File: kirkebyfd.cpp

package info (click to toggle)
drc 3.2.0~dfsg0-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 4,204 kB
  • sloc: ansic: 14,154; cpp: 8,919; sh: 253; makefile: 41
file content (929 lines) | stat: -rw-r--r-- 27,562 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
/****************************************************************************

    DRC: Digital Room Correction
    Copyright (C) 2002, 2003 Denis Sbragion

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

		You can contact the author on Internet at the following address:

				d.sbragion@infotecna.it

		This program uses the parsecfg library from Yuuki  NINOMIYA.  De
		tails  on  this  library  can be found in the parsecfg.c and par
		secfg.h files.  Many thanks to Yuuki NINOMIYA for this useful li
		brary.

****************************************************************************/

/* Inclusioni */
#include "kirkebyfd.h"
#include "fft.h"
#include "baselib.h"
#include "level.h"
#include "hd.h"
#include "dspwind.h"
#include "slprefilt.h"
#include "bwprefilt.h"
#include "convol.h"
#include <math.h>

/* Inversione tramite Kirkeby fast deconvolution */
Boolean KirkebyFDInvert(const DLReal * InSig, int InSigLen,DLReal * InvFilter,
	int InvFilterLen, const DLReal * EffortSig, int EffortSigLen, DLReal EffortFactor,
	int MExp)
	{
		/* Dimensione da considerare per il segnale */
		int SigLen;

		/* Dimensione FFT */
		int FS;

		/* Array FFT */
		DLComplex * FFTArray1;
		DLComplex * FFTArray2;

		/* Livello RMS segnale in ingresso */
		DLReal IRMS;

		/* Livello massimo del segnale di effort */
		DLReal EMax;

		/* Indice generico */
		int I = 0;
		int J = 0;

		/* Determina la dimensione massima tra i vari segnali */
		if (InSigLen > InvFilterLen)
			SigLen = InSigLen;
		else
			SigLen = InvFilterLen;
		if (EffortSig != NULL)
			if (EffortSigLen > SigLen)
				SigLen = EffortSigLen;

		/* Controlla se si deve adottare un potenza di due */
		if (MExp >= 0)
			{
				/* Calcola la potenza di due superiore a N */
				for(FS = 1;FS <= SigLen;FS <<= 1);
				FS *= 1 << MExp;
			}
		else
			FS = SigLen;

		/* Alloca gli array per l'FFT */
		if ((FFTArray1 = new DLComplex[FS]) == NULL)
			return False;
		if (EffortSig != NULL)
			if ((FFTArray2 = new DLComplex[FS]) == NULL)
				return False;

		/* Copia l'array sorgente in quello temporaneo */
		for (I = 0;I < InSigLen;I++)
			FFTArray1[I] = InSig[I];

		/* Azzera la parte rimanente */
		for (I = InSigLen;I < FS;I++)
			FFTArray1[I] = 0;

		if (EffortSig != NULL)
			{
				/* Copia l'array effort in quello temporaneo */
				for (I = 0;I < EffortSigLen;I++)
					FFTArray2[I] = EffortSig[I];

				/* Azzera la parte rimanente */
				for (I = EffortSigLen;I < FS;I++)
					FFTArray2[I] = 0;

				/* Porta nel dominio della frequenza */
				Fft(FFTArray2,FS);

				/* Calcola il valore massimo dell'array effort */
				EMax = 0;
				for (I = 0;I < FS;I++)
					if (std::abs(FFTArray2[I]) > EMax)
						EMax = std::abs(FFTArray2[I]);
				EMax *= EMax;

				/* Riscala il fattore di effort */
				EffortFactor /= EMax;
			}

		/* Porta nel dominio della frequenza */
		Fft(FFTArray1,FS);

		/* Calcola il livello RMS del segnale in ingresso */
		IRMS = GetRMSLevel(InSig,InSigLen);

		/* Riscala il fattore di effort */
		EffortFactor *= IRMS * IRMS;

		/* Effettua la fast deconvolution */
		if (EffortSig != NULL)
			{
				for (I = 0;I < FS;I++)
					FFTArray1[I] = std::conj<DLReal>(FFTArray1[I]) /
						(FFTArray1[I] * std::conj<DLReal>(FFTArray1[I]) +
						EffortFactor * (EMax - FFTArray2[I] * std::conj<DLReal>(FFTArray2[I])));
			}
		else
			{
				for (I = 0;I < FS;I++)
					FFTArray1[I] = std::conj<DLReal>(FFTArray1[I]) /
						(FFTArray1[I] * std::conj<DLReal>(FFTArray1[I]) + EffortFactor);
			}

		/* Ritorna nel dominio del tempo */
		IFft(FFTArray1,FS);

		/* Estrae il filtro inverso */
		for (I = 0,J = (FS + FS - (InSigLen - InvFilterLen) / 2) % FS;I < InvFilterLen;I++,J = (J + 1) % FS)
			InvFilter[I] = std::real<DLReal>(FFTArray1[J]);

		/* Dealloca gli array temporanei */
		delete FFTArray1;
		if (EffortSig != NULL)
			delete FFTArray2;

		/* Operazione completata */
		return True;
	}

/* Inversione tramite selective minimum pahse fast deconvolution */
/* Versione a misura indiretta degli effetti di pre echo */
Boolean PEISMPKirkebyFDInvert(const DLReal * MPSig, int MPSigLen, const DLReal * EPSig, int EPSigLen,
	DLReal * InvFilter,	int InvFilterLen, DLReal EffortFactor, int MExp)
	{
		/* Dimensione da considerare per il segnale */
		int SigLen;

		/* Dimensione FFT */
		int FS;

		/* Array FFT */
		DLComplex * FFTArray1;
		DLComplex * FFTArray2;

		/* Valore massimo e minimo componente EP */
		DLReal * AEPAbs;
		DLReal EPAbs;
		DLReal EMax;

		/* Indici generici */
		int I;
		int J;

		/* Determina la dimensione massima tra i vari segnali */
		if (MPSigLen > InvFilterLen)
			SigLen = MPSigLen;
		else
			SigLen = InvFilterLen;
		if (EPSigLen > SigLen)
			SigLen = EPSigLen;

		/* Controlla se si deve adottare una potenza di due */
		if (MExp >= 0)
			{
				/* Calcola la potenza di due superiore a N */
				for(FS = 1;FS <= SigLen;FS <<= 1);
				FS *= 1 << MExp;
			}
		else
			FS = SigLen;

		/* Alloca gli array per l'FFT */
		if ((FFTArray1 = new DLComplex[FS]) == NULL)
			return False;
		if ((FFTArray2 = new DLComplex[FS]) == NULL)
			return False;

		/* Copia l'array sorgente in quello temporaneo */
		for (I = 0;I < MPSigLen;I++)
			FFTArray1[I] = MPSig[I];

		/* Azzera la parte rimanente */
		for (I = MPSigLen;I < FS;I++)
			FFTArray1[I] = 0;

		/* Porta nel dominio della frequenza */
		Fft(FFTArray1,FS);

		/* Copia l'array sorgente in quello temporaneo */
		for (I = 0;I < EPSigLen;I++)
			FFTArray2[I] = EPSig[I];

		/* Azzera la parte rimanente */
		for (I = EPSigLen;I < FS;I++)
			FFTArray2[I] = 0;

		/* Porta nel dominio della frequenza */
		Fft(FFTArray2,FS);

		/* Alloca l' array per l'ampiezza EP */
		if ((AEPAbs = new DLReal[FS]) == NULL)
			return False;

		/* Estrae l'array valori assoluti */
		for (I = 0;I < FS;I++)
			AEPAbs[I] = std::abs<DLReal>(FFTArray2[I]);

		/* Calcola il valore massimo della componente EP */
		EMax = 0;
		for (I = 0;I < FS;I++)
			{
				if (AEPAbs[I] > EMax)
					EMax = AEPAbs[I];
			}

		/* Riscala il fattore di effort */
		if (EffortFactor >= 0)
			EffortFactor = -EffortFactor / ((DLReal) 1.0 + EffortFactor);
		else
			EffortFactor = EffortFactor / (EffortFactor - (DLReal) 1.0);

		/* Effettua la fast deconvolution selettiva
		della componente EP */
		for (I = 0;I < FS;I++)
			{
				/* Normalizza il valore assoluto */
				EPAbs = AEPAbs[I] / EMax;

				/* Applica il fattore di effort controllando
				eventuali singolarit */
				if (EPAbs <= (DLReal) 0.0)
					EPAbs = (DLReal) 0.0;
				else
					if (EPAbs >= (DLReal) 1.0)
						EPAbs = (DLReal) 1.0;
					else
						{
							EPAbs = sqrt(EPAbs);
							EPAbs = (EPAbs * ((DLReal) 1.0 + EffortFactor)) / ((DLReal) 1.0 + EPAbs * EffortFactor);
						}

				/* Calcola la trasformata della deconvoluzione selettiva */
				FFTArray2[I] = std::polar<DLReal>(EPAbs,-std::arg<DLReal>(FFTArray2[I])) +
					std::polar<DLReal>((DLReal) 1.0 - EPAbs,(I * M_PI * EPSigLen) / FS);
			}

		/* Dealloca gli array temporanei */
		delete AEPAbs;

		/* Compone l'inverso componente MP e EP */
		for (I = 0;I < FS;I++)
		  FFTArray1[I] = std::polar<DLReal>(1,std::arg<DLReal>(FFTArray2[I])) / FFTArray1[I];

		/* Ritorna nel dominio del tempo */
		IFft(FFTArray1,FS);

		/* Estrae il filtro inverso */
		for (I = 0,J = (1 + FS + FS - (MPSigLen + EPSigLen + InvFilterLen) / 2) % FS;I < InvFilterLen;I++,J = (J + 1) % FS)
			InvFilter[I] = std::real<DLReal>(FFTArray1[J]);

		/* Dealloca gli array temporanei */
		delete FFTArray1;
		delete FFTArray2;

		/* Operazione completata */
		return True;
	}

/* Inversione tramite selective minimum pahse fast deconvolution */
/* Versione a misura diretta degli effetti di pre echo */
Boolean PEMSMPKirkebyFDInvert(const DLReal * MPSig, int MPSigLen, const DLReal * EPSig, int EPSigLen,
	DLReal * InvFilter,	int InvFilterLen, DLReal EffortFactor, int PEStart, int PETransition, int MExp)
	{
		/* Dimensione da considerare per il segnale */
		int SigLen;

		/* Dimensione FFT */
		int FS;

		/* Array FFT */
		DLComplex * FFTArray1;
		DLComplex * FFTArray2;

		/* Valore massimo e minimo componente EP */
		DLReal * AEPAbs;
		DLReal EPAbs;
		DLReal EMax;

		/* Indici generici */
		int I;
		int J;

		/* Determina la dimensione massima tra i vari segnali */
		if (MPSigLen > InvFilterLen)
			SigLen = MPSigLen;
		else
			SigLen = InvFilterLen;
		if (EPSigLen > SigLen)
			SigLen = EPSigLen;

		/* Controlla se si deve adottare una potenza di due */
		if (MExp >= 0)
			{
				/* Calcola la potenza di due superiore a N */
				for(FS = 1;FS <= SigLen;FS <<= 1);
				FS *= 1 << MExp;
			}
		else
			FS = SigLen;

		/* Alloca gli array per l'FFT */
		if ((FFTArray1 = new DLComplex[FS]) == NULL)
			return False;
		if ((FFTArray2 = new DLComplex[FS]) == NULL)
			return False;

		/* Copia l'array sorgente in quello temporaneo */
		for (I = 0;I < MPSigLen;I++)
			FFTArray1[I] = MPSig[I];

		/* Azzera la parte rimanente */
		for (I = MPSigLen;I < FS;I++)
			FFTArray1[I] = 0;

		/* Porta nel dominio della frequenza */
		Fft(FFTArray1,FS);

		/* Copia l'array sorgente in quello temporaneo */
		for (I = 0;I < EPSigLen;I++)
			FFTArray2[I] = EPSig[I];

		/* Azzera la parte rimanente */
		for (I = EPSigLen;I < FS;I++)
			FFTArray2[I] = 0;

		/* Porta nel dominio della frequenza */
		Fft(FFTArray2,FS);

		/* Effettua l'inversione per l'estrazione degli effetti di pre-echo */
		for (I = 0;I < FS;I++)
			FFTArray2[I] = std::polar<DLReal>((DLReal) 1.0,-std::arg<DLReal>(FFTArray2[I]));

		/* Riporta nel dominio del tempo */
		IFft(FFTArray2,FS);

		/* Alloca l' array per l'estrazione della parte di pre-echo */
		if ((AEPAbs = new DLReal[FS]) == NULL)
			return False;

		/* Estrae l'inverso della parte EP selezionando solo la zona di pre-echo */
		for (I = 0; I < FS - EPSigLen;I++)
			AEPAbs[I] = 0;
		for (I = FS - EPSigLen; I < FS - (PEStart + EPSigLen / 2);I++)
			AEPAbs[I] = std::real<DLReal>(FFTArray2[I]);
		for (I = FS - (PEStart + EPSigLen / 2); I < FS;I++)
			AEPAbs[I] = 0;
		SpacedBlackmanWindow(&AEPAbs[FS - EPSigLen],(EPSigLen / 2) - PEStart,(EPSigLen / 2) - 2 * PETransition,WFull);

		/* Riporta la porzione di pre-echo nel dominio della frequenza */
		for (I = 0;I < FS;I++)
			FFTArray2[I] = AEPAbs[I];
		Fft(FFTArray2,FS);

		/* Estrae l'array valori assoluti porzione di pre-echo */
		for (I = 0;I < FS;I++)
			AEPAbs[I] = std::abs<DLReal>(FFTArray2[I]);

		/* Copia l'array sorgente in quello temporaneo */
		for (I = 0;I < EPSigLen;I++)
			FFTArray2[I] = EPSig[I];

		/* Azzera la parte rimanente */
		for (I = EPSigLen;I < FS;I++)
			FFTArray2[I] = 0;

		/* Porta nel dominio della frequenza */
		Fft(FFTArray2,FS);

		/* Calcola il valore massimo della componente di pre-echo */
		EMax = 0;
		for (I = 0;I < FS;I++)
			{
				if (AEPAbs[I] > EMax)
					EMax = AEPAbs[I];
			}

		/* Riscala il fattore di effort */
		if (EffortFactor >= 0)
			EffortFactor = -EffortFactor / ((DLReal) 1.0 + EffortFactor);
		else
			EffortFactor = EffortFactor / (EffortFactor - (DLReal) 1.0);

		/* Effettua la fast deconvolution selettiva
		della componente EP */
		for (I = 0;I < FS;I++)
			{
				/* Normalizza il valore assoluto */
				EPAbs = AEPAbs[I] / EMax;

				/* Applica il fattore di effort controllando
				eventuali singolarit */
				if (EPAbs <= (DLReal) 0.0)
					EPAbs = (DLReal) 1.0;
				else
					if (EPAbs >= (DLReal) 1.0)
						EPAbs = (DLReal) 0.0;
					else
						{
							EPAbs = (DLReal) 1.0 - sqrt(EPAbs);
							EPAbs = (EPAbs * ((DLReal) 1.0 + EffortFactor)) / ((DLReal) 1.0 + EPAbs * EffortFactor);
						}

				/* Calcola la trasformata della deconvoluzione selettiva */
				FFTArray2[I] = std::polar<DLReal>((DLReal) EPAbs,-std::arg<DLReal>(FFTArray2[I])) +
					std::polar<DLReal>(1.0 - EPAbs,(I * M_PI * EPSigLen) / FS);
			}

		/* Dealloca gli array temporanei */
		delete AEPAbs;

		/* Compone l'inverso componente MP e EP */
		for (I = 0;I < FS;I++)
		  FFTArray1[I] = std::polar<DLReal>(1,std::arg<DLReal>(FFTArray2[I])) / FFTArray1[I];

		/* Ritorna nel dominio del tempo */
		IFft(FFTArray1,FS);

		/* Estrae il filtro inverso */
		for (I = 0,J = (1 + FS + FS - (MPSigLen + EPSigLen + InvFilterLen) / 2) % FS;I < InvFilterLen;I++,J = (J + 1) % FS)
			InvFilter[I] = std::real<DLReal>(FFTArray1[J]);

		/* Dealloca gli array temporanei */
		delete FFTArray1;
		delete FFTArray2;

		/* Operazione completata */
		return True;
	}

/* Inversione tramite selective minimum pahse fast deconvolution */
/* Versione a troncatura degli effetti di pre echo */
Boolean PETFDInvert(const DLReal * MPSig, int MPSigLen, const DLReal * EPSig, int EPSigLen,
	DLReal * InvFilter,	int InvFilterLen, char PEType, int PELowerWindow, int PEUpperWindow,
	DLReal PEStartFreq, DLReal PEEndFreq, int PEFilterLen, DLReal FSharpness, int PEBandSplit,
	DLReal PEWindowExponent, const SLPPrefilteringType SLPType, const DLReal OGainFactor,
	int SampleRate, int MExp)
	{
		/* Dimensione da considerare per il segnale */
		int SigLen;

		/* Dimensione FFT */
		int FS;

		/* Array FFT */
		DLComplex * FFTArray1;
		DLComplex * FFTArray2;

		/* Array rimozione pre-echo */
		DLReal * EPIPERemove;

		/* Array prefiltratura componente EP */
		DLReal * EPPFOut;

		/* Dimensione blocco di uscita filtratura */
		int EPPFOutSize;

		/* Indici generici */
		int I;
		int J;

		/* Determina la dimensione massima tra i vari segnali */
		if (MPSigLen > InvFilterLen)
			SigLen = MPSigLen;
		else
			SigLen = InvFilterLen;
		if (EPSigLen > SigLen)
			SigLen = EPSigLen;

		/* Controlla se si deve adottare una potenza di due */
		if (MExp >= 0)
			{
				/* Calcola la potenza di due superiore a N */
				for(FS = 1;FS <= SigLen;FS <<= 1);
				FS *= 1 << MExp;
			}
		else
			FS = SigLen;

		/* Alloca l'array per la componente EP */
		if ((EPIPERemove = new DLReal[FS]) == NULL)
			return False;

		/* Copia l'array sorgente in quello temporaneo in ordine inverso
		in modo da ottenere direttamente il filtro inverso */
		for (I = 0,J = FS - 1;I < EPSigLen;I++,J--)
			EPIPERemove[J] = EPSig[I];

		/* Azzera la parte rimanente */
		for (I = EPSigLen,J = 0;I < FS;I++,J++)
			EPIPERemove[J] = (DLReal) 0.0;

		/* Controlla il tipo di rimozione pre-echo da adottare */
		if (PEType == 'f')
			{
				/* Estrae la parte EP rimuovendo la zona di pre-echo */
				for (I = 0; I < FS - (PELowerWindow + EPSigLen / 2);I++)
					EPIPERemove[I] = 0;
				SpacedBlackmanWindow(&EPIPERemove[FS - (PELowerWindow + EPSigLen / 2)],
					PELowerWindow + EPSigLen / 2,
					(PELowerWindow + EPSigLen / 2) - 2 * (PELowerWindow - PEUpperWindow),WLeft);

				/* Verifica se si deve effettuare riappianamento */
				if (OGainFactor >= 0)
					/* Rinormalizza a fase minima la componente EP inversa */
					CMPNormFlat(EPIPERemove,FS,(DLReal) 1.0,OGainFactor,-1);
			}
		else
			{
				/* Calcola la dimesione effettiva del filtro */
				if (PEFilterLen % 2 == 0)
					PEFilterLen--;

				/* Calcola la dimensione del blocco di uscita */
				EPPFOutSize = 2 * PELowerWindow + PEFilterLen - 1;

				/* Alloca gli array per la finestratura */
				if ((EPPFOut = new DLReal[EPPFOutSize]) == NULL)
					return False;

				/* Effettua la prefiltratura */
				sputs("Inverted EP sliding lowpass pre-echo windowing...");
				SLPreFilt(&EPIPERemove[FS - (PELowerWindow + EPSigLen / 2)],
					2 * PELowerWindow,2 * PEUpperWindow,PEFilterLen,
					PEBandSplit,PEWindowExponent,SampleRate,PEStartFreq,PEEndFreq,
					2 * PEUpperWindow,FSharpness,EPPFOut,WLeft,SLPType);

				/* Finestratura finale segnale prefiltrato */
				SpacedBlackmanWindow(&EPPFOut[EPPFOutSize / 2 - PELowerWindow],
					2 * PELowerWindow,2 * PEUpperWindow,WLeft);

				/* Ricompone la componente EP rimuovendo la zona di pre-echo */
				for (I = 0; I < FS - (PELowerWindow + EPSigLen / 2);I++)
					EPIPERemove[I] = 0;
				for (I = FS - (PELowerWindow + EPSigLen / 2),J = EPPFOutSize / 2 - PELowerWindow;J < EPPFOutSize / 2;I++,J++)
					EPIPERemove[I] = EPPFOut[J];

				/* Dealloca gli array prefiltratura */
				delete EPPFOut;

				/* Segnala il resto della procedura */
				sputs("Pre-echo truncation inversion completion...");

				/* Verifica se  si deve effettuare riappianamento */
				if (OGainFactor >= 0)
					/* Rinormalizza a fase minima la componente EP inversa */
					CMPNormFlat(EPIPERemove,FS,(DLReal) 1.0,OGainFactor,-1);
			}

		/* Alloca l'array per l'FFT componente EP */
		if ((FFTArray2 = new DLComplex[FS]) == NULL)
			return False;

		/* Copia l'array componente EP in quello per l'FFT */
		for (I = 0;I < FS;I++)
			FFTArray2[I] = EPIPERemove[I];

		/* Dealloca l'array componente EP */
		delete EPIPERemove;

		/* Porta nel dominio della frequenza */
		Fft(FFTArray2,FS);

		/* Alloca l'array per l'FFT componente MP */
		if ((FFTArray1 = new DLComplex[FS]) == NULL)
			return False;

		/* Copia l'array sorgente in quello temporaneo */
		for (I = 0;I < MPSigLen;I++)
			FFTArray1[I] = MPSig[I];

		/* Azzera la parte rimanente */
		for (I = MPSigLen;I < FS;I++)
			FFTArray1[I] = 0;

		/* Porta nel dominio della frequenza */
		Fft(FFTArray1,FS);

		/* Compone l'inverso componente MP e EP */
		for (I = 0;I < FS;I++)
			FFTArray1[I] = FFTArray2[I] / FFTArray1[I];

		/* Ritorna nel dominio del tempo */
		IFft(FFTArray1,FS);

		/* Estrae il filtro inverso */
		for (I = 0,J = (1 + FS + FS - (MPSigLen + EPSigLen + InvFilterLen) / 2) % FS;I < InvFilterLen;I++,J = (J + 1) % FS)
			InvFilter[I] = std::real<DLReal>(FFTArray1[J]);

		/* Dealloca gli array temporanei */
		delete FFTArray1;
		delete FFTArray2;

		/* Operazione completata */
		return True;
	}

/* Experimental, ignore it */

/* Inversione tramite selective minimum pahse fast deconvolution */
/* Versione a troncatura multipla degli effetti di pre echo
con componente EP di riferimento */
Boolean MRefPETFDInvert(const DLReal * MPSig, int MPSigLen, const DLReal * EPSig, int EPSigLen,
	DLReal * InvFilter,	int InvFilterLen, char PEType, int PELowerWindow, int PEUpperWindow,
	DLReal PEStartFreq, DLReal PEEndFreq, int PEFilterLen, DLReal FSharpness, int PEBandSplit,
	DLReal PEWindowExponent, const SLPPrefilteringType SLPType, const DLReal * EPRef, int EPRefLen,
	char RPEType, int RPELowerWindow,	int RPEUpperWindow,	DLReal RPEStartFreq, DLReal RPEEndFreq,
	int RPEFilterLen, DLReal RFSharpness,	int RPEBandSplit,	DLReal RPEWindowExponent,
	const SLPPrefilteringType RSLPType, const DLReal OGainFactor, int SampleRate,	int MExp)
	{
		/* Dimensione da considerare per il segnale */
		int SigLen;

		/* Dimensione FFT */
		int FS;

		/* Array FFT */
		DLComplex * FFTArray1;
		DLComplex * FFTArray2;

		/* Array rimozione pre-echo */
		DLReal * EPIPERemove;

		/* Componente EP di riferimento */
		DLComplex * EPFDRef;

		/* Array prefiltratura componente EP */
		DLReal * EPPFOut;

		/* Dimensione blocco di uscita filtratura */
		int EPPFOutSize;

		/* Indici generici */
		int I;
		int J;

		/* Determina la dimensione massima tra i vari segnali */
		if (MPSigLen > InvFilterLen)
			SigLen = MPSigLen;
		else
			SigLen = InvFilterLen;
		if (EPSigLen > SigLen)
			SigLen = EPSigLen;

		/* Controlla se si deve adottare una potenza di due */
		if (MExp >= 0)
			{
				/* Calcola la potenza di due superiore a N */
				for(FS = 1;FS <= SigLen;FS <<= 1);
				FS *= 1 << MExp;
			}
		else
			FS = SigLen;

		/* Alloca l'array per la componente EP */
		if ((EPIPERemove = new DLReal[FS]) == NULL)
			return False;

		/* Copia l'array sorgente in quello temporaneo in ordine inverso
		in modo da ottenere direttamente il filtro inverso */
		for (I = 0,J = FS - 1;I < EPSigLen;I++,J--)
			EPIPERemove[J] = EPSig[I];

		/* Azzera la parte rimanente */
		for (I = EPSigLen,J = 0;I < FS;I++,J++)
			EPIPERemove[J] = (DLReal) 0.0;

		/* Alloca l'array per l'FFT componente EP */
		if ((FFTArray2 = new DLComplex[FS]) == NULL)
			return False;

		/* Verifica se la rimozione pre-echo con riferimento  abilitata */
		if (RPEType != 'n')
			{
				/* Alloca l'array per la convoluzione con il riferimento */
				if ((EPFDRef = new DLComplex[FS]) == NULL)
					return False;

				/* Copia il riferimento allineandolo per ritardo zero */
				for (I = 0,J = FS - EPRefLen / 2;I < EPRefLen / 2;I++,J++)
					EPFDRef[J] = EPRef[I];
				for (I = EPRefLen / 2,J = 0;J < EPRefLen / 2;I++,J++)
					EPFDRef[J] = EPRef[I];

				/* Azzera la parte rimanente */
				for (I = EPRefLen / 2;I < FS - EPRefLen / 2;I++)
					EPFDRef[I] = 0;

				/* Porta nel dominio della frequenza */
				Fft(EPFDRef,FS);

				/* Copia l'array componente EP in quello per l'FFT */
				for (I = 0;I < FS;I++)
					FFTArray2[I] = EPIPERemove[I];

				/* Porta nel dominio della frequenza */
				Fft(FFTArray2,FS);

				/* Effettua la convoluzione tra il filtro inverso e il riferimento */
				for (I = 0;I < FS;I++)
					/* FFTArray2[I] *= std::polar<DLReal>(((DLReal) 1.0),
						std::arg(EPFDRef[I])); */
					FFTArray2[I] *= EPFDRef[I];

				/* Riporta nel dominio del tempo */
				IFft(FFTArray2,FS);

				/* Estrae la risposta nel tempo */
				for (I = 0; I < FS;I++)
					EPIPERemove[I] = std::real<DLReal>(FFTArray2[I]);

				/* Controlla il tipo di rimozione pre echo da adottare */
				if (RPEType == 'f')
					{
						/* Estrae la parte EP rimuovendo la zona di pre-echo */
						for (I = 0; I < FS - (RPELowerWindow + EPSigLen / 2);I++)
							EPIPERemove[I] = 0;
						SpacedBlackmanWindow(&EPIPERemove[FS - (RPELowerWindow + EPSigLen / 2)],
							RPELowerWindow + EPSigLen / 2,
							(RPELowerWindow + EPSigLen / 2) - 2 * (RPELowerWindow - RPEUpperWindow),WLeft);
					}
				else
					{
						/* Calcola la dimesione effettiva del filtro */
						if (RPEFilterLen % 2 == 0)
							RPEFilterLen--;

						/* Calcola la dimensione del blocco di uscita */
						EPPFOutSize = 2 * RPELowerWindow + RPEFilterLen - 1;

						/* Alloca gli array per la finestratura */
						if ((EPPFOut = new DLReal[EPPFOutSize]) == NULL)
							return False;

						/* Effettua la prefiltratura */
						sputs("Inverted EP sliding lowpass pre-echo windowing...");
						SLPreFilt(&EPIPERemove[FS - (RPELowerWindow + EPSigLen / 2)],
							2 * RPELowerWindow,2 * RPEUpperWindow,RPEFilterLen,
							RPEBandSplit,RPEWindowExponent,SampleRate,RPEStartFreq,RPEEndFreq,
							2 * RPEUpperWindow,RFSharpness,EPPFOut,WLeft,RSLPType);

						/* Finestratura finale segnale prefiltrato */
						SpacedBlackmanWindow(&EPPFOut[EPPFOutSize / 2 - RPELowerWindow],
							2 * RPELowerWindow,2 * RPEUpperWindow,WLeft);

						/* Estrae la parte EP rimuovendo la zona di pre-echo */
						for (I = 0; I < FS - (RPELowerWindow + EPSigLen / 2);I++)
							EPIPERemove[I] = 0;
						for (I = FS - (RPELowerWindow + EPSigLen / 2),J = EPPFOutSize / 2 - RPELowerWindow;J < EPPFOutSize / 2;I++,J++)
							EPIPERemove[I] = EPPFOut[J];

						/* Verifica se  si deve effettuare riappianamento */
						if (OGainFactor >= 0)
							/* Rinormalizza a fase minima la componente EP inversa */
							CMPNormFlat(EPIPERemove,FS,(DLReal) 1.0,OGainFactor,-1);

						/* Dealloca gli array prefiltratura */
						delete EPPFOut;
					}

				/* Copia l'array sorgente in quello temporaneo */
				for (I = 0;I < FS;I++)
					FFTArray2[I] = EPIPERemove[I];

				/* Porta nel dominio della frequenza */
				Fft(FFTArray2,FS);

				/* Rimuove per deconvoluzione il riferimento */
				for (I = 0;I < FS;I++)
					/*FFTArray2[I] /= EPFDRef[I];*/
					FFTArray2[I] *= std::polar<DLReal>(((DLReal) 1.0),
						-std::arg(EPFDRef[I]));

				/* Dealloca gli array temporanei */
				delete EPFDRef;

				/* Riporta nel dominio nel tempo */
				IFft(FFTArray2,FS);

				/* Estrae la risposta nel tempo */
				for (I = 0; I < FS;I++)
					EPIPERemove[I] = std::real<DLReal>(FFTArray2[I]);
			}

		/* Controlla il tipo di rimozione pre-echo da adottare */
		if (PEType == 'f')
			{
				/* Estrae la parte EP rimuovendo la zona di pre-echo */
				for (I = 0; I < FS - (PELowerWindow + EPSigLen / 2);I++)
					EPIPERemove[I] = 0;
				SpacedBlackmanWindow(&EPIPERemove[FS - (PELowerWindow + EPSigLen / 2)],
					PELowerWindow + EPSigLen / 2,
					(PELowerWindow + EPSigLen / 2) - 2 * (PELowerWindow - PEUpperWindow),WLeft);

				/* Verifica se si deve effettuare riappianamento */
				if (OGainFactor >= 0)
					/* Rinormalizza a fase minima la componente EP inversa */
					CMPNormFlat(EPIPERemove,FS,(DLReal) 1.0,OGainFactor,-1);
			}
		else
			{
				/* Calcola la dimesione effettiva del filtro */
				if (PEFilterLen % 2 == 0)
					PEFilterLen--;

				/* Calcola la dimensione del blocco di uscita */
				EPPFOutSize = 2 * PELowerWindow + PEFilterLen - 1;

				/* Alloca gli array per la finestratura */
				if ((EPPFOut = new DLReal[EPPFOutSize]) == NULL)
					return False;

				/* Effettua la prefiltratura */
				sputs("Inverted EP sliding lowpass pre-echo windowing...");
				SLPreFilt(&EPIPERemove[FS - (PELowerWindow + EPSigLen / 2)],
					2 * PELowerWindow,2 * PEUpperWindow,PEFilterLen,
					PEBandSplit,PEWindowExponent,SampleRate,PEStartFreq,PEEndFreq,
					2 * PEUpperWindow,FSharpness,EPPFOut,WLeft,SLPType);

				/* Finestratura finale segnale prefiltrato */
				SpacedBlackmanWindow(&EPPFOut[EPPFOutSize / 2 - PELowerWindow],
					2 * PELowerWindow,2 * PEUpperWindow,WLeft);

				/* Ricompone la componente EP rimuovendo la zona di pre-echo */
				for (I = 0; I < FS - (PELowerWindow + EPSigLen / 2);I++)
					EPIPERemove[I] = 0;
				for (I = FS - (PELowerWindow + EPSigLen / 2),J = EPPFOutSize / 2 - PELowerWindow;J < EPPFOutSize / 2;I++,J++)
					EPIPERemove[I] = EPPFOut[J];

				/* Dealloca gli array prefiltratura */
				delete EPPFOut;

				/* Segnala il resto della procedura */
				sputs("Pre-echo truncation inversion completion...");

				/* Verifica se  si deve effettuare riappianamento */
				if (OGainFactor >= 0)
					/* Rinormalizza a fase minima la componente EP inversa */
					CMPNormFlat(EPIPERemove,FS,(DLReal) 1.0,OGainFactor,-1);
			}

		/* Copia l'array componente EP in quello per l'FFT */
		for (I = 0;I < FS;I++)
			FFTArray2[I] = EPIPERemove[I];

		/* Dealloca l'array componente EP */
		delete EPIPERemove;

		/* Porta nel dominio della frequenza */
		Fft(FFTArray2,FS);

		/* Alloca l'array per l'FFT componente MP */
		if ((FFTArray1 = new DLComplex[FS]) == NULL)
			return False;

		/* Copia l'array sorgente in quello temporaneo */
		for (I = 0;I < MPSigLen;I++)
			FFTArray1[I] = MPSig[I];

		/* Azzera la parte rimanente */
		for (I = MPSigLen;I < FS;I++)
			FFTArray1[I] = 0;

		/* Porta nel dominio della frequenza */
		Fft(FFTArray1,FS);

		/* Compone l'inverso componente MP e EP */
		for (I = 0;I < FS;I++)
			FFTArray1[I] = FFTArray2[I] / FFTArray1[I];

		/* Ritorna nel dominio del tempo */
		IFft(FFTArray1,FS);

		/* Estrae il filtro inverso */
		for (I = 0,J = (1 + FS + FS - (MPSigLen + EPSigLen + InvFilterLen) / 2) % FS;I < InvFilterLen;I++,J = (J + 1) % FS)
			InvFilter[I] = std::real<DLReal>(FFTArray1[J]);

		/* Dealloca gli array temporanei */
		delete FFTArray1;
		delete FFTArray2;

		/* Operazione completata */
		return True;
	}