1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
|
/* Copyright 2008, Google Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* curve25519: Curve25519 elliptic curve, public key function
*
* http://code.google.com/p/curve25519-donna/
*
* Adam Langley <agl@imperialviolet.org>
*
* Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to>
*
* More information about curve25519 can be found here
* http://cr.yp.to/ecdh.html
*
* djb's sample implementation of curve25519 is written in a special assembly
* language called qhasm and uses the floating point registers.
*
* This is, almost, a clean room reimplementation from the curve25519 paper. It
* uses many of the tricks described therein. Only the crecip function is taken
* from the sample implementation.
*/
#include "os.h"
#include <libsec.h>
typedef vlong felem;
/* Sum two numbers: output += in */
static void fsum(felem *output, felem *in) {
unsigned i;
for (i = 0; i < 10; i += 2) {
output[0+i] = (output[0+i] + in[0+i]);
output[1+i] = (output[1+i] + in[1+i]);
}
}
/* Find the difference of two numbers: output = in - output
* (note the order of the arguments!)
*/
static void fdifference(felem *output, felem *in) {
unsigned i;
for (i = 0; i < 10; ++i) {
output[i] = (in[i] - output[i]);
}
}
/* Multiply a number my a scalar: output = in * scalar */
static void fscalar_product(felem *output, felem *in, felem scalar) {
unsigned i;
for (i = 0; i < 10; ++i) {
output[i] = in[i] * scalar;
}
}
/* Multiply two numbers: output = in2 * in
*
* output must be distinct to both inputs. The inputs are reduced coefficient
* form, the output is not.
*/
static void fproduct(felem *output, felem *in2, felem *in) {
output[0] = in2[0] * in[0];
output[1] = in2[0] * in[1] +
in2[1] * in[0];
output[2] = 2 * in2[1] * in[1] +
in2[0] * in[2] +
in2[2] * in[0];
output[3] = in2[1] * in[2] +
in2[2] * in[1] +
in2[0] * in[3] +
in2[3] * in[0];
output[4] = in2[2] * in[2] +
2 * (in2[1] * in[3] +
in2[3] * in[1]) +
in2[0] * in[4] +
in2[4] * in[0];
output[5] = in2[2] * in[3] +
in2[3] * in[2] +
in2[1] * in[4] +
in2[4] * in[1] +
in2[0] * in[5] +
in2[5] * in[0];
output[6] = 2 * (in2[3] * in[3] +
in2[1] * in[5] +
in2[5] * in[1]) +
in2[2] * in[4] +
in2[4] * in[2] +
in2[0] * in[6] +
in2[6] * in[0];
output[7] = in2[3] * in[4] +
in2[4] * in[3] +
in2[2] * in[5] +
in2[5] * in[2] +
in2[1] * in[6] +
in2[6] * in[1] +
in2[0] * in[7] +
in2[7] * in[0];
output[8] = in2[4] * in[4] +
2 * (in2[3] * in[5] +
in2[5] * in[3] +
in2[1] * in[7] +
in2[7] * in[1]) +
in2[2] * in[6] +
in2[6] * in[2] +
in2[0] * in[8] +
in2[8] * in[0];
output[9] = in2[4] * in[5] +
in2[5] * in[4] +
in2[3] * in[6] +
in2[6] * in[3] +
in2[2] * in[7] +
in2[7] * in[2] +
in2[1] * in[8] +
in2[8] * in[1] +
in2[0] * in[9] +
in2[9] * in[0];
output[10] = 2 * (in2[5] * in[5] +
in2[3] * in[7] +
in2[7] * in[3] +
in2[1] * in[9] +
in2[9] * in[1]) +
in2[4] * in[6] +
in2[6] * in[4] +
in2[2] * in[8] +
in2[8] * in[2];
output[11] = in2[5] * in[6] +
in2[6] * in[5] +
in2[4] * in[7] +
in2[7] * in[4] +
in2[3] * in[8] +
in2[8] * in[3] +
in2[2] * in[9] +
in2[9] * in[2];
output[12] = in2[6] * in[6] +
2 * (in2[5] * in[7] +
in2[7] * in[5] +
in2[3] * in[9] +
in2[9] * in[3]) +
in2[4] * in[8] +
in2[8] * in[4];
output[13] = in2[6] * in[7] +
in2[7] * in[6] +
in2[5] * in[8] +
in2[8] * in[5] +
in2[4] * in[9] +
in2[9] * in[4];
output[14] = 2 * (in2[7] * in[7] +
in2[5] * in[9] +
in2[9] * in[5]) +
in2[6] * in[8] +
in2[8] * in[6];
output[15] = in2[7] * in[8] +
in2[8] * in[7] +
in2[6] * in[9] +
in2[9] * in[6];
output[16] = in2[8] * in[8] +
2 * (in2[7] * in[9] +
in2[9] * in[7]);
output[17] = in2[8] * in[9] +
in2[9] * in[8];
output[18] = 2 * in2[9] * in[9];
}
/* Reduce a long form to a short form by taking the input mod 2^255 - 19. */
static void freduce_degree(felem *output) {
output[8] += 19 * output[18];
output[7] += 19 * output[17];
output[6] += 19 * output[16];
output[5] += 19 * output[15];
output[4] += 19 * output[14];
output[3] += 19 * output[13];
output[2] += 19 * output[12];
output[1] += 19 * output[11];
output[0] += 19 * output[10];
}
/* Reduce all coefficients of the short form input to be -2**25 <= x <= 2**25
*/
static void freduce_coefficients(felem *output) {
unsigned i;
do {
output[10] = 0;
for (i = 0; i < 10; i += 2) {
felem over = output[i] / 0x2000000l;
felem over2 = (over + ((over >> 63) * 2) + 1) / 2;
output[i+1] += over2;
output[i] -= over2 * 0x4000000l;
over = output[i+1] / 0x2000000;
output[i+2] += over;
output[i+1] -= over * 0x2000000;
}
output[0] += 19 * output[10];
} while (output[10]);
}
/* A helpful wrapper around fproduct: output = in * in2.
*
* output must be distinct to both inputs. The output is reduced degree and
* reduced coefficient.
*/
static void
fmul(felem *output, felem *in, felem *in2) {
felem t[19];
fproduct(t, in, in2);
freduce_degree(t);
freduce_coefficients(t);
memcpy(output, t, sizeof(felem) * 10);
}
static void fsquare_inner(felem *output, felem *in) {
felem tmp;
output[0] = in[0] * in[0];
output[1] = 2 * in[0] * in[1];
output[2] = 2 * (in[1] * in[1] +
in[0] * in[2]);
output[3] = 2 * (in[1] * in[2] +
in[0] * in[3]);
output[4] = in[2] * in[2] +
4 * in[1] * in[3] +
2 * in[0] * in[4];
output[5] = 2 * (in[2] * in[3] +
in[1] * in[4] +
in[0] * in[5]);
output[6] = 2 * (in[3] * in[3] +
in[2] * in[4] +
in[0] * in[6] +
2 * in[1] * in[5]);
output[7] = 2 * (in[3] * in[4] +
in[2] * in[5] +
in[1] * in[6] +
in[0] * in[7]);
tmp = in[1] * in[7] + in[3] * in[5];
output[8] = in[4] * in[4] +
2 * (in[2] * in[6] +
in[0] * in[8] +
2 * tmp);
output[9] = 2 * (in[4] * in[5] +
in[3] * in[6] +
in[2] * in[7] +
in[1] * in[8] +
in[0] * in[9]);
tmp = in[3] * in[7] + in[1] * in[9];
output[10] = 2 * (in[5] * in[5] +
in[4] * in[6] +
in[2] * in[8] +
2 * tmp);
output[11] = 2 * (in[5] * in[6] +
in[4] * in[7] +
in[3] * in[8] +
in[2] * in[9]);
output[12] = in[6] * in[6] +
2 * (in[4] * in[8] +
2 * (in[5] * in[7] +
in[3] * in[9]));
output[13] = 2 * (in[6] * in[7] +
in[5] * in[8] +
in[4] * in[9]);
output[14] = 2 * (in[7] * in[7] +
in[6] * in[8] +
2 * in[5] * in[9]);
output[15] = 2 * (in[7] * in[8] +
in[6] * in[9]);
output[16] = in[8] * in[8] +
4 * in[7] * in[9];
output[17] = 2 * in[8] * in[9];
output[18] = 2 * in[9] * in[9];
}
static void
fsquare(felem *output, felem *in) {
felem t[19];
fsquare_inner(t, in);
freduce_degree(t);
freduce_coefficients(t);
memcpy(output, t, sizeof(felem) * 10);
}
/* Take a little-endian, 32-byte number and expand it into polynomial form */
static void
fexpand(felem *output, uchar *input) {
#define F(n,start,shift,mask) \
output[n] = ((((felem) input[start + 0]) | \
((felem) input[start + 1]) << 8 | \
((felem) input[start + 2]) << 16 | \
((felem) input[start + 3]) << 24) >> shift) & mask;
F(0, 0, 0, 0x3ffffff);
F(1, 3, 2, 0x1ffffff);
F(2, 6, 3, 0x3ffffff);
F(3, 9, 5, 0x1ffffff);
F(4, 12, 6, 0x3ffffff);
F(5, 16, 0, 0x1ffffff);
F(6, 19, 1, 0x3ffffff);
F(7, 22, 3, 0x1ffffff);
F(8, 25, 4, 0x3ffffff);
F(9, 28, 6, 0x1ffffff);
#undef F
}
/* Take a fully reduced polynomial form number and contract it into a
* little-endian, 32-byte array
*/
static void
fcontract(uchar *output, felem *input) {
int i;
do {
for (i = 0; i < 9; ++i) {
if ((i & 1) == 1) {
while (input[i] < 0) {
input[i] += 0x2000000;
input[i + 1]--;
}
} else {
while (input[i] < 0) {
input[i] += 0x4000000;
input[i + 1]--;
}
}
}
while (input[9] < 0) {
input[9] += 0x2000000;
input[0] -= 19;
}
} while (input[0] < 0);
input[1] <<= 2;
input[2] <<= 3;
input[3] <<= 5;
input[4] <<= 6;
input[6] <<= 1;
input[7] <<= 3;
input[8] <<= 4;
input[9] <<= 6;
#define F(i, s) \
output[s+0] |= input[i] & 0xff; \
output[s+1] = (input[i] >> 8) & 0xff; \
output[s+2] = (input[i] >> 16) & 0xff; \
output[s+3] = (input[i] >> 24) & 0xff;
output[0] = 0;
output[16] = 0;
F(0,0);
F(1,3);
F(2,6);
F(3,9);
F(4,12);
F(5,16);
F(6,19);
F(7,22);
F(8,25);
F(9,28);
#undef F
}
/* Input: Q, Q', Q-Q'
* Output: 2Q, Q+Q'
*
* x2 z3: long form
* x3 z3: long form
* x z: short form, destroyed
* xprime zprime: short form, destroyed
* qmqp: short form, preserved
*/
static void fmonty(felem *x2, felem *z2, /* output 2Q */
felem *x3, felem *z3, /* output Q + Q' */
felem *x, felem *z, /* input Q */
felem *xprime, felem *zprime, /* input Q' */
felem *qmqp /* input Q - Q' */) {
felem origx[10], origxprime[10], zzz[19], xx[19], zz[19], xxprime[19],
zzprime[19], zzzprime[19], xxxprime[19];
memcpy(origx, x, 10 * sizeof(felem));
fsum(x, z);
fdifference(z, origx); // does x - z
memcpy(origxprime, xprime, sizeof(felem) * 10);
fsum(xprime, zprime);
fdifference(zprime, origxprime);
fproduct(xxprime, xprime, z);
fproduct(zzprime, x, zprime);
freduce_degree(xxprime);
freduce_coefficients(xxprime);
freduce_degree(zzprime);
freduce_coefficients(zzprime);
memcpy(origxprime, xxprime, sizeof(felem) * 10);
fsum(xxprime, zzprime);
fdifference(zzprime, origxprime);
fsquare(xxxprime, xxprime);
fsquare(zzzprime, zzprime);
fproduct(zzprime, zzzprime, qmqp);
freduce_degree(zzprime);
freduce_coefficients(zzprime);
memcpy(x3, xxxprime, sizeof(felem) * 10);
memcpy(z3, zzprime, sizeof(felem) * 10);
fsquare(xx, x);
fsquare(zz, z);
fproduct(x2, xx, zz);
freduce_degree(x2);
freduce_coefficients(x2);
fdifference(zz, xx); // does zz = xx - zz
memset(zzz + 10, 0, sizeof(felem) * 9);
fscalar_product(zzz, zz, 121665);
freduce_degree(zzz);
freduce_coefficients(zzz);
fsum(zzz, xx);
fproduct(z2, zz, zzz);
freduce_degree(z2);
freduce_coefficients(z2);
}
/* Calculates nQ where Q is the x-coordinate of a point on the curve
*
* resultx/resultz: the x coordinate of the resulting curve point (short form)
* n: a little endian, 32-byte number
* q: a point of the curve (short form)
*/
static void
cmult(felem *resultx, felem *resultz, uchar *n, felem *q) {
felem a[19] = {0}, b[19] = {1}, c[19] = {1}, d[19] = {0};
felem *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t;
felem e[19] = {0}, f[19] = {1}, g[19] = {0}, h[19] = {1};
felem *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h;
unsigned i, j;
memcpy(nqpqx, q, sizeof(felem) * 10);
for (i = 0; i < 32; ++i) {
uchar byte = n[31 - i];
for (j = 0; j < 8; ++j) {
if (byte & 0x80) {
fmonty(nqpqx2, nqpqz2,
nqx2, nqz2,
nqpqx, nqpqz,
nqx, nqz,
q);
} else {
fmonty(nqx2, nqz2,
nqpqx2, nqpqz2,
nqx, nqz,
nqpqx, nqpqz,
q);
}
t = nqx;
nqx = nqx2;
nqx2 = t;
t = nqz;
nqz = nqz2;
nqz2 = t;
t = nqpqx;
nqpqx = nqpqx2;
nqpqx2 = t;
t = nqpqz;
nqpqz = nqpqz2;
nqpqz2 = t;
byte <<= 1;
}
}
memcpy(resultx, nqx, sizeof(felem) * 10);
memcpy(resultz, nqz, sizeof(felem) * 10);
}
// -----------------------------------------------------------------------------
// Shamelessly copied from djb's code
// -----------------------------------------------------------------------------
static void
crecip(felem *out, felem *z) {
felem z2[10];
felem z9[10];
felem z11[10];
felem z2_5_0[10];
felem z2_10_0[10];
felem z2_20_0[10];
felem z2_50_0[10];
felem z2_100_0[10];
felem t0[10];
felem t1[10];
int i;
/* 2 */ fsquare(z2,z);
/* 4 */ fsquare(t1,z2);
/* 8 */ fsquare(t0,t1);
/* 9 */ fmul(z9,t0,z);
/* 11 */ fmul(z11,z9,z2);
/* 22 */ fsquare(t0,z11);
/* 2^5 - 2^0 = 31 */ fmul(z2_5_0,t0,z9);
/* 2^6 - 2^1 */ fsquare(t0,z2_5_0);
/* 2^7 - 2^2 */ fsquare(t1,t0);
/* 2^8 - 2^3 */ fsquare(t0,t1);
/* 2^9 - 2^4 */ fsquare(t1,t0);
/* 2^10 - 2^5 */ fsquare(t0,t1);
/* 2^10 - 2^0 */ fmul(z2_10_0,t0,z2_5_0);
/* 2^11 - 2^1 */ fsquare(t0,z2_10_0);
/* 2^12 - 2^2 */ fsquare(t1,t0);
/* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
/* 2^20 - 2^0 */ fmul(z2_20_0,t1,z2_10_0);
/* 2^21 - 2^1 */ fsquare(t0,z2_20_0);
/* 2^22 - 2^2 */ fsquare(t1,t0);
/* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
/* 2^40 - 2^0 */ fmul(t0,t1,z2_20_0);
/* 2^41 - 2^1 */ fsquare(t1,t0);
/* 2^42 - 2^2 */ fsquare(t0,t1);
/* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t1,t0); fsquare(t0,t1); }
/* 2^50 - 2^0 */ fmul(z2_50_0,t0,z2_10_0);
/* 2^51 - 2^1 */ fsquare(t0,z2_50_0);
/* 2^52 - 2^2 */ fsquare(t1,t0);
/* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
/* 2^100 - 2^0 */ fmul(z2_100_0,t1,z2_50_0);
/* 2^101 - 2^1 */ fsquare(t1,z2_100_0);
/* 2^102 - 2^2 */ fsquare(t0,t1);
/* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { fsquare(t1,t0); fsquare(t0,t1); }
/* 2^200 - 2^0 */ fmul(t1,t0,z2_100_0);
/* 2^201 - 2^1 */ fsquare(t0,t1);
/* 2^202 - 2^2 */ fsquare(t1,t0);
/* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
/* 2^250 - 2^0 */ fmul(t0,t1,z2_50_0);
/* 2^251 - 2^1 */ fsquare(t1,t0);
/* 2^252 - 2^2 */ fsquare(t0,t1);
/* 2^253 - 2^3 */ fsquare(t1,t0);
/* 2^254 - 2^4 */ fsquare(t0,t1);
/* 2^255 - 2^5 */ fsquare(t1,t0);
/* 2^255 - 21 */ fmul(out,t1,z11);
}
void
curve25519(uchar mypublic[32], uchar secret[32], uchar basepoint[32]) {
felem bp[10], x[10], z[10], zmone[10];
fexpand(bp, basepoint);
cmult(x, z, secret, bp);
crecip(zmone, z);
fmul(z, x, zmone);
fcontract(mypublic, z);
}
|