1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
# =================================
# WORKED-OUT EXAMPLE FOR RSASSA-PSS
# =================================
#
# This file gives an example of the process of
# signing a message with RSASSA-PSS as
# specified in PKCS #1 v2.1.
#
# The message is an octet string of length 114,
# while the size of the modulus in the public
# key is 1024 bits. The message is signed via a
# random salt of length 20 octets
#
# The underlying hash function in the EMSA-PSS
# encoding method is SHA-1; the mask generation
# function is MGF1 with SHA-1 as specified in
# PKCS #1 v2.1.
#
# Integers are represented by strings of octets
# with the leftmost octet being the most
# significant octet. For example,
#
# 9,202,000 = (0x)8c 69 50.
#
# =============================================
# ------------------------------
# Components of the RSA Key Pair
# ------------------------------
# RSA modulus n:
a2 ba 40 ee 07 e3 b2 bd 2f 02 ce 22 7f 36 a1 95
02 44 86 e4 9c 19 cb 41 bb bd fb ba 98 b2 2b 0e
57 7c 2e ea ff a2 0d 88 3a 76 e6 5e 39 4c 69 d4
b3 c0 5a 1e 8f ad da 27 ed b2 a4 2b c0 00 fe 88
8b 9b 32 c2 2d 15 ad d0 cd 76 b3 e7 93 6e 19 95
5b 22 0d d1 7d 4e a9 04 b1 ec 10 2b 2e 4d e7 75
12 22 aa 99 15 10 24 c7 cb 41 cc 5e a2 1d 00 ee
b4 1f 7c 80 08 34 d2 c6 e0 6b ce 3b ce 7e a9 a5
# RSA public exponent e:
01 00 01
# Prime p:
d1 7f 65 5b f2 7c 8b 16 d3 54 62 c9 05 cc 04 a2
6f 37 e2 a6 7f a9 c0 ce 0d ce d4 72 39 4a 0d f7
43 fe 7f 92 9e 37 8e fd b3 68 ed df f4 53 cf 00
7a f6 d9 48 e0 ad e7 57 37 1f 8a 71 1e 27 8f 6b
# Prime q:
c6 d9 2b 6f ee 74 14 d1 35 8c e1 54 6f b6 29 87
53 0b 90 bd 15 e0 f1 49 63 a5 e2 63 5a db 69 34
7e c0 c0 1b 2a b1 76 3f d8 ac 1a 59 2f b2 27 57
46 3a 98 24 25 bb 97 a3 a4 37 c5 bf 86 d0 3f 2f
# p's CRT exponent dP:
9d 0d bf 83 e5 ce 9e 4b 17 54 dc d5 cd 05 bc b7
b5 5f 15 08 33 0e a4 9f 14 d4 e8 89 55 0f 82 56
cb 5f 80 6d ff 34 b1 7a da 44 20 88 53 57 7d 08
e4 26 28 90 ac f7 52 46 1c ea 05 54 76 01 bc 4f
# q's CRT exponent dQ:
12 91 a5 24 c6 b7 c0 59 e9 0e 46 dc 83 b2 17 1e
b3 fa 98 81 8f d1 79 b6 c8 bf 6c ec aa 47 63 03
ab f2 83 fe 05 76 9c fc 49 57 88 fe 5b 1d df de
9e 88 4a 3c d5 e9 36 b7 e9 55 eb f9 7e b5 63 b1
# CRT coefficient qInv:
a6 3f 1d a3 8b 95 0c 9a d1 c6 7c e0 d6 77 ec 29
14 cd 7d 40 06 2d f4 2a 67 eb 19 8a 17 6f 97 42
aa c7 c5 fe a1 4f 22 97 66 2b 84 81 2c 4d ef c4
9a 80 25 ab 43 82 28 6b e4 c0 37 88 dd 01 d6 9f
# ---------------------------------
# Step-by-step RSASSA-PSS Signature
# ---------------------------------
# Message M to be signed:
85 9e ef 2f d7 8a ca 00 30 8b dc 47 11 93 bf 55
bf 9d 78 db 8f 8a 67 2b 48 46 34 f3 c9 c2 6e 64
78 ae 10 26 0f e0 dd 8c 08 2e 53 a5 29 3a f2 17
3c d5 0c 6d 5d 35 4f eb f7 8b 26 02 1c 25 c0 27
12 e7 8c d4 69 4c 9f 46 97 77 e4 51 e7 f8 e9 e0
4c d3 73 9c 6b bf ed ae 48 7f b5 56 44 e9 ca 74
ff 77 a5 3c b7 29 80 2f 6e d4 a5 ff a8 ba 15 98
90 fc
# mHash = Hash(M)
# salt = random string of octets
# M' = Padding || mHash || salt
# H = Hash(M')
# DB = Padding || salt
# dbMask = MGF(H, length(DB))
# maskedDB = DB xor dbMask (leftmost bit set to
# zero)
# EM = maskedDB || H || 0xbc
# mHash:
37 b6 6a e0 44 58 43 35 3d 47 ec b0 b4 fd 14 c1
10 e6 2d 6a
# salt:
e3 b5 d5 d0 02 c1 bc e5 0c 2b 65 ef 88 a1 88 d8
3b ce 7e 61
# M':
00 00 00 00 00 00 00 00 37 b6 6a e0 44 58 43 35
3d 47 ec b0 b4 fd 14 c1 10 e6 2d 6a e3 b5 d5 d0
02 c1 bc e5 0c 2b 65 ef 88 a1 88 d8 3b ce 7e 61
# H:
df 1a 89 6f 9d 8b c8 16 d9 7c d7 a2 c4 3b ad 54
6f be 8c fe
# DB:
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 01 e3 b5 d5 d0 02 c1 bc e5 0c
2b 65 ef 88 a1 88 d8 3b ce 7e 61
# dbMask:
66 e4 67 2e 83 6a d1 21 ba 24 4b ed 65 76 b8 67
d9 a4 47 c2 8a 6e 66 a5 b8 7d ee 7f bc 7e 65 af
50 57 f8 6f ae 89 84 d9 ba 7f 96 9a d6 fe 02 a4
d7 5f 74 45 fe fd d8 5b 6d 3a 47 7c 28 d2 4b a1
e3 75 6f 79 2d d1 dc e8 ca 94 44 0e cb 52 79 ec
d3 18 3a 31 1f c8 97 39 a9 66 43 13 6e 8b 0f 46
5e 87 a4 53 5c d4 c5 9b 10 02 8d
# maskedDB:
66 e4 67 2e 83 6a d1 21 ba 24 4b ed 65 76 b8 67
d9 a4 47 c2 8a 6e 66 a5 b8 7d ee 7f bc 7e 65 af
50 57 f8 6f ae 89 84 d9 ba 7f 96 9a d6 fe 02 a4
d7 5f 74 45 fe fd d8 5b 6d 3a 47 7c 28 d2 4b a1
e3 75 6f 79 2d d1 dc e8 ca 94 44 0e cb 52 79 ec
d3 18 3a 31 1f c8 96 da 1c b3 93 11 af 37 ea 4a
75 e2 4b db fd 5c 1d a0 de 7c ec
# Encoded message EM:
66 e4 67 2e 83 6a d1 21 ba 24 4b ed 65 76 b8 67
d9 a4 47 c2 8a 6e 66 a5 b8 7d ee 7f bc 7e 65 af
50 57 f8 6f ae 89 84 d9 ba 7f 96 9a d6 fe 02 a4
d7 5f 74 45 fe fd d8 5b 6d 3a 47 7c 28 d2 4b a1
e3 75 6f 79 2d d1 dc e8 ca 94 44 0e cb 52 79 ec
d3 18 3a 31 1f c8 96 da 1c b3 93 11 af 37 ea 4a
75 e2 4b db fd 5c 1d a0 de 7c ec df 1a 89 6f 9d
8b c8 16 d9 7c d7 a2 c4 3b ad 54 6f be 8c fe bc
# Signature S, the RSA decryption of EM:
8d aa 62 7d 3d e7 59 5d 63 05 6c 7e c6 59 e5 44
06 f1 06 10 12 8b aa e8 21 c8 b2 a0 f3 93 6d 54
dc 3b dc e4 66 89 f6 b7 95 1b b1 8e 84 05 42 76
97 18 d5 71 5d 21 0d 85 ef bb 59 61 92 03 2c 42
be 4c 29 97 2c 85 62 75 eb 6d 5a 45 f0 5f 51 87
6f c6 74 3d ed dd 28 ca ec 9b b3 0e a9 9e 02 c3
48 82 69 60 4f e4 97 f7 4c cd 7c 7f ca 16 71 89
71 23 cb d3 0d ef 5d 54 a2 b5 53 6a d9 0a 74 7e
# =============================================
|