File: gtopo30.c

package info (click to toggle)
drawmap 2.5-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 1,176 kB
  • ctags: 681
  • sloc: ansic: 13,087; makefile: 90; sh: 38
file content (911 lines) | stat: -rw-r--r-- 28,782 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
/*
 * =========================================================================
 * gtopo30.c - Routines to handle GTOPO30 data.
 * Copyright (c) 2000  Fred M. Erickson
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 * =========================================================================
 */

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <math.h>
#include <errno.h>
#include <string.h>
#include "drawmap.h"
#include "dem.h"



int parse_gtopo30_hdr(char *, struct dem_corners *, struct dem_record_type_a *, struct datum *, long *, long *, long *);




/*
 * Process a GTOPO30 file.  These files use the Geographic Planimetric
 * Reference System and have samples spaced by 30 arc-seconds.
 *
 * This function returns 0 if it allocates memory and reads in the data.
 * It returns 1 if it doesn't allocate memory.
 */
int
process_gtopo30(char *file_name, struct image_corners *image_corners,
		struct dem_corners *dem_corners, struct dem_record_type_a *dem_a, struct datum *dem_datum, long info_flag)
{
	long i, j, k, l;
	long j_size;
	unsigned char *ptr;
	unsigned char buf[8 * DEM_RECORD_LENGTH];
	ssize_t ret_val;
	int interp_size;
	long dem_size_x, dem_size_y;
	long nbytes;
	long nodata;
	double lat_low, lat_high, long_low, long_high;
	long i_low, j_low;
	long i_high, j_high;
	long min_elev, max_elev;
	long length;
	int fdesc_in;
	long gz_flag;
	ssize_t (*read_function)();
	char *unswabbed;
	short *swabbed;
	long byte_order;
	long upper_case_flag;
	char tmp_file_name[MAX_FILE_NAME];
	double lat_tmp;



	/*
	 * find the native byte order of this machine.
	 */
	byte_order = swab_type();


	/*
	 * Parse the GTOPO30 HDR file.
	 */
	if (parse_gtopo30_hdr(file_name, dem_corners, dem_a, dem_datum, &nbytes, &nodata, &gz_flag) != 0)  {
		/* If there was a failure, the error message was printed by parse_gtopo30_hdr(). */
		return 1;
	}


	/*
	 * If the DEM data don't overlap the image, then ignore them.
	 *
	 * If the user didn't specify latitude/longitude ranges for the image,
	 * then we simply use this DEM to determine those boundaries.  In this
	 * latter case, no overlap check is necessary (or possible) since the
	 * image boundaries will be determined later.
	 *
	 * The GTOPO30 data generally cover very large areas.
	 * Because of this, we don't pass back an array of the
	 * entire GTOPO30 elevation data.  Rather, we only pass
	 * back the portion that falls inside the image boundaries.
	 * If there were no image boundaries specified, then we
	 * pass back the whole gigantic thing.
	 */
	if ((info_flag == 0) && (image_corners->sw_lat < image_corners->ne_lat))  {
		/* The user has specified image boundaries.  Check for overlap. */
		if ((dem_corners->sw_lat >= image_corners->ne_lat) || ((dem_corners->nw_lat) <= image_corners->sw_lat) ||
		    (dem_corners->sw_long >= image_corners->ne_long) || ((dem_corners->se_long) <= image_corners->sw_long))  {
			return 1;
		}

		if (dem_corners->sw_lat < image_corners->sw_lat)  {
			lat_low = image_corners->sw_lat;
		}
		else  {
			lat_low = dem_corners->sw_lat;
		}
		if (dem_corners->nw_lat > image_corners->ne_lat)  {
			lat_high = image_corners->ne_lat;
		}
		else  {
			lat_high = dem_corners->nw_lat;
		}
		if (dem_corners->sw_long < image_corners->sw_long)  {
			long_low = image_corners->sw_long;
		}
		else  {
			long_low = dem_corners->sw_long;
		}
		if (dem_corners->ne_long > image_corners->ne_long)  {
			long_high = image_corners->ne_long;
		}
		else  {
			long_high = dem_corners->ne_long;
		}
	}
	else  {
		lat_low = dem_corners->sw_lat;
		lat_high = dem_corners->nw_lat;
		long_low = dem_corners->sw_long;
		long_high = dem_corners->ne_long;
	}


	/*
	 * Make a copy of the file name.  The one we were originally
	 * given is still stored in the command line arguments.
	 * It is probably a good idea not to alter those, lest we
	 * scribble something we don't want to scribble.
	 */
	strncpy(tmp_file_name, file_name, MAX_FILE_NAME - 1);
	tmp_file_name[MAX_FILE_NAME - 1] = '\0';
	if ((length = strlen(tmp_file_name)) < 5)  {
		/*
		 * Excluding the initial path, the file name should have the form
		 * *.HDR, perhaps with a ".gz" on the end.  If it isn't
		 * at least long enough to have this form, then reject it.
		 */
		fprintf(stderr, "File name %s doesn't look right.\n", tmp_file_name);
		return 1;
	}
	/* Check the case of the characters in the file name by examining a single character. */
	if (gz_flag == 0)  {
		if (tmp_file_name[length - 1] == 'r')  {
			upper_case_flag = 0;
		}
		else  {
			upper_case_flag = 1;
		}
	}
	else  {
		if (tmp_file_name[length - 4] == 'r')  {
			upper_case_flag = 0;
		}
		else  {
			upper_case_flag = 1;
		}
	}


	/*
	 * We need to modify the file name from *.HDR to *.DEM.
	 */
	if (upper_case_flag == 0)  {
		if (gz_flag != 0)  {
			strncpy(&tmp_file_name[length - 6], "dem", 3);
		}
		else  {
			strncpy(&tmp_file_name[length - 3], "dem", 3);
		}
	}
	else  {
		if (gz_flag != 0)  {
			strncpy(&tmp_file_name[length - 6], "DEM", 3);
		}
		else  {
			strncpy(&tmp_file_name[length - 3], "DEM", 3);
		}
	}

	/*
	 * Open DEM file.
	 */
	length = strlen(tmp_file_name);
	if ((strcmp(&tmp_file_name[length - 3], ".gz") == 0) || (strcmp(&tmp_file_name[length - 3], ".GZ") == 0))  {
		gz_flag = 1;
		if ((fdesc_in = buf_open_z(tmp_file_name, O_RDONLY)) < 0)  {
			fprintf(stderr, "Can't open %s for reading, errno = %d\n", tmp_file_name, errno);
			exit(0);
		}
		read_function = buf_read_z;
	}
	else  {
		gz_flag = 0;
		if ((fdesc_in = buf_open(tmp_file_name, O_RDONLY)) < 0)  {
			fprintf(stderr, "Can't open %s for reading, errno = %d\n", tmp_file_name, errno);
			exit(0);
		}
		read_function = buf_read;
	}


	/*
	 * Now we need to read in the GTOPO30 data, and build an
	 * array of elevation samples to return to the caller.
	 *
	 * First we need some space to read in the GTOPO30 DEM elevations,
	 * and a buffer to put the data after getting the byte-order correct.
	 */
	unswabbed = (char *)malloc(nbytes * dem_corners->x);
	if (unswabbed == (char *)0)  {
		fprintf(stderr, "malloc of unswabbed failed\n");
		exit(0);
	}
	swabbed = (short *)malloc(nbytes * dem_corners->x);
	if (swabbed == (short *)0)  {
		fprintf(stderr, "malloc of swabbed failed\n");
		exit(0);
	}

	/*
	 * Now we read in a row of data, get it into the correct byte order,
	 * and stuff it into the array.
	 *
	 * i_low and i_high give us the lowest and (highest+1) "i" values in
	 * the GTOPO30 source array that get copied into our output block.
	 * Ditto for j_low and j_high.
	 *
	 * In the dem_corners->ptr array, the first index runs from the highest
	 * latitude for index=0 to the lowest latitude for index=?.  The second
	 * index runs from the lowest longitude for index=0 to the highest
	 * longitude for index=?.  Remember that both longitudes and latitudes
	 * are signed, so that 111W is less than 110W, and 45S is less than 44S.
	 *
	 * We fill the array with an extra sample in each direction, just like
	 * the 1-degree DEMs, which have 1201 by 1201 samples.
	 *
	 * Note that the first sample, in the northwest corner, is offset inside
	 * the latitude/longitude boundaries by half of one sample width.  This
	 * is because they produced the data by combining a bunch of surrounding
	 * samples and then put the data point smack dab in the middle of the sample
	 * cell.  We ignore this, and just move each sample to the northwest corner
	 * of the sample cell.  (Actually, this movement was done for us during our
	 * call to parse_gtopo30_hdr().)  We could do some kind of fancy interpolation
	 * to get a more "correct" value for the corner of the sample cell; or we
	 * could change the latitude/longitude corners of the data to correspond
	 * exactly to the locations of the samples.  However, neither of these
	 * things seems worthwhile for the relatively low resolution GTOPO30
	 * data.
	 */
	i_low = round((double)dem_corners->y * (dem_corners->nw_lat - lat_high) / (dem_corners->nw_lat - dem_corners->se_lat));
	i_high = round((double)dem_corners->y * (dem_corners->nw_lat - lat_low) / (dem_corners->nw_lat - dem_corners->se_lat));
	j_low = round((double)dem_corners->x * (long_low - dem_corners->nw_long) / (dem_corners->se_long - dem_corners->nw_long));
	j_high = round((double)dem_corners->x * (long_high - dem_corners->nw_long) / (dem_corners->se_long - dem_corners->nw_long));

	/*
	 * malloc the space for the data array we will pass back.
	 */
	j_size = j_high - j_low + 1;
	dem_corners->ptr = (short *)malloc(nbytes * (i_high - i_low + 1) * j_size);
	if (dem_corners->ptr == (short *)0)  {
		fprintf(stderr, "malloc of dem_corners->ptr failed\n");
		exit(0);
	}

	for (i = 0; i < dem_corners->y; i++) {
		/*
		 * Read in the data, and convert it into an array of properly-byte-ordered
		 * short integers.
		 */
		if ((ret_val = read_function(fdesc_in, unswabbed, nbytes * dem_corners->x)) != (nbytes * dem_corners->x))  {
			fprintf(stderr, "Read failure on DEM file.  ret_val = %d\n", ret_val);
			exit(0);
		}
		if (i < i_low)  {
			continue;
		}
		for (j = 0; j < dem_corners->x; j++)  {
			if (nbytes == 1)  {
				swabbed[j] = 0x00ff & (short)unswabbed[j];
			}
			else  {
				swabbed[j] = 0x00ff & (short)unswabbed[j];
				if (byte_order == 0)  {
					swabbed[j] = (((short)unswabbed[(j << 1) + 1] << 8) & 0xff00) + ((short)unswabbed[j << 1] & 0x00ff);
				}
				else  {
					swabbed[j] = (((short)unswabbed[j << 1] << 8) & 0xff00) + ((short)unswabbed[(j << 1) + 1] & 0x00ff);
				}
				/*
				 * Sub-sea-level areas may be filled with a flag number instead of
				 * elevations.  If so, then set the elevation to zero.
				 */
				if (swabbed[j] == nodata)  {
					swabbed[j] = 0;
				}
			}
		}

		/*
		 * transfer the data into the dem_corners->ptr array.
		 */
		if (i <= (i_high - 1))  {
			for (j = j_low; j < j_high; j++)  {

// Debugging code
//if (((i - i_low) < 0) || ((i - i_low) > (i_high - i_low - 1)))  {
//fprintf(stderr, "i index out: %d       i=%d  j=%d i_low=%d i_high=%d j_low=%d j_high=%d k=%d l=%d\n", i - i_low, i, j, i_low, i_high, j_low, j_high, k, l);
//}
//if (((j - j_low) < 0) || ((j - j_low) > (j_high - j_low - 1)))  {
//fprintf(stderr, "j index out: %d       i=%d  j=%d i_low=%d i_high=%d j_low=%d j_high=%d k=%d l=%d\n", j - j_low, i, j, i_low, i_high, j_low, j_high, k, l);
//}
//if (((i - i_low) == 0) || ((i - i_low) == (i_high - i_low - 1)))  {
//fprintf(stderr, "i_index %d touches boundary\n", i - i_low);
//}
//if (((j - j_low) == 0) || ((j - j_low) == (j_high - j_low - 1)))  {
//fprintf(stderr, "j_index %d touches boundary\n", j - j_low);
//}

				*(dem_corners->ptr + j_size * (i - i_low) + j - j_low) = swabbed[j];
				if (swabbed[j] > max_elev)  {
					max_elev = swabbed[j];
				}
				if (swabbed[j] < min_elev)  {
					min_elev = swabbed[j];
				}
			}
			/*
			 * We still have the last column of the array unfilled.
			 * If there is additional data available adjacent to the region
			 * of interest, then fill this column from there.  Otherwise
			 * we will fill it later by duplicating the second-to-last column.
			 */
			if (j_high < dem_corners->x)  {

// Debugging code
//if (((i - i_low) < 0) || ((i - i_low) > (i_high - i_low - 1)))  {
//fprintf(stderr, "i index out: %d       i=%d  j=%d i_low=%d i_high=%d j_low=%d j_high=%d k=%d l=%d\n", i - i_low, i, j, i_low, i_high, j_low, j_high, k, l);
//}
//if (((i - i_low) == 0) || ((i - i_low) == (i_high - i_low - 1)))  {
//fprintf(stderr, "i_index %d touches boundary\n", i - i_low);
//}

				*(dem_corners->ptr + j_size * (i - i_low) + j_high - j_low) = swabbed[j_high];
				if (swabbed[j_high] > max_elev)  {
					max_elev = swabbed[j_high];
				}
				if (swabbed[j_high] < min_elev)  {
					min_elev = swabbed[j_high];
				}
			}
		}
		if ((i == (i_high - 1)) && (i_high >= dem_corners->y))  {
			break;
		}
		if (i == i_high)  {
			/*
			 * We still have the last row of the array unfilled.
			 * If there is additional data available adjacent to the region
			 * of interest, then fill this row from there.  Otherwise
			 * we will fill it later by duplicating the second-to-last row.
			 */
			for (j = j_low; j < j_high; j++)  {

// Debugging code
//if (((j - j_low) < 0) || ((j - j_low) > (j_high - j_low - 1)))  {
//fprintf(stderr, "j index out: %d       i=%d  j=%d i_low=%d i_high=%d j_low=%d j_high=%d k=%d l=%d\n", j - j_low, i, j, i_low, i_high, j_low, j_high, k, l);
//}
//if (((j - j_low) == 0) || ((j - j_low) == (j_high - j_low - 1)))  {
//fprintf(stderr, "j_index %d touches boundary\n", j - j_low);
//}

				*(dem_corners->ptr + j_size * (i_high - i_low) + j - j_low) = swabbed[j];
				if (swabbed[j] > max_elev)  {
					max_elev = swabbed[j];
				}
				if (swabbed[j] < min_elev)  {
					min_elev = swabbed[j];
				}
			}
			/*
			 * Now check that last little corner sample in the last column and last row.
			 */
			if (j_high < dem_corners->x)  {
				*(dem_corners->ptr + j_size * (i_high - i_low) + j_high - j_low) = swabbed[j_high];
				if (swabbed[j_high] > max_elev)  {
					max_elev = swabbed[j_high];
				}
				if (swabbed[j_high] < min_elev)  {
					min_elev = swabbed[j_high];
				}
			}
			break;
		}
	}
	free(swabbed);
	free(unswabbed);

	/*
	 * At this point the array is filled in, except for the rag-tag extra row and
	 * extra column that fills it out to even latitude/longitude.
	 * If there was data available above i_high and j_high,
	 * then we have already filled these extra slots from there.
	 * If not, then we now fill them up with data from the adjacent row/column.
	 */
	if (j_high >= dem_corners->x)  {
		for (i = 0; i < (i_high - i_low + 1); i++)  {
			*(dem_corners->ptr + j_size * i + j_high - j_low) = *(dem_corners->ptr + j_size * i + j_high - j_low - 1);
		}
	}
	if (i_high >= dem_corners->y)  {
		for (j = 0; j < (j_high - j_low + 1); j++)  {
			*(dem_corners->ptr + j_size * (i_high - i_low) + j) = *(dem_corners->ptr + j_size * (i_high - i_low - 1) + j);
		}
	}


	/*
	 * We saved the maximum and minimum elevations for the
	 * entire 1-degree block.  We need to put these into the dem_a structure.
	 */
	dem_a->max_elev = max_elev;
	dem_a->min_elev = min_elev;

	/*
	 * If (info_flag != 0)
	 * then we return unaltered information in dem_corners.
	 * Otherwise, we need to adjust dem_corners to reflect
	 * what we actually stored in dem_corners->ptr.
	 */
	if (info_flag == 0)  {
		/*
		 * Redfearn's formulas aren't happy when the latitude becomes exactly -90 or 90.
		 * twiddle them slightly for these special cases.
		 */
		if (lat_high == 90.0)  {
			lat_tmp = 89.999;
		}
		else  {
			lat_tmp = lat_high;
		}
		if (redfearn(dem_datum, &(dem_corners->nw_x_gp), &(dem_corners->nw_y_gp), &(dem_a->zone), lat_tmp, long_low, 0) != 0)  {
			fprintf(stderr, "call to redfearn() fails.\n");
			free(dem_corners->ptr);
			return 1;
		}
		if (redfearn(dem_datum, &(dem_corners->ne_x_gp), &(dem_corners->ne_y_gp), &(dem_a->zone), lat_tmp, long_high, 0) != 0)  {
			fprintf(stderr, "call to redfearn() fails.\n");
			free(dem_corners->ptr);
			return 1;
		}
		if (lat_low == -90.0)  {
			lat_tmp = -89.999;
		}
		else  {
			lat_tmp = lat_low;
		}
		if (redfearn(dem_datum, &(dem_corners->sw_x_gp), &(dem_corners->sw_y_gp), &(dem_a->zone), lat_tmp, long_low, 0) != 0)  {
			fprintf(stderr, "call to redfearn() fails.\n");
			free(dem_corners->ptr);
			return 1;
		}
		if (redfearn(dem_datum, &(dem_corners->se_x_gp), &(dem_corners->se_y_gp), &(dem_a->zone), lat_tmp, long_high, 0) != 0)  {
			fprintf(stderr, "call to redfearn() fails.\n");
			free(dem_corners->ptr);
			return 1;
		}

		dem_corners->sw_lat  = lat_low;
		dem_corners->sw_long = long_low;
		dem_corners->nw_lat  = lat_high;
		dem_corners->nw_long = long_low;
		dem_corners->ne_lat  = lat_high;
		dem_corners->ne_long = long_high;
		dem_corners->se_lat  = lat_low;
		dem_corners->se_long = long_high;

		dem_corners->x = j_size;
		dem_corners->y = i_high - i_low + 1;
	}


	/*
	 * Close all open files.
	 */
	if (gz_flag == 0)  {
		buf_close(fdesc_in);
	}
	else  {
		buf_close_z(fdesc_in);
	}


	return 0;
}





/*
 * This routine parses relevant data from a GTOPO30 ".HDR" file
 * and inserts the converted data into the given dem_a storage structure.
 */
int
parse_gtopo30_hdr(char *file_name, struct dem_corners *dem_corners, struct dem_record_type_a *dem_a, struct datum *dem_datum, long *nbytes, long *nodata, long *gz_flag)
{
	long i, j, k, l;
	long length;
	int fdesc_in;
	ssize_t (*read_function)();
	char buf[DEM_RECORD_LENGTH + 1];	// Add 1 for the null terminator produced by sprintf().
	ssize_t ret_val;
	long nrows = -1;	// Typical value:   6000
	long ncols = -1;	// Typical value:   4800
	long nbands = -1;	// Typical value:      1
	long nbits = -1;	// Typical value:      8
	long bandrowbytes = -1;	// Typical value:   4800
	long totalrowbytes = -1;// Typical value:   4800
	long bandgapbytes = -1;	// Typical value:      0
	double ulxmap = -181.0;	// Typical value:    -99.99583333333334
	double ulymap = -91.0;	// Typical value:     39.99583333333333
	double xdim = -100.0;	// Typical value:      0.00833333333333
	double ydim = -100.0;	// Typical value:      0.00833333333333
	double se_lat;		// latitude of southeast corner of data
	double se_long;		// longitude of southeast corner of data
	long key_index, key_end;
	long value_index, value_end;
	double lat_tmp, long_tmp;

	*nbytes = -1;
	*nodata = -9999;


	/*
	 * Open the header file.
	 */
	length = strlen(file_name);
	if ((strcmp(&file_name[length - 3], ".gz") == 0) || (strcmp(&file_name[length - 3], ".GZ") == 0))  {
		*gz_flag = 1;
		if ((fdesc_in = buf_open_z(file_name, O_RDONLY)) < 0)  {
			fprintf(stderr, "Can't open %s for reading, errno = %d\n", file_name, errno);
			exit(0);
		}
		read_function = get_a_line_z;
	}
	else  {
		*gz_flag = 0;
		if ((fdesc_in = buf_open(file_name, O_RDONLY)) < 0)  {
			fprintf(stderr, "Can't open %s for reading, errno = %d\n", file_name, errno);
			exit(0);
		}
		read_function = get_a_line;
	}



	/*
	 * Read and parse each line of the HDR file.
	 */
	while ((ret_val = read_function(fdesc_in, buf, DEM_RECORD_LENGTH)) > 0)  {
		/* Strip off any leading white space.  There shouldn't be any, but... */
		for (key_index = 0; key_index < ret_val; key_index++)  {
			if ((buf[key_index] != ' ') && (buf[key_index] != '\t'))  {
				break;
			}
		}
		/* Find the end of the key. */
		for (key_end = key_index; key_end < ret_val; key_end++)  {
			if ((buf[key_end] == '\n') || (buf[key_end] == '\r') ||
			    (buf[key_end] == ' ') || (buf[key_end] == '\t'))  {
				break;
			}
		}
		if ((key_end == ret_val) || (buf[key_end] == '\n') || (buf[key_end] == '\r'))  {
			fprintf(stderr, "Line:  \"%.*s\" does not contain a keyword/value pair.  Ignoring.", ret_val, buf);
			continue;
		}
		/* Find the beginning of the value. */
		for (value_index = key_end; value_index < ret_val; value_index++)  {
			if ((buf[value_index] != ' ') && (buf[value_index] != '\t') &&
			    (buf[value_index] != '\n') && (buf[value_index] != '\r'))  {
				break;
			}
		}
		if (value_index == ret_val)  {
			fprintf(stderr, "Warning:  Line \"%.*s\" does not contain a keyword/value pair.  Ignoring.", ret_val, buf);
			continue;
		}
		/* Find the end of the value. */
		for (value_end = value_index; value_end < ret_val; value_end++)  {
			if ((buf[value_end] == '\n') || (buf[value_end] == '\r') ||
			    (buf[value_end] == ' ') || (buf[value_end] == '\t'))  {
				break;
			}
		}

		/* Null-terminate both the key and the value. */
		buf[key_end] = '\0';
		buf[value_end] = '\0';

		/*
		 * Search for the key in the list of known keys.
		 *
		 * Note:  The comments describing each keyword are
		 * copied straight out of a gtopo30 README.TXT file.
		 */
		if (strcmp(&buf[key_index], "BYTEORDER") == 0)  {
			/*
			 * BYTEORDER      byte order in which image pixel values are stored
			 * M = Motorola byte order (most significant byte first)
			 */
			if ((buf[value_index] != 'M') || (buf[value_index + 1] != '\0'))  {
				fprintf(stderr, "Warning:  Unrecognized BYTEORDER (%s).  M is assumed.\n", &buf[value_index]);
			}
		}
		else if (strcmp(&buf[key_index], "LAYOUT") == 0)  {
			/*
			 * LAYOUT         organization of the bands in the file
			 * BIL = band interleaved by line (note: the source map is
			 * a single band image)
			 */
			if (strcmp(&buf[value_index], "BIL") != 0)  {
				fprintf(stderr, "Warning:  Unrecognized LAYOUT code (%s).  BIL is assumed.\n", &buf[value_index]);
			}
		}
		else if (strcmp(&buf[key_index], "NROWS") == 0)  {
			/*
			 * NROWS          number of rows in the image
			 */
			nrows = strtol(&buf[value_index], (char **)0, 10);
		}
		else if (strcmp(&buf[key_index], "NCOLS") == 0)  {
			/*
			 * NCOLS          number of columns in the image
			 */
			ncols = strtol(&buf[value_index], (char **)0, 10);
		}
		else if (strcmp(&buf[key_index], "NBANDS") == 0)  {
			/*
			 * NBANDS         number of spectral bands in the image (1 for the source map)
			 */
			nbands = strtol(&buf[value_index], (char **)0, 10);
			if (nbands != 1)  {
				fprintf(stderr, "NBANDS value (%d) is not 1.  Can't handle it.\n", nbands);
				return 1;
			}
		}
		else if (strcmp(&buf[key_index], "NBITS") == 0)  {
			/*
			 * NBITS          number of bits per pixel (8 for the source map)
			 */
			nbits = strtol(&buf[value_index], (char **)0, 10);
			if (nbits & 0x7)  {
				fprintf(stderr, "NBITS value (%d) not divisible by 8.  Can't handle it.\n", nbits);
				return 1;
			}
			*nbytes = nbits >> 3;
		}
		else if (strcmp(&buf[key_index], "BANDROWBYTES") == 0)  {
			/*
			 * BANDROWBYTES   number of bytes per band per row (the number of columns for
			 * an 8-bit source map)
			 */
			bandrowbytes = strtol(&buf[value_index], (char **)0, 10);
		}
		else if (strcmp(&buf[key_index], "TOTALROWBYTES") == 0)  {
			/*
			 * TOTALROWBYTES  total number of bytes of data per row (the number of columns
			 * for a single band 8-bit source map)
			 */
			totalrowbytes = strtol(&buf[value_index], (char **)0, 10);
		}
		else if (strcmp(&buf[key_index], "BANDGAPBYTES") == 0)  {
			/*
			 * BANDGAPBYTES   the number of bytes between bands in a BSQ format image
			 * (0 for the source map)
			 */
			bandgapbytes = strtol(&buf[value_index], (char **)0, 10);
			if (bandgapbytes != 0)  {
				fprintf(stderr, "BANDGAPBYTES value (%d) is not zero.  Can't handle it.\n", bandgapbytes);
				return 1;
			}
		}
		else if (strcmp(&buf[key_index], "NODATA") == 0)  {
			/*
			 * NODATA         value used for masking purposes
			 */
			*nodata = strtol(&buf[value_index], (char **)0, 10);
			if (*nodata > 0)  {
				fprintf(stderr, "Warning:  NODATA value (%d) is greater than zero.  This may not be correct.\n", *nodata);
			}
		}
		else if (strcmp(&buf[key_index], "ULXMAP") == 0)  {
			/*
			 * ULXMAP         longitude of the center of the upper-left pixel (decimal degrees)
			 */
			ulxmap = strtod(&buf[value_index], (char **)0);
		}
		else if (strcmp(&buf[key_index], "ULYMAP") == 0)  {
			/*
			 * ULYMAP         latitude  of the center of the upper-left pixel (decimal degrees)
			 */
			ulymap = strtod(&buf[value_index], (char **)0);
		}
		else if (strcmp(&buf[key_index], "XDIM") == 0)  {
			/*
			 * XDIM           x dimension of a pixel in geographic units (decimal degrees)
			 */
			xdim = strtod(&buf[value_index], (char **)0);
		}
		else if (strcmp(&buf[key_index], "YDIM") == 0)  {
			/*
			 * YDIM           y dimension of a pixel in geographic units (decimal degrees)
			 */
			ydim = strtod(&buf[value_index], (char **)0);
		}
		else  {
			/*
			 * During debugging we print out any unknown keywords.
			 * For production use, we don't.
			 */
			// fprintf(stderr, "Warning:  Unknown keyword ignored:  \"%s\".\n", &buf[key_index]);
		}
	}
	if (*gz_flag == 0)  {
		buf_close(fdesc_in);
	}
	else  {
		buf_close_z(fdesc_in);
	}

	/*
	 * Do a few more sanity checks on the parameters.
	 */
	if (nrows <= 0)  {
		fprintf(stderr, "NROWS value (%d) doesn't make sense.\n", nrows);
		return 1;
	}
	if (ncols <= 0)  {
		fprintf(stderr, "NCOLS value (%d) doesn't make sense.\n", ncols);
		return 1;
	}
	if ((*nbytes != 1) && (*nbytes != 2))  {
		fprintf(stderr, "NBITS value must be 8 or 16.  Can't deal with %d.\n", nbits);
		return 1;
	}
	if ((bandrowbytes >= 0) && (bandrowbytes != (*nbytes * ncols)))  {
		fprintf(stderr, "BANDROWBYTES value (%d) doesn't equal NBITS * NCOLS / 8.  Can't handle it.\n", bandrowbytes);
		return 1;
	}
	if ((totalrowbytes >= 0) && (totalrowbytes != (*nbytes * ncols)))  {
		fprintf(stderr, "TOTALROWBYTES value (%d) doesn't equal NBITS * NCOLS / 8.  Can't handle it.\n", totalrowbytes);
		return 1;
	}

	/*
	 * ulxmap and ulymap are offset so that the first sample is xdim/2 and ydim/2 in
	 * from the northwest corner.  Move them back to round-numbered values.
	 */
	ulxmap = ulxmap - xdim / 2.0;
	ulymap = ulymap + ydim / 2.0;
	if ((ulxmap < -180.001) || (ulxmap > 180.001))  {
		fprintf(stderr, "ULXMAP value (%g) is not in the range [-180, 180].\n", ulxmap);
		return 1;
	}
	if ((ulymap < -90.0001) || (ulymap > 90.0001))  {
		fprintf(stderr, "ULYMAP value (%g) is not in the range [-90, 90].\n", ulymap);
		return 1;
	}

	/*
	 * Find the latitude/longitude of the southeast corner.
	 * We will need these.
	 */
	se_lat = (double)round(ulymap - ydim * (double)nrows);
	se_long = (double)round(ulxmap + xdim * (double)ncols);


	/*
	 * All of the data from the header is processed.
	 * Now fill the passed structures with data and return.
	 */
	i = strlen(file_name);
	for (j = i - 1; j >= 0; j--)  {
		if (file_name[j] == '/')  {
			j++;
			break;
		}
	}
	if (j < 0)  {
		j = 0;
	}
	if ((i - j) > 40)  {
		strcpy(dem_a->title, "GTOPO30 data");
	}
	else  {
		strcpy(dem_a->title, &file_name[j]);
	}
	dem_a->level_code = 0;
	dem_a->plane_ref = 3;
	dem_a->plane_units = 3;
	dem_a->elev_units = 2;
	dem_a->min_elev = 100000.0;
	dem_a->max_elev = -100000.0;
	dem_a->angle = 0.0;
	dem_a->accuracy = 0;
	dem_a->x_res = 30.0;
	dem_a->y_res = 30.0;
	dem_a->z_res = 1.0;
	dem_a->cols = ncols;
	dem_a->rows = nrows;
	dem_a->horizontal_datum = 3;

	/* The datum is WGS-84.  Initialize the parameters. */
	dem_datum->a = WGS84_SEMIMAJOR;
	dem_datum->b = WGS84_SEMIMINOR;
	dem_datum->e_2 = WGS84_E_SQUARED;
	dem_datum->f_inv = WGS84_F_INV;
	dem_datum->k0 = UTM_K0;
	dem_datum->a0 = WGS84_A0;
	dem_datum->a2 = WGS84_A2;
	dem_datum->a4 = WGS84_A4;
	dem_datum->a6 = WGS84_A6;

	/*
	 * Redfearn's formulas aren't happy when the latitude becomes exactly -90 or 90.
	 * twiddle them slightly for these special cases.
	 */
	if (ulymap == 90.0)  {
		lat_tmp = 89.999;
	}
	else if (ulymap == -90.0)  {
		lat_tmp = -89.999;
	}
	else  {
		lat_tmp = ulymap;
	}
	if (redfearn(dem_datum, &(dem_a->nw_x_gp), &(dem_a->nw_y_gp), &(dem_a->zone), lat_tmp, ulxmap, 0) != 0)  {
		fprintf(stderr, "call to redfearn() fails.\n");
		return 1;
	}
	if (redfearn(dem_datum, &(dem_a->ne_x_gp), &(dem_a->ne_y_gp), &(dem_a->zone), lat_tmp, se_long, 0) != 0)  {
		fprintf(stderr, "call to redfearn() fails.\n");
		return 1;
	}
	if (se_lat == 90.0)  {
		lat_tmp = 89.999;
	}
	else if (se_lat == -90.0)  {
		lat_tmp = -89.999;
	}
	else  {
		lat_tmp = se_lat;
	}
	if (redfearn(dem_datum, &(dem_a->sw_x_gp), &(dem_a->sw_y_gp), &(dem_a->zone), lat_tmp, ulxmap, 0) != 0)  {
		fprintf(stderr, "call to redfearn() fails.\n");
		return 1;
	}
	if (redfearn(dem_datum, &(dem_a->se_x_gp), &(dem_a->se_y_gp), &(dem_a->zone), lat_tmp, se_long, 0) != 0)  {
		fprintf(stderr, "call to redfearn() fails.\n");
		return 1;
	}

	dem_corners->sw_x_gp = dem_a->sw_x_gp;
	dem_corners->sw_y_gp = dem_a->sw_y_gp;
	dem_corners->nw_x_gp = dem_a->nw_x_gp;
	dem_corners->nw_y_gp = dem_a->nw_y_gp;
	dem_corners->ne_x_gp = dem_a->ne_x_gp;
	dem_corners->ne_y_gp = dem_a->ne_y_gp;
	dem_corners->se_x_gp = dem_a->se_x_gp;
	dem_corners->se_y_gp = dem_a->se_y_gp;

	dem_corners->sw_lat  = se_lat;
	dem_corners->sw_long = ulxmap;
	dem_corners->nw_lat  = ulymap;
	dem_corners->nw_long = ulxmap;
	dem_corners->ne_lat  = ulymap;
	dem_corners->ne_long = se_long;
	dem_corners->se_lat  = se_lat;
	dem_corners->se_long = se_long;

	dem_corners->x = ncols;
	dem_corners->y = nrows;


	return 0;
}