File: dm_crypt_key.rst

package info (click to toggle)
drgn 0.0.33-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,892 kB
  • sloc: python: 59,081; ansic: 51,400; awk: 423; makefile: 339; sh: 113
file content (608 lines) | stat: -rw-r--r-- 23,234 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
Recovering a dm-crypt Encryption Key
====================================

| Author: Omar Sandoval
| Date: January 11th, 2024

.. highlight:: pycon
.. linuxversion:: v6.7

`dm-crypt <https://docs.kernel.org/admin-guide/device-mapper/dm-crypt.html>`_
is the Linux kernel's transparent disk encryption subsystem. I recently had to
recover the master key for an encrypted disk where the passphrase was no longer
known, but the dm-crypt device was still open. Normally, the key is stored in
kernel space and cannot be accessed by user space. However, with drgn, we can
traverse kernel data structures to recover the key. This is a great example of
how to jump between kernel code and drgn to navigate a subsystem.

.. warning::

   The dm-crypt master key is obviously very sensitive information that
   shouldn't be exposed carelessly.

   As a disclaimer for anyone concerned about the security implications:
   everything is working as intended here. Debugging the live kernel with drgn
   requires ``root``, and ``root`` has many other ways to access sensitive
   information (loading kernel modules, triggering a kernel core dump, etc.).
   Solutions like `inline encryption
   <https://docs.kernel.org/block/inline-encryption.html>`_ and
   :manpage:`kernel_lockdown(7)` can be used for defense in depth if necessary.

Setup
-----

For this writeup, I'm going to set up dm-crypt in a virtual machine running
Linux 6.7.

.. code-block:: console

    # uname -r
    6.7.0
    # cryptsetup luksFormat /dev/vdb

    WARNING!
    ========
    This will overwrite data on /dev/vdb irrevocably.

    Are you sure? (Type 'yes' in capital letters): YES
    Enter passphrase for /dev/vdb: hello
    Verify passphrase: hello
    # cryptsetup open /dev/vdb mycrypt
    Enter passphrase for /dev/vdb: hello

The default configuration is `AES
<https://en.wikipedia.org/wiki/Advanced_Encryption_Standard>`_ in `XTS
<https://en.wikipedia.org/wiki/Disk_encryption_theory#XTS>`_ mode with a
512-bit key:

.. code-block:: console

    # cryptsetup status mycrypt
    /dev/mapper/mycrypt is active.
      type:    LUKS2
      cipher:  aes-xts-plain64
      keysize: 512 bits
      key location: keyring
      device:  /dev/vdb
      sector size:  512
      offset:  32768 sectors
      size:    33521664 sectors
      mode:    read/write

The new device is ``dm-0``:

.. code-block:: console

    # realpath /dev/mapper/mycrypt
    /dev/dm-0

Getting from Device Mapper to the Crypto API
--------------------------------------------

The `dm-crypt documentation
<https://gitlab.com/cryptsetup/cryptsetup/-/wikis/DMCrypt>`_ tells us that
"Device-mapper is infrastructure in the Linux kernel that provides a generic
way to create virtual layers of block devices. Device-mapper crypt target
provides transparent encryption of block devices using the kernel crypto API."

Our first goal is therefore to get to whatever context is used by the crypto
API, which likely includes the encryption key. To do that, we're going to have
to navigate through the device mapper code.

To start, let's find the virtual disk for our dm-crypt target in drgn using the
:meth:`~drgn.helpers.linux.block.for_each_disk()` and
:meth:`~drgn.helpers.linux.block.disk_name()` helpers:

    >>> for disk in for_each_disk():
    ...     if disk_name(disk) == b"dm-0":
    ...             print(disk)
    ...             break
    ...
    *(struct gendisk *)0xffffa3b9421b2c00 = {
            ...
    }

``struct gendisk`` has a function table, ``fops``, with callbacks to the disk
driver. Specifically, the ``submit_bio`` callback intercepts disk reads and
writes::

    >>> disk.fops.submit_bio
    (void (*)(struct bio *))dm_submit_bio+0x0 = 0xffffffffc05761e0

Let's take a look at :linux:`dm_submit_bio() <drivers/md/dm.c:1840>`:

.. code-block:: c

    static void dm_submit_bio(struct bio *bio)
    {
            struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
            int srcu_idx;
            struct dm_table *map;

            map = dm_get_live_table(md, &srcu_idx);
            ...
            dm_split_and_process_bio(md, map, bio);
            ...
    }

So the disk's private data is a ``struct mapped_device``. Let's get it in drgn::

    >>> md = cast("struct mapped_device *", disk.private_data)

:linux:`dm_get_live_table() <drivers/md/dm.c:685>` gets the device mapper
table:

.. code-block:: c

    struct dm_table *dm_get_live_table(struct mapped_device *md,
                                       int *srcu_idx) __acquires(md->io_barrier)
    {
            *srcu_idx = srcu_read_lock(&md->io_barrier);

            return srcu_dereference(md->map, &md->io_barrier);
    }

`SRCU <https://lwn.net/Articles/202847/>`_ is a synchronization mechanism which
we can blithely ignore::

    >>> map = cast("struct dm_table *", md.map)

``dm_submit_bio()`` then calls :linux:`dm_split_and_process_bio()
<drivers/md/dm.c:1771>`, which calls :linux:`__split_and_process_bio()
<drivers/md/dm.c:1711>`:

.. code-block:: c

    static blk_status_t __split_and_process_bio(struct clone_info *ci)
    {
            struct bio *clone;
            struct dm_target *ti;
            unsigned int len;

            ti = dm_table_find_target(ci->map, ci->sector);
            ...
            __map_bio(clone);
    }

:linux:`dm_table_find_target() <drivers/md/dm-table.c:1471>` finds the
appropriate device mapper target in a table:

.. code-block:: c

    struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
    {
            ...
            return &t->targets[(KEYS_PER_NODE * n) + k];
    }

Our simple case only has one target::

    >>> map.num_targets
    (unsigned int)1
    >>> ti = map.targets

``__split_and_process_bio()`` then calls :linux:`__map_bio()
<drivers/md/dm.c:1398>`:

.. code-block:: c

    static void __map_bio(struct bio *clone)
    {
            struct dm_target_io *tio = clone_to_tio(clone);
            struct dm_target *ti = tio->ti;
            struct dm_io *io = tio->io;
            struct mapped_device *md = io->md;
            int r;

            ...
                    if (likely(ti->type->map == linear_map))
                            r = linear_map(ti, clone);
                    else if (ti->type->map == stripe_map)
                            r = stripe_map(ti, clone);
                    else
                            r = ti->type->map(ti, clone);
            ...
    }

So we need to look at another callback::

    >>> ti.type.map
    (dm_map_fn)crypt_map+0x0 = 0xffffffffc08a03f0

:linux:`crypt_map() <drivers/md/dm-crypt.c:3411>` is part of dm-crypt, so we've
finally made it out of generic device mapper:

.. code-block:: c

    static int crypt_map(struct dm_target *ti, struct bio *bio)
    {
            struct dm_crypt_io *io;
            struct crypt_config *cc = ti->private;
            ...

And we have the dm-crypt configuration::

    >>> cc = cast("struct crypt_config *", ti.private)

Dumping it out reveals some crypto API context!

.. code-block:: pycon

    >>> cc
    *(struct crypt_config *)0xffffa3b9421b2400 = {
            ...
            .cipher_tfm = (union <anonymous>){
                    .tfms = (struct crypto_skcipher **)0xffffa3b9438667c0,
                    ...
            },
            .tfms_count = (unsigned int)1,
            ...
    }
    >>> tfm = cc.cipher_tfm.tfms[0]

Descending Down the Crypto API
------------------------------

The Linux kernel crypto API is very generic and is implemented with a lot of
runtime polymorphism. Our next goal is to traverse through the crypto API data
structures to find the key.

The crypto API refers to cryptographic ciphers as `"transformations"
<https://docs.kernel.org/6.7/crypto/intro.html>`_. Transformations can be
combined and nested in various ways. The ``tfm`` variable we found is a
`"transformation object"
<https://docs.kernel.org/6.7/crypto/intro.html#terminology>`_, which is an
instance of a transformation::

    >>> tfm
    *(struct crypto_skcipher *)0xffffa3b948218c00 = {
            .reqsize = (unsigned int)160,
            .base = (struct crypto_tfm){
                    .refcnt = (refcount_t){
                            .refs = (atomic_t){
                                    .counter = (int)1,
                            },
                    },
                    .crt_flags = (u32)0,
                    .node = (int)-1,
                    .exit = (void (*)(struct crypto_tfm *))crypto_skcipher_exit_tfm+0x0 = 0xffffffffb77d2600,
                    .__crt_alg = (struct crypto_alg *)0xffffa3b943dab448,
                    .__crt_ctx = (void *[]){},
            },
    }
    >>> tfm.base.__crt_alg
    *(struct crypto_alg *)0xffffa3b943dab448 = {
            ...
            .cra_name = (char [128])"xts(aes)",
            ...
    }

This is an ``skcipher``, or a symmetric key cipher. It is using the
``xts(aes)`` algorithm as expected. ``__crt_ctx`` is an opaque context, which
is promising if we can figure out how to interpret it. The ``exit`` callback
looks like a cleanup function. That seems like a good way for us to figure out
how ``__crt_ctx`` is used. Here are :linux:`crypto_skcipher_exit_tfm()
<crypto/skcipher.c:701>` and the :linux:`crypto_skcipher_alg()
<include/crypto/skcipher.h:384>` and :linux:`crypto_skcipher_tfm()
<include/crypto/skcipher.h:314>` getters it uses:

.. code-block:: c

    static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm)
    {
            struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
            struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);

            alg->exit(skcipher);
    }

    static inline struct skcipher_alg *crypto_skcipher_alg(
            struct crypto_skcipher *tfm)
    {
            return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
                                struct skcipher_alg, base);
    }

    static inline struct crypto_tfm *crypto_skcipher_tfm(
            struct crypto_skcipher *tfm)
    {
            return &tfm->base;
    }

We can emulate the getters in drgn to find the underlying implementation::

    >>> def crypto_skcipher_alg(tfm):
    ...     return container_of(tfm.base.__crt_alg, "struct skcipher_alg", "base")
    ...
    >>> crypto_skcipher_alg(tfm).exit
    (void (*)(struct crypto_skcipher *))simd_skcipher_exit+0x0 = 0xffffffffc058b1f0

My machine supports the `AES-NI
<https://en.wikipedia.org/wiki/AES_instruction_set#x86_architecture_processors>`_
x86 extension. The kernel cannot use SIMD instructions like AES-NI in some
contexts, so it has an :linuxt:`extra layer of indirection <crypto/simd.c:14>`
to go through an asynchronous daemon when necessary. This involves a couple of
wrapper transformation objects. :linux:`simd_skcipher_exit()
<crypto/simd.c:104>` shows us how to unwrap the first one:

.. code-block:: c

    static void simd_skcipher_exit(struct crypto_skcipher *tfm)
    {
            struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);

            cryptd_free_skcipher(ctx->cryptd_tfm);
    }

We just need one more getter in drgn, :linux:`crypto_skcipher_ctx()
<include/crypto/internal/skcipher.h:225>`::

    >>> def crypto_skcipher_ctx(tfm):
    ...     return cast("void *", tfm.base.__crt_ctx)
    ...
    >>> simd_ctx = cast("struct simd_skcipher_ctx *", crypto_skcipher_ctx(tfm))
    >>> cryptd_tfm = simd_ctx.cryptd_tfm
    >>> cryptd_tfm
    *(struct cryptd_skcipher *)0xffffa3b94b5e4cc0 = {
            .base = (struct crypto_skcipher){
                    .reqsize = (unsigned int)80,
                    .base = (struct crypto_tfm){
                            .refcnt = (refcount_t){
                                    .refs = (atomic_t){
                                            .counter = (int)1,
                                    },
                            },
                            .crt_flags = (u32)0,
                            .node = (int)-1,
                            .exit = (void (*)(struct crypto_tfm *))crypto_skcipher_exit_tfm+0x0 = 0xffffffffb77d2600,
                            .__crt_alg = (struct crypto_alg *)0xffffa3b9421b2848,
                            .__crt_ctx = (void *[]){},
                    },
            },
    }

We saw ``crypto_skcipher_exit_tfm()`` earlier, so we know where to look next::

    >>> crypto_skcipher_alg(cryptd_tfm.base).exit
    (void (*)(struct crypto_skcipher *))cryptd_skcipher_exit_tfm+0x0 = 0xffffffffc04d6210

:linux:`cryptd_skcipher_exit_tfm() <crypto/cryptd.c:358>` shows us how to
unwrap this transformation object:

.. code-block:: c

    static void cryptd_skcipher_exit_tfm(struct crypto_skcipher *tfm)
    {
            struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);

            crypto_free_skcipher(ctx->child);
    }

Now we can get the actual cipher transformation object::

    >>> cryptd_ctx = cast("struct cryptd_skcipher_ctx *", crypto_skcipher_ctx(cryptd_tfm.base))
    >>> child_tfm = cryptd_ctx.child
    >>> child_tfm
    *(struct crypto_skcipher *)0xffffa3b945dc4000 = {
            .reqsize = (unsigned int)0,
            .base = (struct crypto_tfm){
                    .refcnt = (refcount_t){
                            .refs = (atomic_t){
                                    .counter = (int)1,
                            },
                    },
                    .crt_flags = (u32)0,
                    .node = (int)-1,
                    .exit = (void (*)(struct crypto_tfm *))0x0,
                    .__crt_alg = (struct crypto_alg *)0xffffffffc05e7d80,
                    .__crt_ctx = (void *[]){},
            },
    }

This one doesn't have an exit callback, so let's look at the algorithm::

    >>> crypto_skcipher_alg(child_tfm)
    *(struct skcipher_alg *)0xffffffffc05e7d40 = {
            .setkey = (int (*)(struct crypto_skcipher *, const u8 *, unsigned int))xts_aesni_setkey+0x0 = 0xffffffffc059efb0,
            ...
    }

:linux:`xts_aesni_setkey() <arch/x86/crypto/aesni-intel_glue.c:880>` is very
enlightening:

.. code-block:: c

    static int xts_aesni_setkey(struct crypto_skcipher *tfm, const u8 *key,
                                unsigned int keylen)
    {
            struct aesni_xts_ctx *ctx = aes_xts_ctx(tfm);
            int err;

            err = xts_verify_key(tfm, key, keylen);
            if (err)
                    return err;

            keylen /= 2;

            /* first half of xts-key is for crypt */
            err = aes_set_key_common(&ctx->crypt_ctx, key, keylen);
            if (err)
                    return err;

            /* second half of xts-key is for tweak */
            return aes_set_key_common(&ctx->tweak_ctx, key + keylen, keylen);
    }

XTS splits the provided key into two keys: one for data and one for a "tweak".
They are stored in ``ctx->crypt_ctx`` and ``ctx->tweak_ctx``, respectively.

To reach ``ctx``, we need one more getter, :linux:`aes_xts_ctx()
<arch/x86/crypto/aesni-intel_glue.c:226>`:

.. code-block:: c

    static inline struct aesni_xts_ctx *aes_xts_ctx(struct crypto_skcipher *tfm)
    {
            return aes_align_addr(crypto_skcipher_ctx(tfm));
    }

Which uses :linux:`aes_align_addr() <arch/x86/crypto/aesni-intel_glue.c:83>`:

.. code-block:: c

    #define AESNI_ALIGN     16

    static inline void *aes_align_addr(void *addr)
    {
            if (crypto_tfm_ctx_alignment() >= AESNI_ALIGN)
                    return addr;
            return PTR_ALIGN(addr, AESNI_ALIGN);
    }

Implementing that in drgn gets us the key material!

.. code-block:: pycon

    >>> def aes_xts_ctx(tfm):
    ...     AESNI_ALIGN = 16
    ...     mask = AESNI_ALIGN - 1
    ...     ctx = cast("unsigned long", crypto_skcipher_ctx(tfm))
    ...     return cast("struct aesni_xts_ctx *", (ctx + mask) & ~mask)
    ...
    >>> xts_ctx = aes_xts_ctx(cryptd_ctx.child)
    >>> xts_ctx
    *(struct aesni_xts_ctx *)0xffffa3b945dc4030 = {
            .tweak_ctx = (struct crypto_aes_ctx){
                    .key_enc = (u32 [60]){
                            4053857025, 2535432618, 3497512106, 429624542,
                            190965574, 620881567, 2728140233, 1574816406,
                            1642869364, 4143158238, 646209396, 1059050410,
                            2124513770, 1537238901, 4181490364, 2766254122,
                            2225457809, 1918261583, 1423050299, 1808651665,
                            18645611, 1522328862, 2743115682, 123809672, 1080042880,
                            842431695, 1726249716, 220835685, 3602512678,
                            2349145656, 797278618, 686075410, 2304003180,
                            3143774371, 3716565591, 3501188402, 2797609477,
                            717569085, 88128935, 765727669, 1552680193, 3891148194,
                            979927029, 3938949831, 554080963, 197371646, 243473241,
                            589760748, 2460666129, 1967455411, 1328317254,
                            2783648129, 669994703, 741140529, 581956456, 25754500,
                            3453357406, 3096637933, 4156453547, 1381329706,
                    },
                    .key_dec = (u32 [60]){
                            3453357406, 3096637933, 4156453547, 1381329706,
                            1691590497, 1611861415, 2033812690, 3535200077,
                            1503779265, 1400120959, 2713205381, 402136101,
                            2278736107, 79729350, 422218101, 2878299039, 3072023845,
                            181796798, 4073463034, 3057657504, 2722800653,
                            2199015981, 501881779, 2997211882, 893456792,
                            3184435867, 4162446148, 1150040666, 3430456984,
                            559478304, 2667071902, 2941241689, 2504843709,
                            2291118851, 1171735007, 3163937054, 4210330224,
                            3978324152, 3214983102, 834109639, 179351664, 499339966,
                            3445158620, 4181891265, 4283462504, 399827656,
                            1384175366, 2383888249, 3581021031, 393470670,
                            3499860066, 874146333, 3319833674, 3901002144,
                            1163146702, 3700942975, 4053857025, 2535432618,
                            3497512106, 429624542,
                    },
                    .key_length = (u32)32,
            },
            .crypt_ctx = (struct crypto_aes_ctx){
                    .key_enc = (u32 [60]){
                            91118336, 1683438947, 280915620, 1674463119, 3416529787,
                            95371281, 156839573, 539041733, 2748950209, 3348011938,
                            3610309894, 3036590729, 1176448220, 1135635661,
                            1256800856, 1791516061, 4259008143, 978703661,
                            3982827563, 1503367842, 2366333926, 3468365611,
                            2219986291, 4003074286, 3589535297, 4020642668,
                            46334791, 1532531173, 3026313791, 2061167892,
                            4270366823, 269660297, 1916354478, 2644450498,
                            2673614725, 3288632928, 2828270575, 3528005371,
                            750892700, 1020462613, 735205841, 3058517267, 689003158,
                            3977630966, 4257919917, 797156694, 54662090, 1066472927,
                            3047676072, 65707451, 721143597, 3354268635, 1004719636,
                            341928770, 388200584, 682782039, 4002672596, 3984159343,
                            3347232066, 7120537,
                    },
                    .key_dec = (u32 [60]){
                            4002672596, 3984159343, 3347232066, 7120537, 2275767381,
                            3582792214, 728749911, 250810445, 2145441323,
                            3415330885, 1171250799, 717236012, 72947820, 1378379331,
                            4276274497, 631031578, 3286455042, 3027306094,
                            2388528682, 1863317827, 1027747936, 1450278447,
                            2898961154, 3682468443, 2929020077, 2006078828,
                            976160836, 3780245353, 3002856629, 1798524495,
                            4206615853, 2008326489, 523503039, 3641121217,
                            1304255784, 3682533165, 3583917429, 3653810938,
                            2441646946, 2366602356, 2101484483, 3325238398,
                            2495235305, 2529403397, 1276800912, 206997391,
                            1212164504, 478670614, 2260253082, 3144746941,
                            1384732823, 41543404, 2858181789, 1078781983,
                            1142337047, 1422378638, 91118336, 1683438947, 280915620,
                            1674463119,
                    },
                    .key_length = (u32)32,
            },
    }

Extracting the AES Key
----------------------

Since we have a 512-bit key, XTS uses two 256-bit AES keys. You'll notice that
the ``key_enc`` fields above are much larger than that. This is because AES
expands the key into a number of "round keys" using a `"key schedule"
<https://en.wikipedia.org/wiki/AES_key_schedule>`_. Luckily, the first few
round keys are copied directly from the original key.

With that information, we can finally recover the original key::

    >>> def aes_key_from_ctx(ctx):
    ...     words = ctx.key_enc.value_()[:ctx.key_length / 4]
    ...     return b"".join(word.to_bytes(4, "little") for word in words)
    ...
    >>> aes_key_from_ctx(xts_ctx.crypt_ctx).hex()
    '005b6e05633d5764a46ebe108f47ce637b1ba4cb1140af05952e5909c51f2120'
    >>> aes_key_from_ctx(xts_ctx.tweak_ctx).hex()
    '01f3a0f1aaa11f97aacc77d0de8c9b1946e7610b9fe60125c91d9ca296cadd5d'

Which we can double check with cryptsetup:

.. code-block:: console
   :emphasize-lines: 17-20

    # cryptsetup luksDump --dump-master-key /dev/vdb

    WARNING!
    ========
    The header dump with volume key is sensitive information
    that allows access to encrypted partition without a passphrase.
    This dump should be stored encrypted in a safe place.

    Are you sure? (Type 'yes' in capital letters): YES
    Enter passphrase for /dev/vdb: hello
    LUKS header information for /dev/vdb
    Cipher name:    aes
    Cipher mode:    xts-plain64
    Payload offset: 32768
    UUID:           b43cba2c-532b-4491-bbb9-763b55bd7f03
    MK bits:        512
    MK dump:        00 5b 6e 05 63 3d 57 64 a4 6e be 10 8f 47 ce 63
                    7b 1b a4 cb 11 40 af 05 95 2e 59 09 c5 1f 21 20
                    01 f3 a0 f1 aa a1 1f 97 aa cc 77 d0 de 8c 9b 19
                    46 e7 61 0b 9f e6 01 25 c9 1d 9c a2 96 ca dd 5d

Conclusion
----------

Before this, I had almost no knowledge of device mapper or crypto API
internals. drgn makes it easy to explore the kernel and learn how it works.

Note that different system configurations will have different representations
in the crypto API. For example, different ciphers modes will obviously have
different transformations. Even the lack of AES-NI with the same cipher mode
results in different transformation objects.

I converted this case study to the :contrib:`dm_crypt_key.py` script in drgn's
``contrib`` directory. It could be extended to cover other ciphers in the
future.