEN_LEN)  {
			fprintf(stderr, "Warning: Record length is nonsensical.  Assuming end of file.\n");
			return 0;
		}

		record_leader->length = REC_LEADER_LEN;
		long_record_flag = 1;
	}
	else if (record_leader->length < REC_LEADER_LEN)  {
		fprintf(stderr, "Record length is less than %d in SDTS record.\n", REC_LEADER_LEN);
		return -1;
	}

	/*
	 * Get space for the record, copy the already-read record length
	 * into the beginning of the space, and read the remainder of the record.
	 * (Or read just the Leader, if this is a long record.)
	 */
	if ((*rec_buf = (char *)malloc(record_leader->length + 1)) == (char *)0)  {
		fprintf(stderr, "malloc(%d) returns null.\n", record_leader->length + 1);
		return -1;
	}
	for (i = 0; i < REC_LEN_LEN; i++)  {
		(*rec_buf)[i] = tmp[i];
	}
	if ((ret_val = read_function(fdesc, *rec_buf + REC_LEN_LEN, record_leader->length - REC_LEN_LEN)) !=
									(record_leader->length - REC_LEN_LEN))  {
		fprintf(stderr, "Couldn't read SDTS record.  Ret_val = %d.\n", ret_val);
		free(*rec_buf);
		return -1;
	}
	(*rec_buf)[record_leader->length] = '\0';	// Not really necessary, but I like to do it.


	/*
	 * Parse the record leader and put the results into the
	 * record_leader structure.
	 */
	if ((*rec_buf)[REC_LEN_LEN] == ' ')  {	// The Interchange Level is a single digit, or blank
		record_leader->ichg_level = -1;
	}
	else  {
		record_leader->ichg_level = (*rec_buf)[REC_LEN_LEN] - '0';
	}
	record_leader->leader_id = (*rec_buf)[REC_LEN_LEN + 1];	// Leader Identifier.  A single ASCII byte.  'L' for DDR, 'D' or 'R' for DR.
	record_leader->ice_ind = (*rec_buf)[REC_LEN_LEN + 2];		// Inline Code Extension.  A single ASCII byte.
	record_leader->reserved_space = (*rec_buf)[REC_LEN_LEN + 3];	// Reserved Space.  A single ASCII byte.
	record_leader->application = (*rec_buf)[REC_LEN_LEN + 4];	// Application Indicator.  A single ASCII byte.
	if ((*rec_buf)[REC_LEN_LEN + 6] == ' ')  {	// Field Control Indicator.  Integer stored as two ASCII bytes.
		record_leader->field_cntrl_len = -1;
	}
	else  {
		record_leader->field_cntrl_len = ((*rec_buf)[REC_LEN_LEN + 5] - '0') * 10 + (*rec_buf)[REC_LEN_LEN + 6] - '0';
	}
	save_byte = (*rec_buf)[REC_LEN_LEN + 12]; (*rec_buf)[REC_LEN_LEN + 12] = '\0';
	record_leader->fa_addr = strtol(*rec_buf + REC_LEN_LEN + 7, (char **)0, 10);	// Base address of Field Area.  Integer stored as 5 ASCII bytes.
	(*rec_buf)[REC_LEN_LEN + 12] = save_byte;
	record_leader->ccs[0] = (*rec_buf)[REC_LEN_LEN + 12];	// Code Character Set Indicator.  Three ASCII bytes.
	record_leader->ccs[1] = (*rec_buf)[REC_LEN_LEN + 13];
	record_leader->ccs[2] = (*rec_buf)[REC_LEN_LEN + 14];
	record_leader->field_len_len = (*rec_buf)[REC_LEN_LEN + 15] - '0';	// Size of Field Length.  Integer stored as one ASCII byte.  (1 <= length <=9)
	if ((record_leader->field_len_len < 1) || (record_leader->field_len_len > 9))  {
		free(*rec_buf);
		fprintf(stderr, "Field length length in record leader (%d) is out of bounds.\n", record_leader->field_len_len);
		return -1;
	}
	record_leader->field_pos_len = (*rec_buf)[REC_LEN_LEN + 16] - '0';	// Size of Field Position.  Integer stored as one ASCII byte.  (1 <= length <=9)
	if ((record_leader->field_pos_len < 1) || (record_leader->field_pos_len > 9))  {
		free(*rec_buf);
		fprintf(stderr, "Field position length in record leader (%d) is out of bounds.\n", record_leader->field_pos_len);
		return -1;
	}
	if ((*rec_buf)[REC_LEN_LEN + 17] != ' ')  {
		record_leader->reserved_digit = (*rec_buf)[REC_LEN_LEN + 17] - '0';	// Reserved Digit.  Integer stored as one ASCII byte.
	}
	else  {
		record_leader->reserved_digit = -1;	// Reserved Digit.  Integer stored as one ASCII byte.
	}
	record_leader->field_tag_len = (*rec_buf)[REC_LEN_LEN + 18] - '0';	// Size of Field Tag.  Integer stored as one ASCII byte.  (1 <= length <=7)
	if ((record_leader->field_tag_len < 1) || (record_leader->field_tag_len > 7))  {
		free(*rec_buf);
		fprintf(stderr, "Field tag length in record leader (%d) is out of bounds.\n", record_leader->field_tag_len);
		return -1;
	}

	if (long_record_flag != 0)  {
		/*
		 * The record is longer than 100000 bytes.  Get the record the hard way.
		 *
		 * Start by re-sizing the record buffer to 100000 bytes, since
		 * we know the record must be at least that long.
		 */
		if ((ptr = (char *)realloc(*rec_buf, 100000)) == (char *)0)  {
			free(*rec_buf);
			fprintf(stderr, "realloc(100000) returns null.\n");
			return -1;
		}
		*rec_buf = ptr;

		/*
		 * Now search after the Leader to find the first FIELD_TERMINATOR.
		 * This should be the end of the Directory.
		 */
		i = REC_LEADER_LEN;
		while (((ret_val = read_function(fdesc, *rec_buf + i, 1)) == 1) && ((*rec_buf)[i] != FIELD_TERMINATOR))  {
			i++;
			if (i == 100000)  {
				fprintf(stderr, "Failed to find end of Directory in first 100000 bytes.  This seems implausible.  Giving up.\n");
				free(*rec_buf);
				return -1;
			}
		}
		if (ret_val != 1)  {
			fprintf(stderr, "Couldn't read SDTS record.  Ret_val = %d.\n", ret_val);
			free(*rec_buf);
			return -1;
		}

		/*
		 * If we make it to this point, then i should be the index of the Directory FIELD_TERMINATOR.
		 * We need to backtrack from here to determine the last Field Length Length
		 * and Field Position Length in the Directory.
		 */
		save_byte = (*rec_buf)[i]; (*rec_buf)[i] = '\0';
		field_pos = strtol(*rec_buf + i - record_leader->field_pos_len, (char **)0, 10);
		(*rec_buf)[i] = save_byte;
		save_byte = (*rec_buf)[i - record_leader->field_pos_len]; (*rec_buf)[i - record_leader->field_pos_len] = '\0';
		field_len = strtol(*rec_buf + i - record_leader->field_pos_len - record_leader->field_len_len, (char **)0, 10);
		(*rec_buf)[i - record_leader->field_pos_len] = save_byte;

		/*
		 * Now we have what we need to figure out the
		 * record length.  Figure it out and then re-size the
		 * buffer accordingly.
		 */
		record_leader->length = record_leader->fa_addr + field_pos + field_len;
		if ((ptr = (char *)realloc(*rec_buf, record_leader->length + 1)) == (char *)0)  {
			free(*rec_buf);
			fprintf(stderr, "realloc(%d) returns null.\n", record_leader->length + 1);
			return -1;
		}
		*rec_buf = ptr;

		/*
		 * Now, at last, we are ready to read in the remainder of the record.
		 * The remainder consists of the Field Area, since we have already read in
		 * the Leader and the Directory.
		 */
		if ((ret_val = read_function(fdesc, *rec_buf + i + 1, record_leader->length - i - 1)) !=
									(record_leader->length - i - 1))  {
			fprintf(stderr, "Couldn't read SDTS record.  Ret_val = %d.\n", ret_val);
			free(*rec_buf);
			return -1;
		}
	}
	(*rec_buf)[record_leader->length] = '\0';	// Not really necessary, but I like to do it.

	return record_leader->length;
}




/*
 * For testing purposes, print an SDTS DDR record structure.
 */
void
print_ddr()
{
	long i;
	long j;

	fprintf(stderr, "ddr.record_leader.length = %d\n", ddr.record_leader.length);
	fprintf(stderr, "ddr.record_leader.ichg_level = %d\n", ddr.record_leader.ichg_level);
	if (ddr.record_leader.ichg_level >= 0)  {
		if ((ddr.record_leader.ichg_level < 1) || (ddr.record_leader.ichg_level > 3))  {
			fprintf(stderr, "Bad interchange level in DDR = %d.\n", ddr.record_leader.ichg_level);
			exit(0);
		}
	}
	fprintf(stderr, "ddr.record_leader.leader_id = \"%c\"\n", ddr.record_leader.leader_id);
	fprintf(stderr, "ddr.record_leader.ice_ind = \"%c\"\n", ddr.record_leader.ice_ind);
	fprintf(stderr, "ddr.record_leader.reserved_space = \"%c\"\n", ddr.record_leader.reserved_space);
	fprintf(stderr, "ddr.record_leader.application = \"%c\"\n", ddr.record_leader.application);
	fprintf(stderr, "ddr.record_leader.field_cntrl_len = %d\n", ddr.record_leader.field_cntrl_len);
	if (ddr.record_leader.ichg_level >= 0)  {
		if (((ddr.record_leader.ichg_level == 1) && (ddr.record_leader.field_cntrl_len != 0)) ||
		    ((ddr.record_leader.ichg_level == 2) && (ddr.record_leader.field_cntrl_len != 6)) ||
		    ((ddr.record_leader.ichg_level == 3) && (ddr.record_leader.field_cntrl_len != 6)))  {
			fprintf(stderr, "Bad field control length in DDR = %d.\n", ddr.record_leader.field_cntrl_len);
			exit(0);
		}
	}
	fprintf(stderr, "ddr.record_leader.fa_addr = %d\n", ddr.record_leader.fa_addr);
	if (ddr.record_leader.fa_addr < REC_LEADER_LEN)  {
		fprintf(stderr, "Bad DDA address in DDR = %d.\n", ddr.record_leader.fa_addr);
		exit(0);
	}
	fprintf(stderr, "ddr.record_leader.ccs = \"%c%c%c\"\n", ddr.record_leader.ccs[0], ddr.record_leader.ccs[1], ddr.record_leader.ccs[2]);
	fprintf(stderr, "ddr.record_leader.field_len_len = %d\n", ddr.record_leader.field_len_len);
	fprintf(stderr, "ddr.record_leader.field_pos_len = %d\n", ddr.record_leader.field_pos_len);
	fprintf(stderr, "ddr.record_leader.reserved_digit = %d\n", ddr.record_leader.reserved_digit);
	fprintf(stderr, "ddr.record_leader.field_tag_len = %d\n", ddr.record_leader.field_tag_len);
	fprintf(stderr, "\n");

	if (ddr.f0000.tag == (char *)0)  {
		fprintf(stderr, "ddr.f0000 did not appear\n");
	}
	else  {
		fprintf(stderr, "ddr.f0000.tag = \"%.*s\"\n", ddr.record_leader.field_tag_len, ddr.f0000.tag);
		fprintf(stderr, "ddr.f0000.field_len = %d\n", ddr.f0000.field_len);
		fprintf(stderr, "ddr.f0000.field_pos = %d\n", ddr.f0000.field_pos);
		fprintf(stderr, "ddr.f0000.field_cntrl = \"%.*s\"\n", ddr.record_leader.ichg_level > 1 ? 6 : 0, ddr.f0000.field_cntrl);
		fprintf(stderr, "ddr.f0000.name = \"%s\"\n", ddr.f0000.name);
	}
	fprintf(stderr, "\n");

	for (i = 0; i < ddr.num_tags; i++)  {
		fprintf(stderr, "ddr.user[%d].tag = \"%.*s\"\n", i, ddr.record_leader.field_tag_len, ddr.user[i].tag);
		fprintf(stderr, "ddr.user[%d].field_len = %d\n", i, ddr.user[i].field_len);
		fprintf(stderr, "ddr.user[%d].field_pos = %d\n", i, ddr.user[i].field_pos);
		fprintf(stderr, "ddr.user[%d].field_cntrl = \"%.*s\"\n", i, ddr.record_leader.ichg_level > 1 ? 6 : 0, ddr.user[i].field_cntrl);
		fprintf(stderr, "ddr.user[%d].name = \"%s\"\n", i, ddr.user[i].name);

		for (j = 0; j < ddr.user[i].num_labels; j++)  {
			fprintf(stderr, "ddr.user[%d].labels[%d] = \"%s\"\n", i, j, ddr.user[i].labels[j]);
			fprintf(stderr, "ddr.user[%d].formats[%d] = \"%s\"\n", i, j, ddr.user[i].formats[j]);
		}

		fprintf(stderr, "\n");
	}
}





/*
 * Parse the DDR record and put all of the
 * information into the DDR structure.
 *
 * We have already parsed the record leader, in the read_record() function.
 * The values have been stored away in ddr.record_leader.
 * This was done separately because the leader always has the same
 * interpretation for every record, and we can parse and check it
 * right after reading any record.
 *
 * Now we need to parse the rest of the DDR.  The DDR is a collection
 * of fields that describe the fields and subfields in the following
 * Data Records (DRs).
 *
 * We will be concerned with the two remaining (non-leader) portions of the DDR:
 * the Directory and the Field Area.
 *
 * The Directory immediately follows the leader, without any intervening
 * field terminator, and is followed by a field terminator (which I guess
 * makes it the first field in the DDR).  The directory contains consecutive
 * entries for each field description in the DDR.  Each entry consists of a field tag,
 * followed by the field length (which is not the length of the corresponding field in
 * the DR, but rather the length of the field (in the Field Area) that describes how
 * the field will appear in the DR), followed by the field position
 * (which is the offset of the field description from the start of the Field Area).
 * The lengths (in the Directory) of each of these three items are specified in the leader.
 * Thus, we read the leader to find the length of the "field length" in the Directory.
 * We read the Directory to find the actual field length (which is not the length of the
 * corresponding field in the DRs, but rather the length of the field in the Field Area
 * that describes the DR field).
 *
 * Given the information from the Directory, we then parse the corresponding fields in
 * the Field Area.  In general, the format of these appears to be:  a format control
 * field (whose length is specified in the leader), a field name (which is the
 * human-friendly name of the corresponding field ---  and is not the same as
 * the tag of the corresponding field), a list of subfield labels, and a set
 * of subfield format specifiers.  The latter two items only seem to appear for
 * user-defined fields, and not for the special fields with tags "0000",
 * "0001", "0002", and so on.  (I'm not so sure about field types "0002" and above,
 * since I haven't come across any examples yet.)
 *
 * We need to read all of these things, and store them away in appropriate
 * parts of the ddr structure.
 */
static void
parse_ddr()
{
	long i;		// We use this as an index into the Directory
	long j;		// We use this as an index into the Field Area
	long k;
	long size;
	long repeat_count;
	char save_byte;
	char *ptr, *end_ptr;
	ssize_t ret_val;

	if ((ret_val = read_record(&(ddr.record_leader), &ddr_buf)) <= 0)  {
		/* If ret_val is < 0, read_record() already printed an error message. */
		if (ret_val == 0)  {
			fprintf(stderr, "At end of file, reading DDR.  This should not happen.\n");
		}
		exit(0);
	}
	if (ddr.record_leader.leader_id != 'L')  {
		fprintf(stderr, "DDR Leader ID is '%c'.  Can't handle this.\n", ddr.record_leader.leader_id);
		exit(0);
	}
	/*
	 * Should probably check, at this point, that the Interchange Level is not 3,
	 * since we can't handle such files in general.  However, it
	 * is possible that we can still parse them well enough to read
	 * an SDTS file, so we will take the chance and try handling
	 * level 3 files anyway.
	 */

	i = REC_LEADER_LEN;			// Start of DDR Directory
	j = ddr.record_leader.fa_addr;	// Start of Field Area

	/* Initialize so that we know nothing is initially present. */
	ddr.f0000.tag = (char *)0;
	ddr.f0000.name = (char *)0;
	ddr.f0000.field_cntrl = (char *)0;
	ddr.f0000.num_labels = 0;
	ddr.num_tags = 0;

	/*
	 * First we examine the field tag to find out if it is one of the special
	 * types of fields.  The special tags appear to be strings of all '0'
	 * characters, with a '0', '1', or '2' on the end.  Because the whole tag,
	 * except for the last digit, must be filled with '0' characters (at least
	 * as far as I know, without a copy of the standard), we play some pointer games
	 * and index into the comparison strings to get comparison strings of the
	 * correct length.  This gives us the odd-looking construct:
	 * "0000002" + 7 - ddr.record_leader.field_tag_len
	 * If the tag length is 4, then we are really comparing against "0002".
	 */
	while (i < (ddr.record_leader.fa_addr - 1))  {
		if (strncmp(&ddr_buf[i], "0000000", ddr.record_leader.field_tag_len) == 0)  {
			/* This is a file-control tag. */
			ddr.f0000.tag = &ddr_buf[i];
			i = i + ddr.record_leader.field_tag_len;

			k = i;
			save_byte = ddr_buf[i + ddr.record_leader.field_len_len];
			ddr_buf[i + ddr.record_leader.field_len_len] = '\0';
			ddr.f0000.field_len = strtol(&ddr_buf[i], (char **)0, 10);
			ddr_buf[i + ddr.record_leader.field_len_len] = save_byte;
			i = i + ddr.record_leader.field_len_len;
			ddr_buf[k] = '\0';	// Null-terminate tag.

			save_byte = ddr_buf[i + ddr.record_leader.field_pos_len];
			ddr_buf[i + ddr.record_leader.field_pos_len] = '\0';
			ddr.f0000.field_pos = strtol(&ddr_buf[i], (char **)0, 10);
			ddr_buf[i + ddr.record_leader.field_pos_len] = save_byte;
			i = i + ddr.record_leader.field_pos_len;

			if ((ddr.record_leader.ichg_level == 2) || (ddr.record_leader.ichg_level == 3))  {
				ddr.f0000.field_cntrl = &ddr_buf[j];
				j = j + ddr.record_leader.field_cntrl_len;
			}
			else  {
				ddr.f0000.field_cntrl = (char *)0;
			}

			ddr.f0000.name = &ddr_buf[j];
			k = ddr.record_leader.fa_addr + ddr.f0000.field_pos + ddr.f0000.field_len;
			for ( ; j < k; j++)  {	// Search the whole field, if necessary, for a terminator.
				if ((ddr_buf[j] == UNIT_TERMINATOR) || (ddr_buf[j] == FIELD_TERMINATOR))  {
					break;
				}
			}
			if (j == k)  {
				fprintf(stderr, "The file appears defective.  Can't proceed.\n");
				exit(0);
			}
			ddr_buf[j++] = '\0';	// Null terminate the end of the name.  The null-terminator may end up being the whole name if no name was present.
			j = k;
		}
		else if (strncmp(&ddr_buf[i], "0000002" + 7 - ddr.record_leader.field_tag_len, ddr.record_leader.field_tag_len) == 0)  {
			/* This is a user-augmented file description.  We don't know how to handle these. */
			fprintf(stderr, "File contains field tag of \"0..2\".  Can't handle this.\n");
			exit(0);
		}
		else if ((strncmp(&ddr_buf[i], "0000000" + 7 - ddr.record_leader.field_tag_len, ddr.record_leader.field_tag_len - 1) == 0) &&
			 (ddr_buf[i + ddr.record_leader.field_tag_len - 1] >= '3') &&
			 (ddr_buf[i + ddr.record_leader.field_tag_len - 1] <= '9'))  {
			/* This is one of the other special tags that we can't handle. */
			fprintf(stderr, "File contains field tag of \"0..%c\".  Can't handle this.\n", ddr_buf[i + ddr.record_leader.field_tag_len - 1]);
			exit(0);
		}
		else  {
			/* This is a plain old non-special tag.  (Which includes the pseudo-special "0..1" tag. */
			if (ddr.num_tags == MAX_TAGS)  {
				fprintf(stderr, "Ran out of space for field tags.  Can't proceed.\n");
				exit(0);
			}

			/*
			 * Initialize the various subfield storage spaces, in
			 * case we don't find any labels and/or formats.
			 */
			for (k = 0; k < MAX_SUBFIELDS; k++)  {
				ddr.user[ddr.num_tags].labels[k] = "";
				ddr.user[ddr.num_tags].formats[k] = "";
				ddr.user[ddr.num_tags].sizes[k] = 0;
				ddr.user[ddr.num_tags].cartesian[k] = 0;
			}

			ddr.user[ddr.num_tags].tag = &ddr_buf[i];
			i = i + ddr.record_leader.field_tag_len;

			k = i;
			save_byte = ddr_buf[i + ddr.record_leader.field_len_len];
			ddr_buf[i + ddr.record_leader.field_len_len] = '\0';
			ddr.user[ddr.num_tags].field_len = strtol(&ddr_buf[i], (char **)0, 10);
			ddr_buf[i + ddr.record_leader.field_len_len] = save_byte;
			i = i + ddr.record_leader.field_len_len;
			ddr_buf[k] = '\0';	// Null-terminate tag.

			save_byte = ddr_buf[i + ddr.record_leader.field_pos_len];
			ddr_buf[i + ddr.record_leader.field_pos_len] = '\0';
			ddr.user[ddr.num_tags].field_pos = strtol(&ddr_buf[i], (char **)0, 10);
			ddr_buf[i + ddr.record_leader.field_pos_len] = save_byte;
			i = i + ddr.record_leader.field_pos_len;

			if ((ddr.record_leader.ichg_level == 2) || (ddr.record_leader.ichg_level == 3))  {
				ddr.user[ddr.num_tags].field_cntrl = &ddr_buf[j];
				j = j + ddr.record_leader.field_cntrl_len;
			}
			else  {
				ddr.user[ddr.num_tags].field_cntrl = (char *)0;
			}

			ddr.user[ddr.num_tags].name = &ddr_buf[j];
			k = ddr.record_leader.fa_addr + ddr.user[ddr.num_tags].field_pos + ddr.user[ddr.num_tags].field_len;
			for ( ; j < k; j++)  {	// Search the whole field, if necessary, for a terminator.
				if ((ddr_buf[j] == UNIT_TERMINATOR) || (ddr_buf[j] == FIELD_TERMINATOR))  {
					break;
				}
			}
			if (j == k)  {
				fprintf(stderr, "The file appears defective.  Can't proceed.\n");
				exit(0);
			}
			if ((ddr_buf[j] != UNIT_TERMINATOR) ||
			    (ddr.record_leader.ichg_level == 1) ||
			    (ddr.user[ddr.num_tags].field_cntrl[0] == '0'))  {
				ddr_buf[j++] = '\0';	// Null terminate the end of the name.
				ddr.num_tags++;
				j = k;
				continue;
			}
			ddr_buf[j++] = '\0';	// Null terminate the end of the name.

			/*
			 * If there are any subfield labels, we need to parse them.
			 * They are normally separated by the '!' character, which is the vector
			 * delimiter.  We null out the '!' characters so that the labels
			 * will be null-terminated.
			 *
			 * We may also come across the '*' character, which is the
			 * cartesian delimiter.  If we come across the latter, we remember
			 * it for later use, and then null it just like the '!' delimiters.
			 */
			ddr.user[ddr.num_tags].num_labels = 0;
			if (ddr_buf[j] != UNIT_TERMINATOR)  {
				/*
				 * Either we have some labels, or we are at end of field.
				 * If we have labels, we locate them.
				 * If we are at end-of-field, we fall through the loop.
				 */

				/* Check for leading '*' delimiter */
				if ((j != k) && (ddr_buf[j] == '*'))  {
					j++;
					ddr.user[ddr.num_tags].cartesian[0] = 1;
				}

				/* Now, process the labels, if there are any. */
				while ((j != k) && (ddr_buf[j] != UNIT_TERMINATOR) && (ddr_buf[j] != FIELD_TERMINATOR))  {
					if (ddr.user[ddr.num_tags].num_labels == MAX_SUBFIELDS)  {
						fprintf(stderr, "Ran out of space for subfield labels.  Can't proceed.\n");
						exit(0);
					}

					ddr.user[ddr.num_tags].labels[ddr.user[ddr.num_tags].num_labels] = &ddr_buf[j];
					j++;
					for ( ; j < (k - 1); j++)  {
						if ((ddr_buf[j] == '!') || (ddr_buf[j] == '*') ||
						    (ddr_buf[j] == UNIT_TERMINATOR) || (ddr_buf[j] == FIELD_TERMINATOR))  {
							break;
						}
					}
					if (ddr_buf[j] == '*')  {
						if (ddr.user[ddr.num_tags].num_labels == (MAX_SUBFIELDS - 1))  {
							fprintf(stderr, "Ran out of space for subfield labels.  Can't proceed.\n");
							exit(0);
						}
						ddr.user[ddr.num_tags].cartesian[ddr.user[ddr.num_tags].num_labels + 1] = 1;
					}
					if (ddr_buf[j] != '!')  {
						ddr_buf[j++] = '\0';	// Null terminate the end of the tag.
						ddr.user[ddr.num_tags].num_labels++;
						break;
					}
					ddr_buf[j++] = '\0';	// Null terminate the end of the tag.
					ddr.user[ddr.num_tags].num_labels++;
				}
			}
			else  {
				j++;
			}

			/*
			 * If there are any format specifiers, we need to parse them.
			 * They are delimited by '(' and ')', and separated by ',' characters.
			 * They might look something like "(A,I,B,3I)" or "(A(3),I(4))".
			 * The leading 3 is a repeat count, and the numbers in parentheses are
			 * subfield sizes.
			 *
			 * Note that the format strings can be vastly more complex than what
			 * we can handle here.  (They can include constructs like "(A(4),3(I(2),I(3)))"; and
			 * "(A(,),I(5))" (where the "A(,)" is a comma-delimited ASCII string); and even
			 * more complex forms.)  We provide just enough functionality to handle
			 * known USGS data.  If it becomes necessary to handle more complex format
			 * strings, we should probably move the parsing to a separate function.
			 */
			ddr.user[ddr.num_tags].num_formats = 0;
			if (ddr_buf[j] != FIELD_TERMINATOR)  {
				if ((k - j) > 3)  {	// We need at least "(?)" followed by a field terminator before we can proceed.
					if ((ddr_buf[j] != '(') || (ddr_buf[k - 2] != ')') || (ddr_buf[k - 1] != FIELD_TERMINATOR))  {
						fprintf(stderr, "Subfield format specification looks wrong.  Can't proceed.\n");
						exit(0);
					}
					j++;
					ddr_buf[k - 2] = '\0';
					ddr_buf[k - 1] = '\0';

					/*
					 * Sometimes the () are double nested.  Haven't figured
					 * out why yet, but it seems harmless to strip off the extra pair.
					 */
					if ((ddr_buf[j] == '(') && (ddr_buf[k - 3] == ')'))  {
						j++;
						ddr_buf[k - 3] = '\0';
					}

					while ((j < (k - 2)) && (ddr_buf[j] != '\0'))  {
						repeat_count = 1;
						if ((ddr_buf[j] >= '0') && (ddr_buf[j] <= '9'))  {
							repeat_count = strtol(&ddr_buf[j], &end_ptr, 10);
							j = j + end_ptr - &ddr_buf[j];
						}
						if (ddr_buf[j] == '\0')  {
							fprintf(stderr, "Subfield format specification looks wrong.  Can't proceed.\n");
							exit(0);
						}

						/* Find the subfield size, if there is one. */
						if ((ptr = strchr(&ddr_buf[j], '(')) == (char *)0)  {
							size = 0;
						}
						else  {
							size = strtol(ptr + 1, (char **)0, 10);
							if ((ddr_buf[j] == 'B') || (ddr_buf[j] == 'b'))  {	// Don't know if 'b' ever gets used. Check just in case.
								/*
								 * If binary format, convert bit size into byte size.
								 * Bit fields whose size is not divisible by 8 are
								 * allowed by the standard, but we can't handle them.
								 * We assume all bit fields are simply 16-bit or
								 * 32-bit numbers stored in binary format.
								 */
								if (size & 0x7)  {
									fprintf(stderr, "Subfield size (%d) is not divisible by eight.\nThe standard allows this, but drawmap can't handle it.\n", size);
									exit(0);
								}
								size = size >> 3;
							}
							if (size < 0)  {
								fprintf(stderr, "Subfield size (%d) is unusable.\n", size);
								exit(0);
							}
							if (size == 0)  {
								/*
								 * Note:  If size == 0, then there was something non-numeric
								 * inside the parentheses.  We might want to check for
								 * delimited strings at this point.  I don't want to
								 * make the format parsing more complicated, though, until
								 * I know exactly how the format is specified in the
								 * standard.
								 */
								fprintf(stderr, "Warning: Subfield format string %s is unusual.  May cause trouble.\n", &ddr_buf[j]);
							}
						}

						while(repeat_count > 0)  {
							ddr.user[ddr.num_tags].formats[ddr.user[ddr.num_tags].num_formats] = &ddr_buf[j];
							ddr.user[ddr.num_tags].sizes[ddr.user[ddr.num_tags].num_formats++] = size;
							repeat_count--;
						}

						while ((ddr_buf[j] != ',') && (ddr_buf[j] != '\0'))  {
							j++;
						}
						ddr_buf[j++] = '\0';
					}
				}
			}

			/*
			 * It is okay for the labels and or formats to be missing.
			 * However, if they are both present, we insist that there be
			 * an equal number of each, because otherwise, we don't know
			 * what to do.
			 */
			if ((ddr.user[ddr.num_tags].num_formats > 0) && (ddr.user[ddr.num_tags].num_labels > 0))  {
				if (ddr.user[ddr.num_tags].num_formats != ddr.user[ddr.num_tags].num_labels)  {
					fprintf(stderr, "File does not contain a format descriptor for each subfield.  Can't handle this.\n");
					exit(0);
				}
			}

			ddr.num_tags++;
			j = k;
		}
	}
}





/*
 * Parse the DR record and put all of the
 * information into the DR structure.
 *
 * We have already parsed the record leader, in the read_record() function.
 * The values have been stored away in dr.record_leader.
 * This was done separately because the leader always has the same
 * interpretation for every record, and we can parse and check it
 * right after reading any record.
 *
 * Now we need to parse the rest of the DR.  The DR is similar in structure
 * to the DDR.  There is again a Directory, right after the Leader, that gives a
 * (tag, field length, field position) triple for each data field present.
 * Following this is the Field Area, which contains the actual data.
 *
 * Parsing is quite similar to parsing the DDR.  The Directory is parsed
 * in exactly the same way.  The Field Area is a simple listing of data,
 * corresponding to the subfields of each of the fields.
 */
static void
parse_dr()
{
	long i;		// We use this as an index into the Directory
	long j;		// We use this as an index into the Field Area
	long k;
	char save_byte;

	if (leaderless_flag != 0)  {
		/*
		 * Once the leaderless_flag has been set, we shouldn't be calling this function.
		 */
		fprintf(stderr, "parse_dr() called during leaderless processing.  Something is wrong.\n");
		exit(0);
	}

	j = dr.record_leader.fa_addr;	// Start of Field Area

	dr.num_tags = 0;


	/*
	 * Iterate through the directory entries and stick the data
	 * into the dr structure.
	 */
	i = REC_LEADER_LEN;			// Start of DR Directory

	while (i < (dr.record_leader.fa_addr - 1))  {
		if (ddr.num_tags == MAX_TAGS)  {
			fprintf(stderr, "Ran out of space for field tags.  Can't proceed.\n");
			exit(0);
		}

		dr.user[dr.num_tags].tag = &dr_buf[i];
		i = i + dr.record_leader.field_tag_len;

		k = i;
		save_byte = dr_buf[i + dr.record_leader.field_len_len];
		dr_buf[i + dr.record_leader.field_len_len] = '\0';
		dr.user[dr.num_tags].field_len = strtol(&dr_buf[i], (char **)0, 10);
		dr_buf[i + dr.record_leader.field_len_len] = save_byte;
		i = i + dr.record_leader.field_len_len;
		dr_buf[k] = '\0';	// Null-terminate tag.

		save_byte = dr_buf[i + dr.record_leader.field_pos_len];
		dr_buf[i + dr.record_leader.field_pos_len] = '\0';
		dr.user[dr.num_tags].field_pos = strtol(&dr_buf[i], (char **)0, 10);
		dr_buf[i + dr.record_leader.field_pos_len] = save_byte;
		i = i + dr.record_leader.field_pos_len;

		dr.num_tags++;
		j = k;
	}

	/*
	 * If a record has a Leader ID of 'R' instead of 'D',
	 * then this is the last Record Leader and Directory
	 * in the file.  From this point on, we just keep reading
	 * the Field Area over and over again, until we reach the
	 * end of file, and we interpret it using the Directory
	 * entry in the just-parsed Directory.
	 */
	if (dr.record_leader.leader_id == 'R')  {
		leaderless_flag = 1;
	}
}




/*
 * When the user calls this function,
 * we return the next available subfield from the
 * file.  This routine depends on global
 * static state information, since it must
 * remember its state from one invocation to the next.
 *
 * This function returns 1 when it finds a subfield.
 * It returns 0 at end of file.
 * It exits on errors.
 *
 * In the subfield structure returned by this function,
 * the subfield.tag, subfield.label, and subfield.format
 * elements will be null-terminated.  The subfield.value
 * element will not be null-terminated, and you must
 * use the subfield.length element to find its end.
 */
long
get_subfield(struct subfield *subfield)
{
	ssize_t ret_val;
	long i;
	static long data_index;
	long ddr_index;
	long field_limit;
	char *tag_wanted;
	char *ptr;
	long max_labels_formats;	// contains the maximum of the number of labels or the number of formats

	/*
	 * Check whether we have used up all of the data from the last record we
	 * read.  If so, try to read another record.
	 */
	if (dr_tag >= dr.num_tags)  {
		/* We have finished with the old record and need to read another. */
		if (leaderless_flag == 0)  {
			if ((ret_val = read_record(&dr.record_leader, &dr_buf)) < 0)  {
				/* Error message was printed by read_record(), so just exit. */
				exit(0);
			}
			else if (ret_val == 0)  {
				return 0;
			}

			parse_dr(&dr);
		}
		else  {
			if ((ret_val = read_function(fdesc, &dr_buf[dr.record_leader.fa_addr],
			     dr.record_leader.length - dr.record_leader.fa_addr)) !=
			     (dr.record_leader.length - dr.record_leader.fa_addr))  {
				if (ret_val == 0)  {
					return 0;
				}
				else  {
					fprintf(stderr, "Tried to read %d bytes from SDTS record.  Got ret_val = %d\n",
						dr.record_leader.length - dr.record_leader.fa_addr, ret_val);
					exit(0);
				}
			}
		}

		dr_tag = 0;
		dr_label = 0;
		data_index = dr.record_leader.fa_addr;
	}

	/*
	 * We are trying to pry the next tag/label pair out of the record.
	 * Set a pointer to the tag we are looking for, and then search
	 * for that tag in the DDR.
	 */
	tag_wanted = dr.user[dr_tag].tag;
	for (ddr_index = 0; ddr_index < ddr.num_tags; ddr_index++)  {
		if (strncmp(tag_wanted, ddr.user[ddr_index].tag, ddr.record_leader.field_tag_len) == 0)  {
			break;
		}
	}
	if (ddr_index == ddr.num_tags)  {
		fprintf(stderr, "Failed to find user tag %.*s in DDR.\n", ddr.record_leader.field_tag_len, tag_wanted);
		exit(0);
	}

	/*
	 * Handle the data based on its type.  This particular
	 * bunch of code is probably not anywhere near as
	 * complex as a full implementation of the standard
	 * would require.  Thus, if the program fails to parse a file,
	 * this block of code may need to be beefed up.
	 *
	 * The first byte of the format control string gives the structure type:
	 *   0 = Elementary Data	(A single data item per field)
	 *   1 = Vector Data		(Multiple data items per field.  One dimensional.)
	 *   2 = Array Data		(Multiple data items per field.  Two dimensional.)
	 *
	 * The second byte of the format control string gives the data type:
	 *   0 = Character (Simple character data:  ABC)
	 *   1 = Implicit point	(Numeric string with no explicit decimal point:  123)
	 *   2 = Explicit point (Numeric string with an explicit decimal point:  1.23)
	 *   3 = Explicit point scales (Numeric string with scale factor:  1.23E+04)
	 *   4 = Character mode bit string (binary bits: 01011101)
	 *   5 = Bit field (Similar to character mode bit string, but data is actual binary bit string)
	 *   6 = Mixed data types
	 *   7 = Haven't ever seen any above 6
	 *
	 * At this level of abstraction, we don't care much about the second byte.
	 * The interpretation of the data in the subfields is done at a higher level.
	 * However, the first byte adds some complications.  Structure types 0 and
	 * 1 are fairly straightforward, type 2 can take a variety of forms.
	 */
	if ((ddr.record_leader.ichg_level == -1) || (ddr.record_leader.ichg_level == 1) || (ddr.user[ddr_index].field_cntrl[0] == '0'))  {
		/*
		 * We have a simple atomic data field, with no subfield label.
		 */
		subfield->tag = dr.user[dr_tag].tag;
		subfield->label = "";
		subfield->value = dr_buf + data_index;
		subfield->format = "";
		subfield->length = dr.user[dr_tag].field_len - 1;	// Subtract 1 for the terminator

		data_index = data_index + dr.user[dr_tag].field_len;
		dr_buf[data_index - 1] = '\0';

		dr_label++;
		if (dr_label >= ddr.user[ddr_index].num_labels)  {
			dr_label = 0;
			dr_tag++;
		}
	}
	else if (ddr.user[ddr_index].field_cntrl[0] == '1')  {
		/*
		 * We have a vector of subfields, which may be of various types, each with its own label.
		 *
		 * The complications here arise when labels and/or formats
		 * are not present.
		 */
		subfield->tag = dr.user[dr_tag].tag;
		subfield->label = ddr.user[ddr_index].labels[dr_label];
		subfield->value = dr_buf + data_index;
		subfield->format = ddr.user[ddr_index].formats[dr_label];

		field_limit = dr.record_leader.fa_addr + dr.user[dr_tag].field_pos + dr.user[dr_tag].field_len;

		if (ddr.user[ddr_index].sizes[dr_label] > 0)  {
			/*
			 * A size was provided in the format string.  Use it.
			 * There shouldn't be any UNIT_TERMINATORS between subfields.
			 */
			subfield->length = ddr.user[ddr_index].sizes[dr_label];
			data_index = data_index + subfield->length;
			if (data_index == (field_limit - 1))  {
				/* If at end of field, step over FIELD_TERMINATOR */
				data_index++;
			}
		}
		else  {
			/*
			 * No size was provided in the format string.  (Or there was no format string.)
			 * Must find the end of the subfield via the terminator.
			 */
			for (i = data_index; i < field_limit; i++)  {
				if ((dr_buf[i] == UNIT_TERMINATOR) || (dr_buf[i] == FIELD_TERMINATOR))  {
					break;
				}
			}
			if (i == field_limit)  {
				fprintf(stderr, "Ran out of data in DR.\n");
				exit(0);
			}
			subfield->length = i - data_index;

			data_index = i + 1;
			dr_buf[data_index - 1] = '\0';
		}

		if ((ddr.user[ddr_index].num_labels > 0) || (ddr.user[ddr_index].num_formats > 0))  {
			dr_label++;
			if (dr_label >= ddr.user[ddr_index].num_labels)  {
				dr_label = 0;
				/*
				 * I added the following "if" statement, around the "dr_tag++;"
				 * statement, because some files don't define a sequence of
				 * X,Y pairs as cartesian arrays (which are handled below), but
				 * instead define such pairs as a non-cartesian pair of labels that
				 * gets re-used until the field_limit is reached.  I am somewhat
				 * doubtful that this type of construct is standards-conforming, but
				 * the construct is present in some USGS DEM files, so we attempt to
				 * handle it whether it is conforming or not.
				 */
				if (data_index == field_limit)  {
					dr_tag++;
				}
			}
		}
		else if (data_index == field_limit)  {
			dr_label = 0;
			dr_tag++;
		}
	}
	else if (ddr.user[ddr_index].field_cntrl[0] == '2')  {
		/*
		 * We have an array of subfields.
		 *
		 * Here is how I understand arrays, based on the sketchy data
		 * at hand.  (This understanding may be wrong.)
		 * The label field, in its most general form (which is called a
		 * cartesian label), looks like:
		 *
		 *  A!B!C*D!E
		 *
		 * where the number of labels before and after the '*' may
		 * differ from the example shown here.
		 * In front of the cartesian delimiter (the '*') are the
		 * row labels, and following it are the column labels.
		 * The data, in the Field Area will fill the A row
		 * with D and E values, then the B row with D and E
		 * values, then the C row with D and E values.
		 * (Actually, the situation is a bit more complicated, since
		 * the array concept is not limited to two dimensions; but
		 * let's ignore that complication for this simple routine.)
		 *
		 * This most general form is fairly straightforward to
		 * handle.  (We would probably need to figure out some way to
		 * return two or more subfield names at a time, but that isn't
		 * a big deal.  A single subfield string, of the form
		 * "(ROW_LABEL,COLUMN_LABEL)" would do the job.)
		 *
		 * The complications of this structure type arise when either
		 * the row or column labels are missing.
		 *
		 * In order to keep things simple, we are only going to
		 * support a single case, which is the only case I have
		 * found so far in the USGS files.  This is the case
		 * that looks like:
		 *
		 *   *ELEVATIONS
		 *
		 * or
		 *
		 *   *X!Y
		 *
		 * Technically, we should probably return a subfield label
		 * like "(,ELEVATIONS)", "(,X)", or "(,Y)", but we will keep
		 * it simple and just return "ELEVATIONS", "X", or "Y" for now.
		 *
		 * In the DDR parsing routine, we have stored away the locations where
		 * the '*' delimiter appears.  We don't use this information now, but
		 * it is available if we eventually need to handle some other cases.
		 */
		max_labels_formats = ddr.user[ddr_index].num_labels > ddr.user[ddr_index].num_formats ?
					ddr.user[ddr_index].num_labels : ddr.user[ddr_index].num_formats;

		subfield->tag = dr.user[dr_tag].tag;
		subfield->label = ddr.user[ddr_index].labels[dr_label];
		subfield->value = dr_buf + data_index;
		subfield->format = ddr.user[ddr_index].formats[dr_label];

		field_limit = dr.record_leader.fa_addr + dr.user[dr_tag].field_pos + dr.user[dr_tag].field_len;

		if (ddr.user[ddr_index].sizes[dr_label] > 0)  {
			/*
			 * A size was provided in the format string.  Use it.
			 * There shouldn't be any UNIT_TERMINATORS between subfields.
			 */
			subfield->length = ddr.user[ddr_index].sizes[dr_label];
			data_index = data_index + subfield->length;
			if (data_index == (field_limit - 1))  {
				/* If at end of field, step over FIELD_TERMINATOR */
				data_index++;
			}
		}
		else  {
			/*
			 * No size was provided in the format string.  (Or there was no format string.)
			 * Must find the end of the subfield via the terminator.
			 */
			for (i = data_index; i < field_limit; i++)  {
				if ((dr_buf[i] == UNIT_TERMINATOR) || (dr_buf[i] == FIELD_TERMINATOR))  {
					break;
				}
			}
			if (i == field_limit)  {
				fprintf(stderr, "Ran out of data in DR.\n");
				exit(0);
			}
			subfield->length = i - data_index;

			data_index = i + 1;
			dr_buf[data_index - 1] = '\0';
		}

		/*
		 * It is this little chunk of decision-making code that
		 * has been simplified to handle only the single
		 * case we discussed above.
		 */
		if (data_index >= (field_limit - 1))  {
			dr_label = 0;
			dr_tag++;
		}
		else  {
			dr_label++;
			if (dr_label >= max_labels_formats)  {
				dr_label = 0;
			}
		}
	}
	else  {
		fprintf(stderr, "Field structure type %c is unknown.\n", ddr.user[ddr_index].field_cntrl[0]);
		exit(0);
	}

	return 1;

}




/*
 * Open a DDF file for processing.
 */
int
begin_ddf(char *file_name)
{
	long length;

	leaderless_flag = 0;
	dr_tag = MAX_TAGS;
	dr_label = MAX_SUBFIELDS;

	length = strlen(file_name);

	if ((length > 3) && ((strcmp(file_name + length - 3, ".gz") == 0) ||
	    (strcmp(file_name + length - 3, ".GZ") == 0)))  {
		gz_flag = 1;
		read_function = buf_read_z;
		if ((fdesc = buf_open_z(file_name, O_RDONLY)) < 0)  {
			return(fdesc);
		}
	}
	else  {
		gz_flag = 0;
		read_function = buf_read;
		if ((fdesc = buf_open(file_name, O_RDONLY)) < 0)  {
			return(fdesc);
		}
	}

	/*
	 * Read and parse the DDR.
	 */
	parse_ddr();

	return fdesc;
}




/*
 * Close an open DDF file.
 */
void
end_ddf()
{
	if (gz_flag == 0)  {
		buf_close(fdesc);
	}
	else  {
		buf_close_z(fdesc);
	}

	if (ddr_buf != (char *)0)  {
		free(ddr_buf);
	}
	if (dr_buf != (char *)0)  {
		free(dr_buf);
	}
}





/*
 * This is a simple program to exercise the above code.
 * Given a DDF file, the program
 * simply prints out every bit of data in the file.
 *
 * The first argument is the file name to open and parse.
 * If there is a second argument (and we don't care what it looks
 * like) the output will be in a compact form.
 *
 * To compile this program, do:
 *
 * cc -g -o sdts_test sdts_utils.c big_buf_io.c big_buf_io_z.c gunzip.c utilities.c -lm
 */
//main(int argc, char *argv[])
//{
//	struct subfield subfield;
//	long compact_flag;
//	long byte_order;
//	long i;
//	short j;
//	long length;
//
//
//	if ((argc != 2) && (argc != 3))  {
//		fprintf(stderr, "Usage:  %s file_name.ddf [compact_flag]\n", argv[0]);
//		exit(0);
//	}
//	if (argc == 3)  {
//		compact_flag = 1;
//	}
//	else  {
//		compact_flag = 0;
//	}
//
//	/* find the native byte-order on this machine. */
//	byte_order = swab_type();
//
//
//	/* Open the DDF file. */
//	if (begin_ddf(argv[1]) < 0)  {
//		fprintf(stderr, "Couldn't open input file.\n");
//		exit(0);
//	}
//
//	/* print out the DDR for examination */
////	print_ddr();
//
//	/*
//	 * Read and parse a DR.
//	 */
//	while (get_subfield(&subfield) > 0)  {
//		if (compact_flag == 0)  {
//			fprintf(stdout, "subfield.tag = %s\n", subfield.tag);
//			fprintf(stdout, "subfield.label = %s\n", subfield.label);
//			fprintf(stdout, "subfield.format = %s\n", subfield.format);
//			fprintf(stdout, "subfield.length = %d\n", subfield.length);
//			if (strstr(subfield.format, "B") != (char *)0)  {
//				if (subfield.length == 4)  {
//					/* Special handling for 4-byte binary values. */
//					fprintf(stdout, "subfield.value = unswabbed bin: 0x%2.2x%2.2x%2.2x%2.2x\t",
//						0x000000ff & (long)subfield.value[0],
//						0x000000ff & (long)subfield.value[1],
//						0x000000ff & (long)subfield.value[2],
//						0x000000ff & (long)subfield.value[3]);
//					i = (((long)subfield.value[3] & 0xff) << 24) |
//					    (((long)subfield.value[2] & 0xff) << 16) |
//					    (((long)subfield.value[1] & 0xff) <<  8) |
//					     ((long)subfield.value[0] & 0xff);
//					if (byte_order == 1)  {
//						LE_SWAB(&i);
//					}
//					else if (byte_order == 2)  {
//						PDP_SWAB(&i);
//					}
//					fprintf(stdout, "swabbed dec: %10lu (unsigned)\t", i);
//					fprintf(stdout, "%11ld (signed)\n\n", i);
//				}
//				else  {
//					/* Special handling for 2-byte binary values. */
//					fprintf(stdout, "subfield.value = unswabbed bin: 0x%2.2x%2.2x\t",
//						0x000000ff & (long)subfield.value[0],
//						0x000000ff & (long)subfield.value[1]);
//					if (byte_order == 0)  {
//						j = (((long)subfield.value[1] << 8) & 0x0000ff00) + ((long)subfield.value[0] & 0x000000ff);
//					}
//					else  {
//						j = (((long)subfield.value[0] << 8) & 0x0000ff00) + ((long)subfield.value[1] & 0x000000ff);
//					}
//					fprintf(stdout, "swabbed dec: %5hu (unsigned)\t", j);
//					fprintf(stdout, "%6hd (signed)\n\n", j);
//				}
//			}
//			else  {
//				/* Non-binary subfields can just be printed as ASCII strings. */
//				fprintf(stdout, "subfield.value = \"%.*s\"\n\n", subfield.length, subfield.value);
//			}
//		}
//		else  {
//			/*
//			 * If we are at the beginning of a record, print out an extra newline.
//			 */
//			length = strlen(subfield.tag);
//			for (i = 0; i < (length - 1); i++)  {
//				if (subfield.tag[i] != '0')  {
//					break;
//				}
//			}
//			if ((i == (length - 1)) && (subfield.tag[length - 1] >= '0') && (subfield.tag[length - 1] <= '9'))  {
//				fprintf(stdout, "\n");
//			}
//
//			fprintf(stdout, "%s\t", subfield.tag);
//			fprintf(stdout, "%s\t", subfield.label);
//			fprintf(stdout, "%s\t", subfield.format);
//			fprintf(stdout, "%d\t", subfield.length);
//			if (strstr(subfield.format, "B") != (char *)0)  {
//				if (subfield.length == 4)  {
//					/* Special handling for 4-byte binary values. */
//					fprintf(stdout, "unswabbed bin: 0x%2.2x%2.2x%2.2x%2.2x\t",
//						0x000000ff & (long)subfield.value[0],
//						0x000000ff & (long)subfield.value[1],
//						0x000000ff & (long)subfield.value[2],
//						0x000000ff & (long)subfield.value[3]);
//					i = (((long)subfield.value[3] & 0xff) << 24) |
//					    (((long)subfield.value[2] & 0xff) << 16) |
//					    (((long)subfield.value[1] & 0xff) <<  8) |
//					     ((long)subfield.value[0] & 0xff);
//					if (byte_order == 1)  {
//						LE_SWAB(&i);
//					}
//					else if (byte_order == 2)  {
//						PDP_SWAB(&i);
//					}
//					fprintf(stdout, "swabbed dec: %10lu (unsigned)\t", i);
//					fprintf(stdout, "%11ld (signed)\n", i);
//				}
//				else  {
//					/* Special handling for 2-byte binary values. */
//					fprintf(stdout, "unswabbed bin: 0x%2.2x%2.2x\t",
//						0x000000ff & (long)subfield.value[0],
//						0x000000ff & (long)subfield.value[1]);
//					if (byte_order == 0)  {
//						j = (((long)subfield.value[1] << 8) & 0x0000ff00) + ((long)subfield.value[0] & 0x000000ff);
//					}
//					else  {
//						j = (((long)subfield.value[0] << 8) & 0x0000ff00) + ((long)subfield.value[1] & 0x000000ff);
//					}
//					fprintf(stdout, "swabbed dec: %5hu (unsigned)\t", j);
//					fprintf(stdout, "%6hd (signed)\n", j);
//				}
//			}
//			else  {
//				/* Non-binary subfields can just be printed as ASCII strings. */
//				fprintf(stdout, "\"%.*s\"\n", subfield.length, subfield.value);
//			}
//		}
//	}
//
//	end_ddf();
//
//	exit(0);
//}