1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
// Copyright (c) Meta Platforms, Inc. and affiliates.
// SPDX-License-Identifier: LGPL-2.1-or-later
#include <assert.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "memory_reader.h"
#include "minmax.h"
/** Memory segment in a @ref drgn_memory_reader. */
struct drgn_memory_segment {
struct binary_tree_node node;
/** Address range of the segment in memory (inclusive). */
uint64_t min_address, max_address;
/**
* The address of the segment when it was added, before any truncations.
*
* This is always less than or equal to @ref
* drgn_memory_segment::min_address.
*/
uint64_t orig_min_address;
/** Read callback. */
drgn_memory_read_fn read_fn;
/** Argument to pass to @ref drgn_memory_segment::read_fn. */
void *arg;
};
static inline uint64_t
drgn_memory_segment_to_key(const struct drgn_memory_segment *entry)
{
return entry->min_address;
}
DEFINE_BINARY_SEARCH_TREE_FUNCTIONS(drgn_memory_segment_tree, node,
drgn_memory_segment_to_key,
binary_search_tree_scalar_cmp, splay);
void drgn_memory_reader_init(struct drgn_memory_reader *reader)
{
drgn_memory_segment_tree_init(&reader->virtual_segments);
drgn_memory_segment_tree_init(&reader->physical_segments);
}
static void free_memory_segment_tree(struct drgn_memory_segment_tree *tree)
{
struct drgn_memory_segment_tree_iterator it;
it = drgn_memory_segment_tree_first_post_order(tree);
while (it.entry) {
struct drgn_memory_segment *entry = it.entry;
it = drgn_memory_segment_tree_next_post_order(it);
free(entry);
}
}
void drgn_memory_reader_deinit(struct drgn_memory_reader *reader)
{
free_memory_segment_tree(&reader->physical_segments);
free_memory_segment_tree(&reader->virtual_segments);
}
bool drgn_memory_reader_empty(struct drgn_memory_reader *reader)
{
return (drgn_memory_segment_tree_empty(&reader->virtual_segments) &&
drgn_memory_segment_tree_empty(&reader->physical_segments));
}
struct drgn_error *
drgn_memory_reader_add_segment(struct drgn_memory_reader *reader,
uint64_t min_address, uint64_t max_address,
drgn_memory_read_fn read_fn, void *arg,
bool physical)
{
assert(min_address <= max_address);
struct drgn_memory_segment_tree *tree = (physical ?
&reader->physical_segments :
&reader->virtual_segments);
/*
* This is split into two steps: the first step handles an overlapping
* segment with address <= new address, and the second step handles
* overlapping segments with address > new address. In some cases, we
* can steal an existing segment instead of allocating a new one.
*/
struct drgn_memory_segment *stolen = NULL, *segment;
struct drgn_memory_segment *truncate_head = NULL, *truncate_tail = NULL;
struct drgn_memory_segment_tree_iterator it =
drgn_memory_segment_tree_search_le(tree, &min_address);
if (it.entry) {
if (max_address < it.entry->max_address) {
/*
* The new segment lies entirely within an existing
* segment, and part of the existing segment extends
* after the new segment (a "tail").
*/
struct drgn_memory_segment *tail =
malloc(sizeof(*tail));
if (!tail)
return &drgn_enomem;
if (it.entry->min_address == min_address) {
/*
* The new segment starts at the same address as
* the existing segment, so we can steal the
* existing segment and just add the tail.
*/
stolen = segment = it.entry;
} else {
/*
* Part of the existing segment extends before
* the new segment. We have to create the new
* segment and truncate the existing segment.
*/
segment = malloc(sizeof(*segment));
if (!segment) {
free(tail);
return &drgn_enomem;
}
truncate_tail = it.entry;
}
tail->min_address = max_address + 1;
tail->max_address = it.entry->max_address;
tail->orig_min_address = it.entry->orig_min_address;
tail->read_fn = it.entry->read_fn;
tail->arg = it.entry->arg;
drgn_memory_segment_tree_insert(tree, tail, NULL);
goto insert;
}
if (it.entry->min_address == min_address) {
/*
* The new segment subsumes an existing segment at the
* same address. We can steal the existing segment.
*/
stolen = it.entry;
} else if (min_address <= it.entry->max_address) {
/*
* The new segment overlaps an existing segment before
* it, and part of the existing segment extends before
* the new segment. We need to truncate the existing
* segment.
*/
truncate_tail = it.entry;
} else {
/*
* The new segment does not overlap any existing
* segments before it.
*/
}
it = drgn_memory_segment_tree_next(it);
} else {
/* The new segment will be the new first segment. */
it = drgn_memory_segment_tree_first(tree);
}
while (it.entry) {
if (max_address >= it.entry->max_address) {
/*
* The new segment subsumes an existing segment after
* it.
*/
if (stolen) {
/*
* We already stole a segment. We can delete the
* existing segment. Since we won't try to
* allocate a new segment later, it's safe to
* modify the tree now.
*/
struct drgn_memory_segment *existing_segment = it.entry;
it = drgn_memory_segment_tree_delete_iterator(tree, it);
free(existing_segment);
} else {
/*
* We haven't stolen a segment yet, so steal
* this one.
*
* This segment is the first existing segment
* that starts after the new segment, and the
* previous existing segment must start before
* the new segment (otherwise we would've stolen
* it). Therefore, this won't disturb the tree
* order.
*/
stolen = it.entry;
it = drgn_memory_segment_tree_next(it);
}
continue;
}
if (max_address >= it.entry->min_address) {
/*
* The new segment overlaps an existing segment after
* it, and part of the existing segment extends after
* the new segment. We need to truncate the beginning of
* the existing segment.
*/
truncate_head = it.entry;
}
/*
* The existing segment ends after the new segment ends. We're
* done.
*/
break;
}
if (stolen) {
segment = stolen;
} else {
segment = malloc(sizeof(*segment));
if (!segment)
return &drgn_enomem;
}
insert:
/*
* Now that we've allocated the new segment if necessary, we can safely
* modify the tree.
*/
if (truncate_head)
truncate_head->min_address = max_address + 1;
if (truncate_tail)
truncate_tail->max_address = min_address - 1;
segment->min_address = segment->orig_min_address = min_address;
segment->max_address = max_address;
segment->read_fn = read_fn;
segment->arg = arg;
/* If the segment is stolen, then it's already in the tree. */
if (!stolen)
drgn_memory_segment_tree_insert(tree, segment, NULL);
return NULL;
}
struct drgn_error *drgn_memory_reader_read(struct drgn_memory_reader *reader,
void *buf, uint64_t address,
size_t count, bool physical)
{
assert(count == 0 || count - 1 <= UINT64_MAX - address);
struct drgn_error *err;
struct drgn_memory_segment_tree *tree = (physical ?
&reader->physical_segments :
&reader->virtual_segments);
char *p = buf;
while (count > 0) {
struct drgn_memory_segment *segment =
drgn_memory_segment_tree_search_le(tree,
&address).entry;
if (!segment || segment->max_address < address) {
return drgn_error_format_fault(address,
"could not find %smemory segment",
physical ? "physical " : "");
}
size_t n = min((uint64_t)(count - 1),
segment->max_address - address) + 1;
err = segment->read_fn(p, address, n,
address - segment->orig_min_address,
segment->arg, physical);
if (err)
return err;
p += n;
address += n;
count -= n;
}
return NULL;
}
struct drgn_error *drgn_read_memory_file(void *buf, uint64_t address,
size_t count, uint64_t offset,
void *arg, bool physical)
{
struct drgn_memory_file_segment *file_segment = arg;
size_t file_count;
if (offset < file_segment->file_size) {
file_count = min((uint64_t)count,
file_segment->file_size - offset);
} else {
file_count = 0;
}
size_t zero_count = count - file_count;
if (!file_segment->zerofill && zero_count > 0) {
return drgn_error_create_fault("memory not saved in core dump",
address + file_count);
}
uint64_t file_offset = file_segment->file_offset + offset;
char *p = buf;
while (file_count) {
ssize_t ret = pread(file_segment->fd, p, file_count, file_offset);
if (ret == -1) {
if (errno == EINTR) {
continue;
} else if (errno == EIO && file_segment->eio_is_fault) {
return drgn_error_create_fault("could not read memory",
address);
} else {
return drgn_error_create_os("pread", errno, NULL);
}
} else if (ret == 0) {
return drgn_error_create_fault("short read from memory file",
address);
}
p += ret;
address += ret;
file_count -= ret;
file_offset += ret;
}
memset(p, '\0', zero_count);
return NULL;
}
|