1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
|
/*
* =========================================================================
* utilities - A library of utility functions used by the drawmap program.
* Copyright (c) 1997 Fred M. Erickson
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
* =========================================================================
*/
#include <math.h>
#include <sys/types.h>
#include "drawmap.h"
/*
* Convert latitudes in degree/min/sec format into decimal degrees.
*
* We assume that there is no decimal point, or other punctuation,
* and that the numeric latitude is in the DDMMSS format,
* and that the latitude is immediately followed by 'N' or 'S'.
*/
double lat_conv(unsigned char *ptr)
{
double lat;
double min;
double sec;
lat = *ptr - '0';
lat = lat * 10.0 + *(ptr + 1) - '0';
min = *(ptr + 2) - '0';
min = min * 10.0 + *(ptr + 3) - '0';
sec = *(ptr + 4) - '0';
sec = sec * 10.0 + *(ptr + 5) - '0';
lat = lat + min / 60.0 + sec / 3600.0;
if (*(ptr + 6) == 'S') {
lat = -lat;
}
return(lat);
}
/*
* Convert longitudes in degree/min/sec format into decimal degrees.
*
* We assume that there is no decimal point, or other punctuation,
* and that the numeric longitude is in the DDDMMSS format,
* and that the longitude is immediately followed by 'W' or 'E'.
*/
double lon_conv(unsigned char *ptr)
{
double lon;
double min;
double sec;
lon = *ptr - '0';
lon = lon * 10.0 + *(ptr + 1) - '0';
lon = lon * 10.0 + *(ptr + 2) - '0';
min = *(ptr + 3) - '0';
min = min * 10.0 + *(ptr + 4) - '0';
sec = *(ptr + 5) - '0';
sec = sec * 10.0 + *(ptr + 6) - '0';
lon = lon + min / 60.0 + sec / 3600.0;
if (*(ptr + 7) == 'W') {
lon = -lon;
}
return(lon);
}
/* Round double values to long integers. */
long
round(double f)
{
long i;
double ff;
i = (long)f;
ff = (double)i;
if (f < 0.0) {
if ((ff - f) >= 0.5) {
return(i - 1);
}
}
else {
if ((f - ff) >= 0.5) {
return(i + 1);
}
}
return(i);
}
/* Find the maximum of two long integers. */
long
max(long a, long b)
{
if (a > b) {
return(a);
}
else {
return(b);
}
}
/* Find the minimum of three doubles */
double
min3(double a, double b, double c)
{
if (a < b) {
if (a < c) {
return(a);
}
else {
return(c);
}
}
else {
if (b < c) {
return(b);
}
else {
return(c);
}
}
}
/* Find the maximum of three doubles */
double
max3(double a, double b, double c)
{
if (a > b) {
if (a > c) {
return(a);
}
else {
return(c);
}
}
else {
if (b > c) {
return(b);
}
else {
return(c);
}
}
}
/*
* Convert decimal degrees into degrees, minutes, seconds.
*/
void
decimal_degrees_to_dms(double decimal, long *d, long *m, double *s)
{
long sign;
if (decimal < 0.0) {
sign = -1;
decimal = -decimal;
}
else {
sign = 1;
}
*d = (long)decimal;
*m = (long)((decimal - (double)*d) * 60.0);
*s = (decimal - (double)*d - (double)*m / 60.) * 3600.00;
*d = sign * *d;
}
struct utm_zones {
long zone;
double central_meridian;
double low_boundary;
double high_boundary;
} utm_zones[61] = {
0, 0.0, 0.0, 0.0, // Dummy entry so that the zone indices are correct
1, -177.0, -180.0, -174.0,
2, -171.0, -174.0, -168.0,
3, -165.0, -168.0, -162.0,
4, -159.0, -162.0, -156.0,
5, -153.0, -156.0, -150.0,
6, -147.0, -150.0, -144.0,
7, -141.0, -144.0, -138.0,
8, -135.0, -138.0, -132.0,
9, -129.0, -132.0, -126.0,
10, -123.0, -126.0, -120.0,
11, -117.0, -120.0, -114.0,
12, -111.0, -114.0, -108.0,
13, -105.0, -108.0, -102.0,
14, - 99.0, -102.0, - 96.0,
15, - 93.0, -096.0, - 90.0,
16, - 87.0, -090.0, - 84.0,
17, - 81.0, -084.0, - 78.0,
18, - 75.0, -078.0, - 72.0,
19, - 69.0, -072.0, - 66.0,
20, - 63.0, -066.0, - 60.0,
21, - 57.0, -060.0, - 54.0,
22, - 51.0, -054.0, - 48.0,
23, - 45.0, -048.0, - 42.0,
24, - 39.0, -042.0, - 36.0,
25, - 33.0, -036.0, - 30.0,
26, - 27.0, -030.0, - 24.0,
27, - 21.0, -024.0, - 18.0,
28, - 15.0, -018.0, - 12.0,
29, - 9.0, -012.0, - 6.0,
30, - 3.0, -006.0, 0.0,
31, 3.0, 000.0, 6.0,
32, 9.0, 006.0, 12.0,
33, 15.0, 012.0, 18.0,
34, 21.0, 018.0, 24.0,
35, 27.0, 024.0, 30.0,
36, 33.0, 030.0, 36.0,
37, 39.0, 036.0, 42.0,
38, 45.0, 042.0, 48.0,
39, 51.0, 048.0, 54.0,
40, 57.0, 054.0, 60.0,
41, 63.0, 060.0, 66.0,
42, 69.0, 066.0, 72.0,
43, 75.0, 072.0, 78.0,
44, 81.0, 078.0, 84.0,
45, 87.0, 084.0, 90.0,
46, 93.0, 090.0, 96.0,
47, 99.0, 096.0, 102.0,
48, 105.0, 102.0, 108.0,
49, 111.0, 108.0, 114.0,
50, 117.0, 114.0, 120.0,
51, 123.0, 120.0, 126.0,
52, 129.0, 126.0, 132.0,
53, 135.0, 132.0, 138.0,
54, 141.0, 138.0, 144.0,
55, 147.0, 144.0, 150.0,
56, 153.0, 150.0, 156.0,
57, 159.0, 156.0, 162.0,
58, 165.0, 162.0, 168.0,
59, 171.0, 168.0, 174.0,
60, 177.0, 174.0, 180.0,
};
/*
* The following two functions use Redfearn's formulas to calculate the
* forward and inverse projections between UTM coordinates and geographic
* (latitude/longitude) coordinates.
*
* Given some parameters for the selected ellipsoid, Redfearn's formulas
* allow one to translate back and forth between UTM
* coordinates and latitude/longitude coordinates.
* Before we examine Redfearn's formulas, here are some preliminary notes.
*
* These formulas were apparently originally published in 1948:
*
* Redfearn, J.C.B., "Transverse Mercator Formulae", Empire Survey Review, 69, 1948, 318-322.
*
* I was unable to find a copy of this reference for verification, but did
* find several other documents that described the formulas. From them, I
* pieced together the formulas here.
*
* A good reference for projection calculations of all kinds is supposed to be:
* Snyder, John P., Map Projections -- A Working Manual:
* U.S. Geological Survey Professional Paper 1395,
* United States Government Printing Office, Washington D.C., 1987.
* Although I haven't personnally had a chance to read it, it is frequently
* recommended on the Internet.
*
* A software package for doing projections is the PROJ package. It is
* available on the Internet. I chose not to use it because my needs are
* limited, and it was easier to just write the software I need than integrate
* PROJ. It is, however, a fine package, as far as I can tell.
*
* As far as I know, most or all of the currently-available 7.5min USGS data assumes
* the Clarke 1866 ellipsoid with the North American Datum of 1927 (nad-27).
* According to the DEM standards document, they are nad-27 if they have the
* old-format Type A record. The new Type A record contains a field to specify the datum.
* I gather that the data will ultimately be re-referenced to the new GRS80
* ellipsoid and nad-83.
*
* The 1-degree DEMs may or may not be in the new WGS 84 datum. The standards document
* says that recomputed data have been made available to the USGS, but doesn't say
* if these new data are what is available for download. We probably don't care,
* for the time being, because the 1-degree data come in latitude/longitude format,
* and we don't convert them to any other form.
*
* Parameters for various ellipsoids are given in drawmap.h.
*
* Now, on to Redfearn's formulas.
*
* Note: In the equations that follow, y is the true northing, utm_y is the northing with
* the false northing (10,000,000m) added in, x is the true easting, utm_y is the
* easting with the false easting (500,000m) added in.
*
* They begin with the calculation of the length of arc of a meridian (a great
* circle passing through the poles). The formula (in Macsyma format) is:
*
* m = a * (1 - e^2) * int(1 - (e^2 sin^2(lat))^(-3/2), lat, lat1, lat2)
*
* (where the caret sign, '^', represents exponentiation and 'int' represents
* a definite integral of the given expression over the variable lat, from lat1 to lat2).
*
* We are interested in the case where lat1 = 0 (and the integral starts at the equator).
*
* This integral is normally calculated via a series expansion:
*
* m = a * (A0 * lat - A2 * sin(2*lat) + A4 * sin(4*lat) - A6 * sin(6*lat))
*
* A0 = 1 - (e^2 / 4) - (3 * e^4 / 64) - (5 * e^6 / 256)
* A2 = (3/8) * (e^2 + e^4 / 4 + 15 e^6 / 128)
* A4 = (15 / 256) * (e^4 + 3 * e^6 / 4)
* A6 = 35 * e^6 / 3072
*
* With the value of m in hand, we move on to calculate the foot-point latitude, lat', which is
* the latitude for which m = y / k0
* where y is the true northing (which is just the northing in the northern climes, but is the
* nominal northing - 10,000,000 in the southern hemisphere) and k0 is the centeral-meridian
* scale factor.
*
* The foot-point latitude is found as follows:
*
* n = (a - b) / (a + b) = f / (2 - f)
* G = a * (1 - n) * (1 - n^2) * (1 + (9/4) * n^2 + (225/64) * n^4) * (pi / 180)
* sigma = (m * pi) / (180 * G)
* lat' = sigma + ((3*n/2) - (27*n^3/32)) * sin(2*sigma) + ((21*n^2/16) - (55*n^4/32)) * sin(4*sigma) + (151*n^3/96) * sin(6*sigma) + (1097*n^4/512) * sin(8*sigma) in units of radians
*
* For the inverse projection, where the latitude is to-be-determined, there may
* be some snazzy way to find lat', but I chose to do it iteratively using
* Newton's nethod. In my limited testing, this approach appears to converge
* quite rapidly, in about 2 or 3 iterations. (I have not, however, tested the convergence
* rate rigorously.)
*
* Next, we need the radii of curvature, found from the formulas.
*
* rho = a * (1 - e^2) / (1 - e^2 * sin^2(lat))^(3/2)
* nu = a / (1 - e^2 * sin^2(lat))^(1/2)
* phi = nu / rho
*
* These are general formulas. When we evaluate them specifically for the foot-point
* latitude, then we prime each of them:
*
* rho' = a * (1 - e^2) / (1 - e^2 * sin^2(lat'))^(3/2)
* nu' = a / (1 - e^2 * sin^2(lat'))^(1/2)
* phi' = nu' / rho'
*
*
* This completes the preliminary calculations. Now, on to the actual conversions.
*
*
* lat/long to UTM, performed by function redfearn():
* t = tan(lat)
* omega = longitude * pi / 180 - central_meridian
*
* utm_x:
* x = k0 * nu * omega * cos(lat) * (1 +
* (omega^2 / 6) * cos^2(lat) * (phi - t^2) +
* (omega^4 / 120) * cos^4(lat) * (4 * phi^3 * (1 - 6 * t^2) + phi^2 * (1 + 8*t^2) - 2*phi*t^2 + t^4) +
* (omega^6 / 5040) * cos^6(lat) * (61 - 479*t^2 + 179*t^4 - t^6))
* utm_x = x + 500,000
*
* utm_y:
* y = k0 * (m + (omega^2 / 2) * nu * sin(lat) * cos(lat) +
* (omega^4 / 24) * nu * sin(lat) * cos^3(lat) * (4 * phi^2 + phi - t^2) +
* (omega^6 / 720) * nu * sin(lat) * cos^5(lat) * (8 * phi^4 * (11 - 24*t^2) -
* 28 * phi^3 * (1 - 6*t^2) + phi^2 * (1 - 32*t^2) - 2*phi*t^2 + t^4) +
* (omega^8 / 40320) * nu * sin(lat) * cos^7(lat) * (1385 - 3111*t^2 + 543*t^4 - t^6))
* utm_y = y + 10,000,000
*
* grid convergence:
* gamma = -omega * sin(lat) -
* (omega^3 / 3) * sin(lat) * cos^2(lat) * (2*phi^2 - phi) -
* (omega^5 / 15) * sin(lat) * cos^4(lat) * (phi^4 * (11 - 24*t^2) - phi^3 * (11 - 36*t^2) +
* 2*phi^2 * (1 - 7*t^2) + phi*t^2) -
* (omega^7 / 315) * sin(lat) * cos^6(lat) * (17 - 26*t^2 + 2*t^4)
*
* point scale factor:
* k = k0 * (1 + (omega^2 / 2) * phi * cos^2(lat) +
* (omega^4 / 24) * cos^4(lat) * (4*phi^3 * (1 - 6*t^2) + phi^2 * (1 + 24*t^2) - 4*phi*t^2) +
* (omega^6 / 720) * cos^6(lat) * (61 - 148*t^2 + 16*t^4))
*
*
* UTM to lat/long, performed by function redfearn_inverse():
* Note that the ugly construct, phi'^3, represents phi' taken to the third power. It's
* ugly, but adding enough parentheses to clarify it would arguably be uglier still.
*
* x = utm_x - 500,000
* d = x / (k0 * nu')
* t' = tan(lat')
*
* latitude:
* lat = lat' - (nu' * t' / rho') * (d^2 / 2) +
* (nu' * t' / rho') * (d^4 / 24) * (-4*phi'^2 + 9*phi' * (1 - t'^2) + 12*t'^2) -
* (nu' * t' / rho') * (d^6 / 720) * (8*phi'^4 * (11 - 24*t'^2) - 12*phi'^3 * (21 - 71*t'^2) +
* 15*phi'^2 * (15 - 98*t'^2 + 15*t'^4) + 180*phi' * (5*t'^2 - 3*t'^4) + 360*t'^4) +
* (nu' * t' / rho') * (d^8 / 40320) * (1385 + 3633*t'^2 + 4095*t'^4 + 1575*t'^6)
*
* longitude:
* omega = d * sec(lat') -
* (d^3 / 6) * sec(lat') * (phi' + 2*t'^2) +
* (d^5 / 120) * sec(lat') * (-4*phi'^3 * (1 - 6*t'^2) + phi'^2 * (9 - 68*t'^2) + 72*phi'*t'^2 + 24*t'^4) -
* (d^7 / 5040) * sec(lat') * (61 + 662*t'^2 + 1320*t'^4 + 720*t'^6)
*
* long = central_meridian + omega * 180 / pi
*
* grid convergence:
* gamma = -t' * d +
* (t' * d^3 / 3) * (-2*phi'^2 + 3*phi' + t'^2) -
* (t' * d^5 / 15) * (phi'^4 * (11 - 24*t'^2) - 3*phi'^3 * (8 - 23*t'^2) +
* 5*phi'^2 * (3 - 14*t'^2) + 30*phi'*t'^2 + 3*t'^4) +
* (t' * d^7 / 315) * (17 + 77*t'^2 + 105*t'^4 + 45*t'^6)
*
* point scale factor:
* dd = x^2 / (k0^2 * rho' * nu')
* k = k0 * (1 + dd/2 + (dd^2 / 24) * (4*phi' * (1 - 6*t'^2) - 3 * (1 - 16*t'^2) - 24*t'^2 / phi') + dd^3 / 720)
*
* Now, on to the actual code.
*
* Note: redfearn_inverse() returns 0 if the conversion appears to be successful, nonzero otherwise.
*
* Note further: This function has not been tuned for efficiency.
*/
long
redfearn_inverse(struct datum *datum, double utm_x, double utm_y, long zone, double *latitude, double *longitude)
{
double x, y; // UTM coordinates with false easting and northing removed and scale factor applied.
double lat_pm; // foot-point latitude
double d;
double t_pm;
double m, m_pm;
double nu_pm;
double rho_pm;
double phi_pm;
double slat, slat_2, clat, d_2, d_3, d_4, d_5, d_6, d_7, d_8;
double t_pm_2, t_pm_4, t_pm_6, phi_pm_2, phi_pm_3, phi_pm_4;
long i;
x = (utm_x - 500000.0) / datum->k0;
if ((zone > 60) || (zone == 0) || (zone < -60)) {
return -1;
}
if (zone < 0) {
/* southern hemisphere */
zone = -zone;
y = (utm_y - 10000000.0) / datum->k0;
lat_pm = -M_PI / 4.0;
}
else {
y = utm_y / datum->k0;
lat_pm = M_PI / 4.0;
}
/*
* Find lat_pm, via iterative Newton's method.
* The goal is to find lat_pm, such that m == y, or equivalently
* to find a root of m-y.
*/
for (i = 0; i < 100; i++) {
m = datum->a * (datum->a0 * lat_pm - datum->a2 * sin(2.0 * lat_pm) + datum->a4 * sin(4.0 * lat_pm) - datum->a6 * sin(6.0 * lat_pm)) - y;
m_pm = datum->a * (datum->a0 - datum->a2 * 2.0 * cos(2.0 * lat_pm) + datum->a4 * 4.0 * cos(4.0 * lat_pm) - datum->a6 * 6.0 * cos(6.0 * lat_pm));
if (fabs(m / m_pm) < 1.0e-12) {
break;
}
lat_pm -= m / m_pm;
}
slat = sin(lat_pm);
slat_2 = slat * slat;
clat = sqrt(1.0 - slat_2);
t_pm = slat / clat;
nu_pm = datum->a / sqrt(1.0 - datum->e_2 * slat_2);
rho_pm = datum->a * (1.0 - datum->e_2) / pow(1.0 - datum->e_2 * slat_2, 1.5);
phi_pm = nu_pm / rho_pm;
d = x / nu_pm;
d_2 = d * d;
d_3 = d_2 * d;
d_4 = d_3 * d;
d_5 = d_4 * d;
d_6 = d_5 * d;
d_7 = d_6 * d;
d_8 = d_7 * d;
t_pm_2 = t_pm * t_pm;
t_pm_4 = t_pm_2 * t_pm_2;
t_pm_6 = t_pm_2 * t_pm_4;
phi_pm_2 = phi_pm * phi_pm;
phi_pm_3 = phi_pm_2 * phi_pm;
phi_pm_4 = phi_pm_3 * phi_pm;
*latitude = lat_pm - (nu_pm * t_pm / rho_pm) * ((d_2 / 2.0) -
(d_4 / 24.0) * (-4.0 * phi_pm_2 + 9.0 * phi_pm * (1.0 - t_pm_2) + 12.0 * t_pm_2) +
(d_6 / 720.0) * (8.0 * phi_pm_4 * (11.0 - 24.0 * t_pm_2) - 12.0 * phi_pm_3 *
(21.0 - 71.0 * t_pm_2) + 15.0 * phi_pm_2 * (15.0 - 98.0 * t_pm_2 + 15.0 * t_pm_4) +
180.0 * phi_pm * (5.0 * t_pm_2 - 3.0 * t_pm_4) + 360.0 * t_pm_4) -
(d_8 / 40320.0) * (1385.0 + 3633.0 * t_pm_2 + 4095.0*t_pm_4 + 1575.0*t_pm_6));
*longitude = d / clat - (d_3 / 6.0) * (phi_pm + 2.0 * t_pm_2) / clat +
(d_5 / 120.0) * (-4.0 * phi_pm_3 * (1.0 - 6.0 * t_pm_2) + phi_pm_2 * (9.0 - 68.0 * t_pm_2) +
72.0 * phi_pm * t_pm_2 + 24.0 * t_pm_4) / clat -
(d_7 / 5040.0) * (61.0 + 662.0 * t_pm_2 + 1320.0 * t_pm_4 + 720.0 * t_pm_6) / clat;
*latitude = *latitude * 180.0 / M_PI;
*longitude = utm_zones[zone].central_meridian + *longitude * 180.0 / M_PI;
return 0;
}
/*
* Note: redfearn() returns 0 if the conversion appears to be successful, nonzero otherwise.
* Note further: latitudes are negative south of the equator. longitudes are negative west of the prime meridian.
* Note further: redfearn() returns a negative zone number for points in the southern hemisphere
* Note further: This function has been only partially tuned for efficiency.
*/
long
redfearn(struct datum *datum, double *utm_x, double *utm_y, long *zone, double latitude, double longitude, long east_west)
{
double x, y; // UTM coordinates with false easting and northing removed and scale factor applied.
double d;
double t;
double m;
double nu;
double rho;
double phi;
double o;
double t_2, t_4, t_6, o_2, o_3, o_4, o_5, o_6, o_7, o_8;
double slat, slat_2, clat, clat_2, clat_3, clat_4, clat_5, clat_6, clat_7;
double phi_2, phi_3, phi_4;
long i;
long south_flag = 0; // If this flag is nonzero, the point is in the southern hemisphere.
/*
* Note: Originally the following check was
*
* if ((latitude > 84.0) || (latitude < -80.0)) {
*
* because that is the valid range for UTM projections.
* However, in order to allow projections to be done for the
* GTOPO30 data, I changed the range to the full -90 to 90 span.
*/
if ((latitude > 90.0) || (latitude < -90.0)) {
return -1;
}
if ((longitude > 180.0) || (longitude < -180.0)) {
return -1;
}
/*
* Determine the zone.
*
* If the point falls on the boundary between zones,
* then use the parameter east_west to choose between zones.
* If east_west is nonzero, then choose the eastern zone.
* If east_west is 0, then choose the western zone.
* If we are on the boundary between zone 1 and zone 60, then ignore
* east_west and choose the zone based on the passed longitude.
*/
if (longitude == utm_zones[1].low_boundary) {
*zone = 1;
}
else if (longitude == utm_zones[60].high_boundary) {
*zone = 60;
}
else {
for (i = 1; i <= 60; i++) {
if (longitude == utm_zones[i].high_boundary) {
if (east_west == 0) {
*zone = i;
}
else {
*zone = i + 1;
}
break;
}
else if ((longitude > utm_zones[i].low_boundary) && (longitude < utm_zones[i].high_boundary)) {
*zone = i;
break;
}
}
}
o = (longitude - utm_zones[*zone].central_meridian) * M_PI / 180.0;
latitude *= M_PI / 180.0;
longitude *= M_PI / 180.0;
slat = sin(latitude);
slat_2 = slat * slat;
clat = sqrt(1.0 - slat_2); // cos(latitude)
t = slat / clat; // tan(latitude)
t_2 = t * t;
t_4 = t_2 * t_2;
t_6 = t_2 * t_4;
o_2 = o * o;
o_3 = o_2 * o;
o_4 = o_2 * o_2;
o_5 = o_4 * o;
o_6 = o_4 * o_2;
o_7 = o_6 * o;
o_8 = o_4 * o_4;
clat_2 = clat * clat;
clat_3 = clat_2 * clat;
clat_4 = clat_2 * clat_2;
clat_5 = clat_4 * clat;
clat_6 = clat_4 * clat_2;
clat_7 = clat_6 * clat;
m = datum->a * (datum->a0 * latitude - datum->a2 * sin(2.0 * latitude) + datum->a4 * sin(4.0 * latitude) - datum->a6 * sin(6.0 * latitude));
nu = datum->a / sqrt(1.0 - datum->e_2 * slat_2);
rho = datum->a * (1.0 - datum->e_2) / pow(1.0 - datum->e_2 * slat_2, 1.5);
phi = nu / rho;
phi_2 = phi * phi;
phi_3 = phi_2 * phi;
phi_4 = phi_2 * phi_2;
*utm_x = 500000.0 + datum->k0 * nu * clat * (o + (o_3 / 6.0) * clat_2 * (phi - t_2) +
(o_5 / 120.0) * clat_4 * (4.0 * phi_3 * (1.0 - 6.0 * t_2) +
phi_2 * (1.0 + 8.0 * t_2) - 2.0 * phi * t_2 + t_4) +
(o_7 / 5040.0) * clat_6 * (61.0 - 479.0 * t_2 + 179.0 * t_4 - t_6));
*utm_y = datum->k0 * (m + (o_2 / 2.0) * nu * slat * clat +
(o_4 / 24.0) * nu * slat * clat_3 * (4.0 * phi_2 + phi - t_2) +
(o_6 / 720.0) * nu * slat * clat_5 * (8.0 * phi_4 * (11.0 - 24.0 * t_2) -
28.0 * phi_3 * (1.0 - 6.0 * t_2) + phi_2 * (1.0 - 32.0 * t_2) - 2.0 * phi * t_2 + t_4) +
(o_8 / 40320.0) * nu * slat * clat_7 * (1385.0 - 3111.0*t_2 + 543.0*t_4 - t_6));
if (latitude < 0) {
/* In the southern hemisphere, we return a negative zone number. */
*zone = -*zone;
*utm_y += 10000000.0;
}
return 0;
}
/*
* Check the type of swabbing needed on this machine.
*/
long swab_type()
{
union swabtest {
unsigned long l;
unsigned char c[4];
} swabtest;
swabtest.l = 0xaabbccdd;
if ((swabtest.c[0] == 0xaa) && (swabtest.c[1] == 0xbb) &&
(swabtest.c[2] == 0xcc) && (swabtest.c[3] == 0xdd)) {
/* BIG_ENDIAN: Do nothing */
return 0;
}
else if ((swabtest.c[0] == 0xdd) && (swabtest.c[1] == 0xcc) &&
(swabtest.c[2] == 0xbb) && (swabtest.c[3] == 0xaa)) {
/* LITTLE_ENDIAN */
return 1;
}
else if ((swabtest.c[0] == 0xbb) && (swabtest.c[1] == 0xaa) &&
(swabtest.c[2] == 0xdd) && (swabtest.c[3] == 0xcc)) {
/* PDP_ENDIAN */
return 2;
}
else {
/* Unknown */
return -1;
}
}
|