1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
|
Recovering a dm-crypt Encryption Key
====================================
| Author: Omar Sandoval
| Date: January 11th, 2024
.. highlight:: pycon
.. linuxversion:: v6.7
`dm-crypt <https://docs.kernel.org/admin-guide/device-mapper/dm-crypt.html>`_
is the Linux kernel's transparent disk encryption subsystem. I recently had to
recover the master key for an encrypted disk where the passphrase was no longer
known, but the dm-crypt device was still open. Normally, the key is stored in
kernel space and cannot be accessed by user space. However, with drgn, we can
traverse kernel data structures to recover the key. This is a great example of
how to jump between kernel code and drgn to navigate a subsystem.
.. warning::
The dm-crypt master key is obviously very sensitive information that
shouldn't be exposed carelessly.
As a disclaimer for anyone concerned about the security implications:
everything is working as intended here. Debugging the live kernel with drgn
requires ``root``, and ``root`` has many other ways to access sensitive
information (loading kernel modules, triggering a kernel core dump, etc.).
Solutions like `inline encryption
<https://docs.kernel.org/block/inline-encryption.html>`_ and
:manpage:`kernel_lockdown(7)` can be used for defense in depth if necessary.
Setup
-----
For this writeup, I'm going to set up dm-crypt in a virtual machine running
Linux 6.7.
.. code-block:: console
# uname -r
6.7.0
# cryptsetup luksFormat /dev/vdb
WARNING!
========
This will overwrite data on /dev/vdb irrevocably.
Are you sure? (Type 'yes' in capital letters): YES
Enter passphrase for /dev/vdb: hello
Verify passphrase: hello
# cryptsetup open /dev/vdb mycrypt
Enter passphrase for /dev/vdb: hello
The default configuration is `AES
<https://en.wikipedia.org/wiki/Advanced_Encryption_Standard>`_ in `XTS
<https://en.wikipedia.org/wiki/Disk_encryption_theory#XTS>`_ mode with a
512-bit key:
.. code-block:: console
# cryptsetup status mycrypt
/dev/mapper/mycrypt is active.
type: LUKS2
cipher: aes-xts-plain64
keysize: 512 bits
key location: keyring
device: /dev/vdb
sector size: 512
offset: 32768 sectors
size: 33521664 sectors
mode: read/write
The new device is ``dm-0``:
.. code-block:: console
# realpath /dev/mapper/mycrypt
/dev/dm-0
Getting from Device Mapper to the Crypto API
--------------------------------------------
The `dm-crypt documentation
<https://gitlab.com/cryptsetup/cryptsetup/-/wikis/DMCrypt>`_ tells us that
"Device-mapper is infrastructure in the Linux kernel that provides a generic
way to create virtual layers of block devices. Device-mapper crypt target
provides transparent encryption of block devices using the kernel crypto API."
Our first goal is therefore to get to whatever context is used by the crypto
API, which likely includes the encryption key. To do that, we're going to have
to navigate through the device mapper code.
To start, let's find the virtual disk for our dm-crypt target in drgn using the
:meth:`~drgn.helpers.linux.block.for_each_disk()` and
:meth:`~drgn.helpers.linux.block.disk_name()` helpers:
>>> for disk in for_each_disk():
... if disk_name(disk) == b"dm-0":
... print(disk)
... break
...
*(struct gendisk *)0xffffa3b9421b2c00 = {
...
}
``struct gendisk`` has a function table, ``fops``, with callbacks to the disk
driver. Specifically, the ``submit_bio`` callback intercepts disk reads and
writes::
>>> disk.fops.submit_bio
(void (*)(struct bio *))dm_submit_bio+0x0 = 0xffffffffc05761e0
Let's take a look at :linux:`dm_submit_bio() <drivers/md/dm.c:1840>`:
.. code-block:: c
static void dm_submit_bio(struct bio *bio)
{
struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
int srcu_idx;
struct dm_table *map;
map = dm_get_live_table(md, &srcu_idx);
...
dm_split_and_process_bio(md, map, bio);
...
}
So the disk's private data is a ``struct mapped_device``. Let's get it in drgn::
>>> md = cast("struct mapped_device *", disk.private_data)
:linux:`dm_get_live_table() <drivers/md/dm.c:685>` gets the device mapper
table:
.. code-block:: c
struct dm_table *dm_get_live_table(struct mapped_device *md,
int *srcu_idx) __acquires(md->io_barrier)
{
*srcu_idx = srcu_read_lock(&md->io_barrier);
return srcu_dereference(md->map, &md->io_barrier);
}
`SRCU <https://lwn.net/Articles/202847/>`_ is a synchronization mechanism which
we can blithely ignore::
>>> map = cast("struct dm_table *", md.map)
``dm_submit_bio()`` then calls :linux:`dm_split_and_process_bio()
<drivers/md/dm.c:1771>`, which calls :linux:`__split_and_process_bio()
<drivers/md/dm.c:1711>`:
.. code-block:: c
static blk_status_t __split_and_process_bio(struct clone_info *ci)
{
struct bio *clone;
struct dm_target *ti;
unsigned int len;
ti = dm_table_find_target(ci->map, ci->sector);
...
__map_bio(clone);
}
:linux:`dm_table_find_target() <drivers/md/dm-table.c:1471>` finds the
appropriate device mapper target in a table:
.. code-block:: c
struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
{
...
return &t->targets[(KEYS_PER_NODE * n) + k];
}
Our simple case only has one target::
>>> map.num_targets
(unsigned int)1
>>> ti = map.targets
``__split_and_process_bio()`` then calls :linux:`__map_bio()
<drivers/md/dm.c:1398>`:
.. code-block:: c
static void __map_bio(struct bio *clone)
{
struct dm_target_io *tio = clone_to_tio(clone);
struct dm_target *ti = tio->ti;
struct dm_io *io = tio->io;
struct mapped_device *md = io->md;
int r;
...
if (likely(ti->type->map == linear_map))
r = linear_map(ti, clone);
else if (ti->type->map == stripe_map)
r = stripe_map(ti, clone);
else
r = ti->type->map(ti, clone);
...
}
So we need to look at another callback::
>>> ti.type.map
(dm_map_fn)crypt_map+0x0 = 0xffffffffc08a03f0
:linux:`crypt_map() <drivers/md/dm-crypt.c:3411>` is part of dm-crypt, so we've
finally made it out of generic device mapper:
.. code-block:: c
static int crypt_map(struct dm_target *ti, struct bio *bio)
{
struct dm_crypt_io *io;
struct crypt_config *cc = ti->private;
...
And we have the dm-crypt configuration::
>>> cc = cast("struct crypt_config *", ti.private)
Dumping it out reveals some crypto API context!
.. code-block:: pycon
>>> cc
*(struct crypt_config *)0xffffa3b9421b2400 = {
...
.cipher_tfm = (union <anonymous>){
.tfms = (struct crypto_skcipher **)0xffffa3b9438667c0,
...
},
.tfms_count = (unsigned int)1,
...
}
>>> tfm = cc.cipher_tfm.tfms[0]
Descending Down the Crypto API
------------------------------
The Linux kernel crypto API is very generic and is implemented with a lot of
runtime polymorphism. Our next goal is to traverse through the crypto API data
structures to find the key.
The crypto API refers to cryptographic ciphers as `"transformations"
<https://docs.kernel.org/6.7/crypto/intro.html>`_. Transformations can be
combined and nested in various ways. The ``tfm`` variable we found is a
`"transformation object"
<https://docs.kernel.org/6.7/crypto/intro.html#terminology>`_, which is an
instance of a transformation::
>>> tfm
*(struct crypto_skcipher *)0xffffa3b948218c00 = {
.reqsize = (unsigned int)160,
.base = (struct crypto_tfm){
.refcnt = (refcount_t){
.refs = (atomic_t){
.counter = (int)1,
},
},
.crt_flags = (u32)0,
.node = (int)-1,
.exit = (void (*)(struct crypto_tfm *))crypto_skcipher_exit_tfm+0x0 = 0xffffffffb77d2600,
.__crt_alg = (struct crypto_alg *)0xffffa3b943dab448,
.__crt_ctx = (void *[]){},
},
}
>>> tfm.base.__crt_alg
*(struct crypto_alg *)0xffffa3b943dab448 = {
...
.cra_name = (char [128])"xts(aes)",
...
}
This is an ``skcipher``, or a symmetric key cipher. It is using the
``xts(aes)`` algorithm as expected. ``__crt_ctx`` is an opaque context, which
is promising if we can figure out how to interpret it. The ``exit`` callback
looks like a cleanup function. That seems like a good way for us to figure out
how ``__crt_ctx`` is used. Here are :linux:`crypto_skcipher_exit_tfm()
<crypto/skcipher.c:701>` and the :linux:`crypto_skcipher_alg()
<include/crypto/skcipher.h:384>` and :linux:`crypto_skcipher_tfm()
<include/crypto/skcipher.h:314>` getters it uses:
.. code-block:: c
static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm)
{
struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
alg->exit(skcipher);
}
static inline struct skcipher_alg *crypto_skcipher_alg(
struct crypto_skcipher *tfm)
{
return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
struct skcipher_alg, base);
}
static inline struct crypto_tfm *crypto_skcipher_tfm(
struct crypto_skcipher *tfm)
{
return &tfm->base;
}
We can emulate the getters in drgn to find the underlying implementation::
>>> def crypto_skcipher_alg(tfm):
... return container_of(tfm.base.__crt_alg, "struct skcipher_alg", "base")
...
>>> crypto_skcipher_alg(tfm).exit
(void (*)(struct crypto_skcipher *))simd_skcipher_exit+0x0 = 0xffffffffc058b1f0
My machine supports the `AES-NI
<https://en.wikipedia.org/wiki/AES_instruction_set#x86_architecture_processors>`_
x86 extension. The kernel cannot use SIMD instructions like AES-NI in some
contexts, so it has an :linuxt:`extra layer of indirection <crypto/simd.c:14>`
to go through an asynchronous daemon when necessary. This involves a couple of
wrapper transformation objects. :linux:`simd_skcipher_exit()
<crypto/simd.c:104>` shows us how to unwrap the first one:
.. code-block:: c
static void simd_skcipher_exit(struct crypto_skcipher *tfm)
{
struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
cryptd_free_skcipher(ctx->cryptd_tfm);
}
We just need one more getter in drgn, :linux:`crypto_skcipher_ctx()
<include/crypto/internal/skcipher.h:225>`::
>>> def crypto_skcipher_ctx(tfm):
... return cast("void *", tfm.base.__crt_ctx)
...
>>> simd_ctx = cast("struct simd_skcipher_ctx *", crypto_skcipher_ctx(tfm))
>>> cryptd_tfm = simd_ctx.cryptd_tfm
>>> cryptd_tfm
*(struct cryptd_skcipher *)0xffffa3b94b5e4cc0 = {
.base = (struct crypto_skcipher){
.reqsize = (unsigned int)80,
.base = (struct crypto_tfm){
.refcnt = (refcount_t){
.refs = (atomic_t){
.counter = (int)1,
},
},
.crt_flags = (u32)0,
.node = (int)-1,
.exit = (void (*)(struct crypto_tfm *))crypto_skcipher_exit_tfm+0x0 = 0xffffffffb77d2600,
.__crt_alg = (struct crypto_alg *)0xffffa3b9421b2848,
.__crt_ctx = (void *[]){},
},
},
}
We saw ``crypto_skcipher_exit_tfm()`` earlier, so we know where to look next::
>>> crypto_skcipher_alg(cryptd_tfm.base).exit
(void (*)(struct crypto_skcipher *))cryptd_skcipher_exit_tfm+0x0 = 0xffffffffc04d6210
:linux:`cryptd_skcipher_exit_tfm() <crypto/cryptd.c:358>` shows us how to
unwrap this transformation object:
.. code-block:: c
static void cryptd_skcipher_exit_tfm(struct crypto_skcipher *tfm)
{
struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
crypto_free_skcipher(ctx->child);
}
Now we can get the actual cipher transformation object::
>>> cryptd_ctx = cast("struct cryptd_skcipher_ctx *", crypto_skcipher_ctx(cryptd_tfm.base))
>>> child_tfm = cryptd_ctx.child
>>> child_tfm
*(struct crypto_skcipher *)0xffffa3b945dc4000 = {
.reqsize = (unsigned int)0,
.base = (struct crypto_tfm){
.refcnt = (refcount_t){
.refs = (atomic_t){
.counter = (int)1,
},
},
.crt_flags = (u32)0,
.node = (int)-1,
.exit = (void (*)(struct crypto_tfm *))0x0,
.__crt_alg = (struct crypto_alg *)0xffffffffc05e7d80,
.__crt_ctx = (void *[]){},
},
}
This one doesn't have an exit callback, so let's look at the algorithm::
>>> crypto_skcipher_alg(child_tfm)
*(struct skcipher_alg *)0xffffffffc05e7d40 = {
.setkey = (int (*)(struct crypto_skcipher *, const u8 *, unsigned int))xts_aesni_setkey+0x0 = 0xffffffffc059efb0,
...
}
:linux:`xts_aesni_setkey() <arch/x86/crypto/aesni-intel_glue.c:880>` is very
enlightening:
.. code-block:: c
static int xts_aesni_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct aesni_xts_ctx *ctx = aes_xts_ctx(tfm);
int err;
err = xts_verify_key(tfm, key, keylen);
if (err)
return err;
keylen /= 2;
/* first half of xts-key is for crypt */
err = aes_set_key_common(&ctx->crypt_ctx, key, keylen);
if (err)
return err;
/* second half of xts-key is for tweak */
return aes_set_key_common(&ctx->tweak_ctx, key + keylen, keylen);
}
XTS splits the provided key into two keys: one for data and one for a "tweak".
They are stored in ``ctx->crypt_ctx`` and ``ctx->tweak_ctx``, respectively.
To reach ``ctx``, we need one more getter, :linux:`aes_xts_ctx()
<arch/x86/crypto/aesni-intel_glue.c:226>`:
.. code-block:: c
static inline struct aesni_xts_ctx *aes_xts_ctx(struct crypto_skcipher *tfm)
{
return aes_align_addr(crypto_skcipher_ctx(tfm));
}
Which uses :linux:`aes_align_addr() <arch/x86/crypto/aesni-intel_glue.c:83>`:
.. code-block:: c
#define AESNI_ALIGN 16
static inline void *aes_align_addr(void *addr)
{
if (crypto_tfm_ctx_alignment() >= AESNI_ALIGN)
return addr;
return PTR_ALIGN(addr, AESNI_ALIGN);
}
Implementing that in drgn gets us the key material!
.. code-block:: pycon
>>> def aes_xts_ctx(tfm):
... AESNI_ALIGN = 16
... mask = AESNI_ALIGN - 1
... ctx = cast("unsigned long", crypto_skcipher_ctx(tfm))
... return cast("struct aesni_xts_ctx *", (ctx + mask) & ~mask)
...
>>> xts_ctx = aes_xts_ctx(cryptd_ctx.child)
>>> xts_ctx
*(struct aesni_xts_ctx *)0xffffa3b945dc4030 = {
.tweak_ctx = (struct crypto_aes_ctx){
.key_enc = (u32 [60]){
4053857025, 2535432618, 3497512106, 429624542,
190965574, 620881567, 2728140233, 1574816406,
1642869364, 4143158238, 646209396, 1059050410,
2124513770, 1537238901, 4181490364, 2766254122,
2225457809, 1918261583, 1423050299, 1808651665,
18645611, 1522328862, 2743115682, 123809672, 1080042880,
842431695, 1726249716, 220835685, 3602512678,
2349145656, 797278618, 686075410, 2304003180,
3143774371, 3716565591, 3501188402, 2797609477,
717569085, 88128935, 765727669, 1552680193, 3891148194,
979927029, 3938949831, 554080963, 197371646, 243473241,
589760748, 2460666129, 1967455411, 1328317254,
2783648129, 669994703, 741140529, 581956456, 25754500,
3453357406, 3096637933, 4156453547, 1381329706,
},
.key_dec = (u32 [60]){
3453357406, 3096637933, 4156453547, 1381329706,
1691590497, 1611861415, 2033812690, 3535200077,
1503779265, 1400120959, 2713205381, 402136101,
2278736107, 79729350, 422218101, 2878299039, 3072023845,
181796798, 4073463034, 3057657504, 2722800653,
2199015981, 501881779, 2997211882, 893456792,
3184435867, 4162446148, 1150040666, 3430456984,
559478304, 2667071902, 2941241689, 2504843709,
2291118851, 1171735007, 3163937054, 4210330224,
3978324152, 3214983102, 834109639, 179351664, 499339966,
3445158620, 4181891265, 4283462504, 399827656,
1384175366, 2383888249, 3581021031, 393470670,
3499860066, 874146333, 3319833674, 3901002144,
1163146702, 3700942975, 4053857025, 2535432618,
3497512106, 429624542,
},
.key_length = (u32)32,
},
.crypt_ctx = (struct crypto_aes_ctx){
.key_enc = (u32 [60]){
91118336, 1683438947, 280915620, 1674463119, 3416529787,
95371281, 156839573, 539041733, 2748950209, 3348011938,
3610309894, 3036590729, 1176448220, 1135635661,
1256800856, 1791516061, 4259008143, 978703661,
3982827563, 1503367842, 2366333926, 3468365611,
2219986291, 4003074286, 3589535297, 4020642668,
46334791, 1532531173, 3026313791, 2061167892,
4270366823, 269660297, 1916354478, 2644450498,
2673614725, 3288632928, 2828270575, 3528005371,
750892700, 1020462613, 735205841, 3058517267, 689003158,
3977630966, 4257919917, 797156694, 54662090, 1066472927,
3047676072, 65707451, 721143597, 3354268635, 1004719636,
341928770, 388200584, 682782039, 4002672596, 3984159343,
3347232066, 7120537,
},
.key_dec = (u32 [60]){
4002672596, 3984159343, 3347232066, 7120537, 2275767381,
3582792214, 728749911, 250810445, 2145441323,
3415330885, 1171250799, 717236012, 72947820, 1378379331,
4276274497, 631031578, 3286455042, 3027306094,
2388528682, 1863317827, 1027747936, 1450278447,
2898961154, 3682468443, 2929020077, 2006078828,
976160836, 3780245353, 3002856629, 1798524495,
4206615853, 2008326489, 523503039, 3641121217,
1304255784, 3682533165, 3583917429, 3653810938,
2441646946, 2366602356, 2101484483, 3325238398,
2495235305, 2529403397, 1276800912, 206997391,
1212164504, 478670614, 2260253082, 3144746941,
1384732823, 41543404, 2858181789, 1078781983,
1142337047, 1422378638, 91118336, 1683438947, 280915620,
1674463119,
},
.key_length = (u32)32,
},
}
Extracting the AES Key
----------------------
Since we have a 512-bit key, XTS uses two 256-bit AES keys. You'll notice that
the ``key_enc`` fields above are much larger than that. This is because AES
expands the key into a number of "round keys" using a `"key schedule"
<https://en.wikipedia.org/wiki/AES_key_schedule>`_. Luckily, the first few
round keys are copied directly from the original key.
With that information, we can finally recover the original key::
>>> def aes_key_from_ctx(ctx):
... words = ctx.key_enc.value_()[:ctx.key_length / 4]
... return b"".join(word.to_bytes(4, "little") for word in words)
...
>>> aes_key_from_ctx(xts_ctx.crypt_ctx).hex()
'005b6e05633d5764a46ebe108f47ce637b1ba4cb1140af05952e5909c51f2120'
>>> aes_key_from_ctx(xts_ctx.tweak_ctx).hex()
'01f3a0f1aaa11f97aacc77d0de8c9b1946e7610b9fe60125c91d9ca296cadd5d'
Which we can double check with cryptsetup:
.. code-block:: console
:emphasize-lines: 17-20
# cryptsetup luksDump --dump-master-key /dev/vdb
WARNING!
========
The header dump with volume key is sensitive information
that allows access to encrypted partition without a passphrase.
This dump should be stored encrypted in a safe place.
Are you sure? (Type 'yes' in capital letters): YES
Enter passphrase for /dev/vdb: hello
LUKS header information for /dev/vdb
Cipher name: aes
Cipher mode: xts-plain64
Payload offset: 32768
UUID: b43cba2c-532b-4491-bbb9-763b55bd7f03
MK bits: 512
MK dump: 00 5b 6e 05 63 3d 57 64 a4 6e be 10 8f 47 ce 63
7b 1b a4 cb 11 40 af 05 95 2e 59 09 c5 1f 21 20
01 f3 a0 f1 aa a1 1f 97 aa cc 77 d0 de 8c 9b 19
46 e7 61 0b 9f e6 01 25 c9 1d 9c a2 96 ca dd 5d
Conclusion
----------
Before this, I had almost no knowledge of device mapper or crypto API
internals. drgn makes it easy to explore the kernel and learn how it works.
Note that different system configurations will have different representations
in the crypto API. For example, different ciphers modes will obviously have
different transformations. Even the lack of AES-NI with the same cipher mode
results in different transformation objects.
I converted this case study to the :contrib:`dm_crypt_key.py` script in drgn's
``contrib`` directory. It could be extended to cover other ciphers in the
future.
|