1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
|
// Copyright (c) Meta Platforms, Inc. and affiliates.
// SPDX-License-Identifier: LGPL-2.1-or-later
/**
* @file
*
* Generic binary search trees.
*
* See @ref BinarySearchTrees.
*/
#ifndef DRGN_BINARY_SEARCH_TREE_H
#define DRGN_BINARY_SEARCH_TREE_H
#include <stdbool.h>
#include <stddef.h>
#include "util.h"
/**
* @ingroup Internals
*
* @defgroup BinarySearchTrees Binary search trees
*
* Generic binary search trees.
*
* This implements a self-balancing binary search tree interface. The interface
* is generic, strongly typed (entries have a static type, not <tt>void *</tt>),
* and doesn't have any function pointer overhead. Currently, only splay trees
* are implemented, but this may be extended to support other variants like
* red-black trees or AVL trees.
*
* Entries are allocated separately from this interface. The interface is
* intrusive, i.e., entries must embed a @ref binary_tree_node.
*
* A binary search tree is defined with @ref DEFINE_BINARY_SEARCH_TREE(). Each
* generated binary search tree interface is prefixed with a given name; the
* interface documented here uses the example name @c binary_search_tree, which
* could be generated with this example code:
*
* @code{.c}
* typedef {
* ...
* struct binary_tree_node node;
* } entry_type;
* key_type entry_to_key(const entry_type *entry);
* int cmp_func(const key_type *a, const key_type *b);
* DEFINE_BINARY_SEARCH_TREE(binary_search_tree, entry_type, node, entry_to_key,
* cmp_func, splay)
* @endcode
*
* @sa HashTables
*
* @{
*/
#ifdef DOXYGEN
/**
* @struct binary_search_tree
*
* Binary search tree instance.
*
* There are no requirements on how this is allocated; it may be global, on the
* stack, allocated by @c malloc(), embedded in another structure, etc.
*/
struct binary_search_tree;
/**
* Binary search tree iterator.
*
* Several functions return an iterator or take one as an argument. This
* iterator has a reference to an entry, which can be @c NULL to indicate that
* there is no such entry. It may also contain private bookkeeping which should
* not be used.
*
* An iterator remains valid as long as the entry is not deleted.
*/
struct binary_search_tree_iterator {
/** Pointer to the entry. */
entry_type *entry;
};
/**
* Initialize a @ref binary_search_tree.
*
* The new tree is empty.
*/
void binary_search_tree_init(struct binary_search_tree *tree);
/**
* Return whether a @ref binary_search_tree has no entries.
*
* This is O(1).
*/
bool binary_search_tree_empty(struct binary_search_tree *tree);
/**
* Insert an entry in a @ref binary_search_tree.
*
* If an entry with the same key is already in the tree, the entry is @em not
* inserted.
*
* @param[out] it_ret If not @c NULL, a returned iterator pointing to the newly
* inserted entry or the existing entry with the same key.
* @return 1 if the entry was inserted, 0 if the key already existed.
*/
int binary_search_tree_insert(struct binary_search_tree *tree,
entry_type *entry,
struct binary_search_tree_iterator *it_ret);
/**
* Search for an entry in a @ref binary_search_tree.
*
* This searches for the entry with the given key.
*
* @return An iterator pointing to the entry with the given key, or an iterator
* with <tt>entry == NULL</tt> if the key was not found.
*/
struct binary_search_tree_iterator
binary_search_tree_search(struct binary_search_tree *tree, const key_type *key);
/**
* Search for the entry with the greatest key less than or equal to the given
* key.
*/
struct binary_search_tree_iterator
binary_search_tree_search_le(struct binary_search_tree *tree,
const key_type *key);
/**
* Delete an entry in a @ref binary_search_tree.
*
* This deletes the entry with the given key.
*
* @return @c true if the entry was found and deleted, @c false if not.
*/
bool binary_search_tree_delete(struct binary_search_tree *tree,
const key_type *key);
/**
* Delete an entry given by an iterator in a @ref binary_search_tree.
*
* This deletes the entry pointed to by the iterator.
*
* @return An iterator pointing to the next entry in the tree. See @ref
* binary_search_tree_next().
*/
struct binary_search_tree_iterator
binary_search_tree_delete_iterator(struct binary_search_tree *tree,
struct binary_search_tree_iterator it);
/**
* Delete an entry in a @ref binary_search_tree.
*
* @return An iterator pointing to the next entry in the tree. See @ref
* binary_search_tree_next().
*/
struct binary_search_tree_iterator
binary_search_tree_delete_entry(struct binary_search_tree *tree,
entry_type *entry);
/**
* Get an iterator pointing to the first (in-order) entry in a @ref
* binary_search_tree.
*
* The first entry is the one with the lowest key.
*
* @return An iterator pointing to the first entry, or an iterator with
* <tt>entry == NULL</tt> if the tree is empty.
*/
struct binary_search_tree_iterator
binary_search_tree_first(struct binary_search_tree *tree);
/**
* Get an iterator pointing to the next (in-order) entry in a @ref
* binary_search_tree.
*
* The next entry is the one with the lowest key that is greater than the
* current key.
*
* @return An iterator pointing to the next entry, or an iterator with <tt>entry
* == NULL</tt> if there are no more entries.
*/
struct binary_search_tree_iterator
binary_search_tree_next(struct binary_search_tree_iterator it);
/**
* Get an iterator pointing to the first post-order entry in a @ref
* binary_search_tree.
*
* The first post-order entry is any entry which is a leaf in the tree.
*
* This is suitable for visiting all entries in a tree in order to free them:
*
* @code
* struct binary_search_tree_iterator it;
*
* it = binary_search_tree_first_post_order(tree);
* while (it.entry) {
* entry_type *entry = it.entry;
*
* binary_search_tree_next_post_order(&it);
* // Advancing the iterator accesses the current entry, so the entry must
* // be freed after the iterator has been advanced.
* free(entry);
* }
* @endcode
*
* @return An iterator pointing to the first entry, or an iterator with
* <tt>entry == NULL</tt> if the tree is empty.
*/
struct binary_search_tree_iterator
binary_search_tree_first_post_order(struct binary_search_tree *tree);
/**
* Get an iterator pointing to the next post-order entry in a @ref
* binary_search_tree.
*
* The next post-order entry is any unvisited entry whose children have already
* been visited.
*
* @return An iterator pointing to the next entry, or an iterator with <tt>entry
* == NULL</tt> if there are no more entries.
*/
struct binary_search_tree_iterator
binary_search_tree_next_post_order(struct binary_search_tree_iterator it);
#endif
/**
* Node in a binary search tree.
*
* This structure must be embedded in the entry type of a binary search tree. It
* should only be accessed by the binary search tree implementation.
*/
struct binary_tree_node {
struct binary_tree_node *parent, *left, *right;
};
struct binary_tree_search_result {
struct binary_tree_node **nodep, *parent;
};
/*
* Binary search tree variants need to define three functions:
*
* drgn_##variant##_tree_insert_fixup(root, node, parent) is called after a node
* is inserted (as *root, parent->left, or parent->right). It must set the
* node's parent pointer and rebalance the tree.
*
* drgn_##variant##_tree_found(root, node) is called when a duplicate node is
* found for an insert operation or when a node is found for a search operation
* (but not for a delete operation). It may rebalance the tree or do nothing.
*
* drgn_##variant##_tree_delete(root, node) must delete the node and rebalance
* the tree.
*/
void drgn_splay_tree_splay(struct binary_tree_node **root,
struct binary_tree_node *node,
struct binary_tree_node *parent);
static inline void drgn_splay_tree_insert_fixup(struct binary_tree_node **root,
struct binary_tree_node *node,
struct binary_tree_node *parent)
{
if (parent)
drgn_splay_tree_splay(root, node, parent);
else
node->parent = NULL;
}
static inline void drgn_splay_tree_found(struct binary_tree_node **root,
struct binary_tree_node *node)
{
if (node->parent)
drgn_splay_tree_splay(root, node, node->parent);
}
void drgn_splay_tree_delete(struct binary_tree_node **root,
struct binary_tree_node *node);
/**
* Define a binary search tree type without defining its functions.
*
* This is useful when the binary search tree type must be defined in one place
* (e.g., a header) but the interface is defined elsewhere (e.g., a source file)
* with @ref DEFINE_BINARY_SEARCH_TREE_FUNCTIONS(). Otherwise, just use @ref
* DEFINE_BINARY_SEARCH_TREE().
*
* @sa DEFINE_BINARY_SEARCH_TREE()
*/
#define DEFINE_BINARY_SEARCH_TREE_TYPE(tree, entry_type) \
typedef typeof(entry_type) tree##_entry_type; \
\
struct tree { \
struct binary_tree_node *root; \
}; \
struct DEFINE_BINARY_SEARCH_TREE_needs_semicolon
/**
* Define the functions for a binary search tree.
*
* The binary search tree type must have already been defined with @ref
* DEFINE_BINARY_SEARCH_TREE_TYPE().
*
* Unless the type and function definitions must be in separate places, use @ref
* DEFINE_BINARY_SEARCH_TREE() instead.
*
* @sa DEFINE_BINARY_SEARCH_TREE()
*/
#define DEFINE_BINARY_SEARCH_TREE_FUNCTIONS(tree, member, entry_to_key, \
cmp_func, variant) \
typedef typeof(entry_to_key((tree##_entry_type *)0)) tree##_key_type; \
\
static inline struct binary_tree_node * \
tree##_entry_to_node(tree##_entry_type *entry) \
{ \
return &entry->member; \
} \
\
static inline tree##_entry_type * \
tree##_node_to_entry(struct binary_tree_node *node) \
{ \
return container_of(node, tree##_entry_type, member); \
} \
\
static inline tree##_key_type \
tree##_entry_to_key(const tree##_entry_type *entry) \
{ \
return entry_to_key(entry); \
} \
\
struct tree##_iterator { \
tree##_entry_type *entry; \
}; \
\
__attribute__((__unused__)) \
static void tree##_init(struct tree *tree) \
{ \
tree->root = NULL; \
} \
\
__attribute__((__unused__)) \
static bool tree##_empty(struct tree *tree) \
{ \
return tree->root == NULL; \
} \
\
static inline struct binary_tree_search_result \
tree##_search_internal(struct tree *tree, const tree##_key_type *key) \
{ \
struct binary_tree_search_result res = { &tree->root, NULL, }; \
\
while (*res.nodep) { \
tree##_entry_type *other_entry; \
tree##_key_type other_key; \
int cmp; \
\
other_entry = tree##_node_to_entry(*res.nodep); \
other_key = tree##_entry_to_key(other_entry); \
cmp = cmp_func(key, &other_key); \
if (cmp < 0) { \
res.parent = *res.nodep; \
res.nodep = &(*res.nodep)->left; \
} else if (cmp > 0) { \
res.parent = *res.nodep; \
res.nodep = &(*res.nodep)->right; \
} else { \
break; \
} \
} \
return res; \
} \
\
__attribute__((__unused__)) \
static int tree##_insert(struct tree *tree, tree##_entry_type *entry, \
struct tree##_iterator *it_ret) \
{ \
tree##_key_type key = tree##_entry_to_key(entry); \
struct binary_tree_search_result res; \
struct binary_tree_node *node; \
\
res = tree##_search_internal(tree, &key); \
if (*res.nodep) { \
if (it_ret) \
it_ret->entry = tree##_node_to_entry(*res.nodep); \
drgn_##variant##_tree_found(&tree->root, *res.nodep); \
return 0; \
} \
\
node = tree##_entry_to_node(entry); \
node->left = node->right = NULL; \
*res.nodep = node; \
drgn_##variant##_tree_insert_fixup(&tree->root, node, res.parent); \
return 1; \
} \
\
__attribute__((__unused__)) \
static struct tree##_iterator tree##_search(struct tree *tree, \
const tree##_key_type *key) \
{ \
struct binary_tree_node *node; \
\
node = *tree##_search_internal(tree, key).nodep; \
if (!node) \
return (struct tree##_iterator){}; \
drgn_##variant##_tree_found(&tree->root, node); \
return (struct tree##_iterator){ tree##_node_to_entry(node), }; \
} \
\
__attribute__((__unused__)) \
static struct tree##_iterator tree##_search_le(struct tree *tree, \
const tree##_key_type *key) \
{ \
struct binary_tree_node *node = tree->root; \
tree##_entry_type *entry = NULL; \
\
while (node) { \
tree##_entry_type *other_entry; \
tree##_key_type other_key; \
int cmp; \
\
other_entry = tree##_node_to_entry(node); \
other_key = tree##_entry_to_key(other_entry); \
cmp = cmp_func(key, &other_key); \
if (cmp < 0) { \
node = node->left; \
} else if (cmp > 0) { \
entry = other_entry; \
node = node->right; \
} else { \
entry = other_entry; \
break; \
} \
} \
if (entry) \
drgn_##variant##_tree_found(&tree->root, \
tree##_entry_to_node(entry)); \
return (struct tree##_iterator){ entry, }; \
} \
\
__attribute__((__unused__)) \
static bool tree##_delete(struct tree *tree, const tree##_key_type *key) \
{ \
struct binary_tree_node *node; \
\
node = *tree##_search_internal(tree, key).nodep; \
if (!node) \
return false; \
drgn_##variant##_tree_delete(&tree->root, node); \
return true; \
} \
\
/* \
* We want this inlined so that the whole function call can be optimized away \
* if the return value is not used. \
*/ \
__attribute__((__always_inline__)) \
static inline struct tree##_iterator \
tree##_next_impl(struct tree##_iterator it) \
{ \
struct binary_tree_node *node = tree##_entry_to_node(it.entry); \
if (node->right) { \
node = node->right; \
/* \
* This hack (inspired by a similar hack in the F14 hash table \
* code) convinces the compiler that the loop always terminates \
* (otherwise the counter would overflow, which is undefined \
* behavior). \
*/ \
for (long i = 1; i != 0; i++) { \
if (!node->left) \
break; \
node = node->left; \
} \
return (struct tree##_iterator){ tree##_node_to_entry(node), }; \
} \
\
for (long i = 1; i != 0; i++) { \
if (!node->parent || node != node->parent->right) \
break; \
node = node->parent; \
} \
if (node->parent) { \
return (struct tree##_iterator){ \
tree##_node_to_entry(node->parent), \
}; \
} \
return (struct tree##_iterator){}; \
} \
\
__attribute__((__always_inline__)) \
static inline struct tree##_iterator \
tree##_delete_iterator(struct tree *tree, struct tree##_iterator it) \
{ \
struct binary_tree_node *node; \
\
node = tree##_entry_to_node(it.entry); \
it = tree##_next_impl(it); \
drgn_##variant##_tree_delete(&tree->root, node); \
return it; \
} \
\
__attribute__((__always_inline__, __unused__)) \
static inline struct tree##_iterator \
tree##_delete_entry(struct tree *tree, tree##_entry_type *entry) \
{ \
return tree##_delete_iterator(tree, (struct tree##_iterator){ entry }); \
} \
\
__attribute__((__unused__)) \
static struct tree##_iterator tree##_first(struct tree *tree) \
{ \
struct binary_tree_node *node = tree->root; \
\
if (!node) \
return (struct tree##_iterator){}; \
\
while (node->left) \
node = node->left; \
return (struct tree##_iterator){ tree##_node_to_entry(node), }; \
} \
\
__attribute__((__unused__)) \
static struct tree##_iterator tree##_next(struct tree##_iterator it) \
{ \
return tree##_next_impl(it); \
} \
\
__attribute__((__unused__)) \
static struct tree##_iterator tree##_first_post_order(struct tree *tree) \
{ \
struct binary_tree_node *node = tree->root; \
\
if (!node) \
return (struct tree##_iterator){}; \
\
for (;;) { \
if (node->left) { \
node = node->left; \
} else if (node->right) { \
node = node->right; \
} else { \
return (struct tree##_iterator){ \
tree##_node_to_entry(node), \
}; \
} \
\
} \
} \
\
__attribute__((__unused__)) \
static struct tree##_iterator tree##_next_post_order(struct tree##_iterator it) \
{ \
struct binary_tree_node *node = tree##_entry_to_node(it.entry); \
\
if (!node->parent) { \
return (struct tree##_iterator){}; \
} else if (node == node->parent->left && node->parent->right) { \
node = node->parent->right; \
for (;;) { \
if (node->left) { \
node = node->left; \
} else if (node->right) { \
node = node->right; \
} else { \
return (struct tree##_iterator){ \
tree##_node_to_entry(node), \
}; \
} \
} \
} else { \
return (struct tree##_iterator){ \
tree##_node_to_entry(node->parent), \
}; \
} \
} \
struct DEFINE_BINARY_SEARCH_TREE_needs_semicolon
/**
* Define a binary search tree interface.
*
* This macro defines a binary search tree type along with its functions.
*
* @param[in] tree Name of the type to define. This is prefixed to all of the
* types and functions defined for that type.
* @param[in] entry_type Type of entries in the tree.
* @param[in] member Name of the @ref binary_tree_node member in @p entry_type.
* @param[in] entry_to_key Name of function or macro which is passed a <tt>const
* entry_type *</tt> and returns the key for that entry. The return type is the
* @c key_type of the tree. The passed entry is never @c NULL.
* @param[in] cmp_func Comparison function which takes two <tt>const key_type
* *</tt> and returns an @c int. The return value must be negative if the first
* key is less than the second key, positive if the first key is greater than
* the second key, and zero if they are equal.
* @param[in] variant The binary search tree implementation to use. Currently
* this can only be @c splay.
*/
#define DEFINE_BINARY_SEARCH_TREE(tree, entry_type, member, entry_to_key, \
cmp_func, variant) \
DEFINE_BINARY_SEARCH_TREE_TYPE(tree, entry_type); \
DEFINE_BINARY_SEARCH_TREE_FUNCTIONS(tree, member, entry_to_key, cmp_func, \
variant)
#ifdef DOXYGEN
/** Compare two scalar keys. */
bool binary_search_tree_scalar_cmp(const T *a, const T *b);
#else
#define binary_search_tree_scalar_cmp(a, b) ({ \
__auto_type _a = *(a); \
__auto_type _b = *(b); \
\
_a < _b ? -1 : _a > _b ? 1 : 0; \
})
#endif
/** @} */
#endif /* DRGN_BINARY_SEARCH_TREE_H */
|