| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 
 | <!doctype html public '-//W3C//DTD HTML 4.01//EN'
  'http://www.w3.org/TR/REC-html4/strict.dtd'>
<!-- Can I have bangs, plusses, or slashes in #tags? Spaces?
        Yes: plus, bang, star   No: space  Yes: slash, question, ampersand
        You can't put sharp in a path, so anything goes, really.
        Nonetheless, some of these confuse Netscape, so I'll avoid them.
 -->
<!--========================================================================-->
<html lang=en-US>
  <head>
    <meta name="keywords" content="Scheme, programming language, list processing, SRFI, underage lesbian sluts">
    <link rev=made href="mailto:shivers@ai.mit.edu">
    <title>SRFI 13: String Libraries</title>
    <!-- Should have a media=all to get, for example, printing to work.
      == But my Netscape will completely ignore the tag if I do that.
      -->
    <style type="text/css">
           /* A little general layout hackery for headers & the title. */
           body { margin-left: +7%;
                  font-family: "Helvetica", sans-serif;
                  }
           /* Netscape workaround: */
           td, th { font-family: "Helvetica", sans-serif; }
           code, pre { font-family: "courier new", "courier"; }
           div.inset { margin-left: +5%; }
           h1 { margin-left: -5%; }
           h1, h2 { clear: both; }
           h1, h2, h3, h4, h5, h6 { color: blue }
           div.title-text { font-size: large; font-weight: bold; }
	   h3 { margin-top: 2em; margin-bottom: 0em }
	   /* "Continue" class marks text that isn't really the start
	   ** of a new paragraph -- e.g., continuing a para after a 
	   ** code sample.
	   */
	   p.continue { text-indent: 0em; margin-top: 0em}
           div.indent { margin-left: 2em; }       /* General indentation */
           pre.code-example { margin-left: 2em; } /* Indent code examples. */
           /* This stuff is for definition lists of defined procedures.
           ** A proc-def1 is used when you want a stack of procs to go
           ** with one dd body. In this case, make the first
           ** proc a proc-def1, following ones proc-defi's, and the last one
           ** a proc-defn.
           **
           ** Unfortunately, Netscape has huge bugs with respect to style
           ** sheets and dl list rendering. We have to set truly random
           ** values here to get the rendering to come out. The proper values
           ** are in the following style sheet, for Internet Explorer.
           ** In the following settings, the *comments* say what the 
           ** setting *really* causes Netscape to do.
           **
           ** Ugh. Professional coders sacrifice their self-respect,
           ** that others may live.
           */
           /* m-t ignored; m-b sets top margin space. */
           dt.proc-def1 { margin-top: 0ex; margin-bottom: 3ex; }
           dt.proc-defi { margin-top: 0ex; margin-bottom: 0ex; }
           dt.proc-defn { margin-top: 0ex; margin-bottom: 0ex; }
           /* m-t works weird depending on whether or not the last line
           ** of the previous entry was a pre. Set to zero.
           */
           dt.proc-def  { margin-top: 0ex; margin-bottom: 3ex; }
           /* m-b sets space between dd & dt; m-t ignored. */
           dd.proc-def { margin-bottom: 0.5ex; margin-top: 0ex; } 
           /* Boldface the name of a procedure when it's being defined. */
           code.proc-def { font-weight: bold; font-size: 110%}
           /* For the index of procedures. 
           ** Same hackery as for dt.proc-def, above.
           */
           /* m-b sets space between dd & dt; m-t ignored. */
           dd.proc-index  { margin-bottom: 0ex; margin-top: 0ex; } 
           /* What the fuck? */
           pre.proc-index { margin-top: -2ex; }
           /* Pull the table of contents back flush with the margin.
           ** Both NS & IE screw this up in different ways.
           */
           #toc-table { margin-top: -2ex; margin-left: -5%; }
           /* R5RS proc names are in italic; extended R5RS names 
           ** in italic boldface.
           */
           span.r5rs-proc { font-weight: bold; }
           span.r5rs-procx { font-style: italic; font-weight: bold; }
           /* Spread out bibliographic lists. */
           /* More Netscape-specific lossage; see the following stylesheet
           ** for the proper values (used by IE).
           */
           dt.biblio { margin-bottom: 3ex; }
           /* Links to draft copies (e.g., not at the official SRFI site)
           ** are colored in red, so people will use them during the 
           ** development process and kill them when the document's done.
           */
           a.draft { color: red; }
    </style>
    <style type="text/css" media=all>
           /* Nastiness: Here, I'm using a bug to work around a bug.
           ** Netscape rendering bugs mean you need bogus <dt> and <dd>
           ** margin settings -- settings which screw up IE's proper rendering.
           ** Fortunately, Netscape has *another* bug: it will ignore this
           ** media=all style sheet. So I am placing the (proper) IE values
           ** here. Perhaps, one day, when these rendering bugs are fixed,
           ** this gross hackery can be removed.
           */
           dt.proc-def1 { margin-top: 3ex; margin-bottom: 0ex; }
           dt.proc-defi { margin-top: 0ex; margin-bottom: 0ex; }
           dt.proc-defn { margin-top: 0ex; margin-bottom: 0.5ex; }
           dt.proc-def  { margin-top: 3ex; margin-bottom: 0.5ex; }
           pre { margin-top: 1ex; }
           dd.proc-def { margin-bottom: 2ex; margin-top: 0.5ex; } 
           /* For the index of procedures. 
           ** Same hackery as for dt.proc-def, above.
           */
           dd.proc-index { margin-top: 0ex; } 
           pre.proc-index { margin-top: 0ex; }
           /* Spread out bibliographic lists. */
           dt.biblio { margin-top: 3ex; margin-bottom: 0ex; }
           dd.biblio { margin-bottom: 1ex; }
    </style>
  </head>
<body>
<!--========================================================================-->
<H1>Title</H1>
<div class=title-text>SRFI 13: String Libraries</div>
<!--========================================================================-->
<H1>Author</H1>
Olin Shivers
<H1>Status</H1>
This SRFI is currently in ``final'' status.  To see an explanation of each status that a SRFI can hold, see <A HREF="http://srfi.schemers.org/srfi-process.html">here</A>.
You can access the discussion via <A HREF="http://srfi.schemers.org/srfi-13/mail-archive/maillist.html">the archive of the mailing list</A>.
<P><UL>
<LI>Received: 1999/10/17
<LI>Draft: 1999/10/18-1999/12/16
<LI>Revised: 1999/10/31
<LI>Revised: 1999/11/13
<LI>Revised: 1999/11/22
<LI>Revised: 2000/04/30
<LI>Revised: 2000/06/09
<LI>Revised: 2000/12/23
</UL>
<h1>Table of contents</H1>
<!-- A bug in netscape (?) keeps the first link in this UL from being active.
==== So the Abstract link be dead. 99/8/22 -Olin
-->
<ul id=toc-table>
<li><a href="#Abstract">Abstract</a>
<li><a href="#ProcedureIndex">Procedure index</a>
<li><a href="#Rationale">Rationale</a>
  <ul>
  <li><a href="#StringsAreCodePointSeqs">Strings are code-point sequences</a>
  <li><a href="#NoLocales">String operations are locale- and context-independent</a>
  <li><a href="#Unicode">Internationalisation & super-ASCII character types</a>
    <ul>
    <li><a href="#Case">Case mapping and case folding</a>
    <li><a href="#Eq">String equality & string normalisation</a>
    <li><a href="#Ineq">String inequality</a>    
    </ul>
  <li><a href="#NamingConventions">Naming conventions</a>
  <li><a href="#SharedStorage">Shared storage</a>
  <li><a href="#R5RS-procs">R4RS/R5RS procedures</a>
  <li><a href="#ExtraSRFI">Extra-SRFI recommendations</a>
  </ul>
<li><a href="#Procedures">Procedure specification</a>
  <ul>
  <li><a href="#MainProcs">Main procedures</a>
    <ul>
    <li><a href="#Predicates">Predicates</a>
    <li><a href="#Constructors">Constructors</a>
    <li><a href="#List2String">List & string conversion</a>
    <li><a href="#Selection">Selection</a>
    <li><a href="#Modification">Modification</a>
    <li><a href="#Comparison">Comparison</a>
    <li><a href="#PrefixesSuffixes">Prefixes & suffixes</a>
    <li><a href="#Searching">Searching</a>
    <li><a href="#CaseMapping">Alphabetic case mapping</a>
    <li><a href="#ReverseAppend">Reverse & append</a>
    <li><a href="#FoldUnfoldMap">Fold, unfold & map</a>
    <li><a href="#ReplicateRotate">Replicate & rotate</a>
    <li><a href="#Miscellaneous">Miscellaneous: insertion, parsing</a>
    <li><a href="#FilterDelete">Filtering & deleting</a>
    </ul>
  <li><a href="#LowLevelProcs">Low-level procedures</a>
    <ul>
    <li><a href="#ArgUtils">Start/end optional argument parsing & checking utilities</a>
    <li><a href="#KMP">Knuth-Morris-Pratt searching</a>
    </ul>
  </ul>
<li><a href="#ReferenceImp">Reference implementation</a>
<li><a href="#Acknowledgements">Acknowledgements</a>
<li><a href="#Links">References & Links</a>
<li><a href="#Copyright">Copyright</a>
</ul>
<!--========================================================================-->
<h1><a name="Abstract">Abstract</a></H1>
<p>
<abbr title="Revised^5 Report on Scheme"><a href="#R5RS">R5RS</a></abbr>
Scheme has an impoverished set of string-processing utilities, which is a
problem for authors of portable code. This <abbr title="Scheme Request for
Implementation">SRFI</abbr> proposes a coherent and comprehensive set of
string-processing procedures; it is accompanied by a reference implementation
of the spec. The reference implementation is
<ul>
<li>portable
<li>efficient
<li>open source
</ul>
<p>
The routines in this SRFI are backwards-compatible with the string-processing
routines of
<abbr title="Revised^5 Report on Scheme"><a href="#R5RS">R5RS</a></abbr>.
<!--========================================================================-->
<h1><a name="ProcedureIndex">Procedure Index</a></h1>
<p>
Here is a list of the procedures provided by the string-lib 
and string-lib-internals packages.
<abbr title="Revised^5 Report on Scheme"><a href="#R5RS">R5RS</a></abbr>
procedures are shown in 
<span class=r5rs-proc>bold</span>;
extended <abbr title="Revised^5 Report on Scheme"><a href="#R5RS">R5RS</a></abbr>
         procedures, in <span class=r5rs-procx>bold italic</span>.
<div class=indent>
<dl>
<dt class=proc-index> Predicates
<dd class=proc-index>
<pre class=proc-index>
<span class=r5rs-proc><a href="#string-p">string?</a></span> <a href="#string-null-p">string-null?</a> 
<a href="#string-every">string-every</a> <a href="#string-any">string-any</a>
</pre>
<dt class=proc-index> Constructors
<dd class=proc-index>
<pre class=proc-index>
<span class=r5rs-proc><a href="#make-string">make-string</a> <a href="#string">string</a></span> <a href="#string-tabulate">string-tabulate</a>
</pre>
<dt class=proc-index> List & string conversion
<dd class=proc-index>
<pre class=proc-index>
<span class=r5rs-procx><a href="#string2list">string->list</a></span> <span class=r5rs-proc><a href="#list2string">list->string</a></span>
<a href="#reverse-list2string">reverse-list->string</a> <a href="#string-join">string-join</a>
</pre>
<dt class=proc-index> Selection
<dd class=proc-index>
<pre class=proc-index>
<span class=r5rs-proc><a href="#string-length">string-length</a>
<a href="#string-ref">string-ref</a></span>
<span class=r5rs-procx><a href="#string-copy">string-copy</a></span>
<a href="#substring/shared">substring/shared</a>
<a href="#string-copy!">string-copy!</a> 
<a href="#string-take">string-take</a> <a href="#string-take-right">string-take-right</a>
<a href="#string-drop">string-drop</a> <a href="#string-drop-right">string-drop-right</a>
<a href="#string-pad">string-pad</a>  <a href="#string-pad-right">string-pad-right</a> 
<a href="#string-trim">string-trim</a> <a href="#string-trim-right">string-trim-right</a> <a href="#string-trim-both">string-trim-both</a> 
</pre>
<dt class=proc-index>Modification
<dd class=proc-index>
<pre class=proc-index>
<span class=r5rs-proc><a href="#string-set!">string-set!</a></span> <span class=r5rs-procx><a href="#string-fill!">string-fill!</a></span>
</pre>
<dt class=proc-index>Comparison
<dd class=proc-index>
<pre class=proc-index>
<a href="#string-compare">string-compare</a> <a href="#string-compare-ci">string-compare-ci</a>
<a href="#string<>">string<></a>     <a href="#string=">string=</a>    <a href="#string<">string<</a>    <a href="#string>">string></a>    <a href="#string<=">string<=</a>    <a href="#string>=">string>=</a>
<a href="#string-ci<>">string-ci<></a>  <a href="#string-ci=">string-ci=</a> <a href="#string-ci<">string-ci<</a> <a href="#string-ci>">string-ci></a> <a href="#string-ci<=">string-ci<=</a> <a href="#string-ci>=">string-ci>=</a>
<a href="#string-hash">string-hash</a>  <a href="#string-hash-ci">string-hash-ci</a>
</pre>
<dt class=proc-index>Prefixes & suffixes
<dd class=proc-index>
<pre class=proc-index>
<a href="#string-prefix-length">string-prefix-length</a>    <a href="#string-suffix-length">string-suffix-length</a>
<a href="#string-prefix-length-ci">string-prefix-length-ci</a> <a href="#string-suffix-length-ci">string-suffix-length-ci</a>
<a href="#string-prefix-p">string-prefix?</a>    <a href="#string-suffix-p">string-suffix?</a>    
<a href="#string-prefix-ci-p">string-prefix-ci?</a> <a href="#string-suffix-ci-p">string-suffix-ci?</a> 
</pre>
<dt class=proc-index>Searching
<dd class=proc-index>
<pre class=proc-index>
<a href="#string-index">string-index</a> <a href="#string-index-right">string-index-right</a>
<a href="#string-skip">string-skip</a>  <a href="#string-skip-right">string-skip-right</a> 
<a href="#string-count">string-count</a> 
<a href="#string-contains">string-contains</a> <a href="#string-contains-ci">string-contains-ci</a>
</pre>
<dt class=proc-index>Alphabetic case mapping
<dd class=proc-index>
<pre class=proc-index>
<a href="#string-titlecase">string-titlecase</a>  <a href="#string-upcase">string-upcase</a>  <a href="#string-downcase">string-downcase</a>
<a href="#string-titlecase!">string-titlecase!</a> <a href="#string-upcase!">string-upcase!</a> <a href="#string-downcase!">string-downcase!</a>
</pre>
<dt class=proc-index>Reverse & append
<dd class=proc-index>
<pre class=proc-index>
<a href="#string-reverse">string-reverse</a> <a href="#string-reverse!">string-reverse!</a>
<span class=r5rs-proc><a href="#string-append">string-append</a></span>
<a href="#string-concatenate">string-concatenate</a>
<a href="#string-concatenate/shared">string-concatenate/shared</a> <a href="#string-append/shared">string-append/shared</a>
<a href="#string-concatenate-reverse">string-concatenate-reverse</a> <a href="#string-concatenate-reverse/shared">string-concatenate-reverse/shared</a>
</pre>
<dt class=proc-index>Fold, unfold & map
<dd class=proc-index>
<pre class=proc-index>
<a href="#string-map">string-map</a>      <a href="#string-map!">string-map!</a>
<a href="#string-fold">string-fold</a>     <a href="#string-fold-right">string-fold-right</a>
<a href="#string-unfold">string-unfold</a>   <a href="#string-unfold-right">string-unfold-right</a>
<a href="#string-for-each">string-for-each</a> <a href="#string-for-each-index">string-for-each-index</a>
</pre>
<dt class=proc-index>Replicate & rotate
<dd class=proc-index>
<pre class=proc-index>
<a href="#xsubstring">xsubstring</a> <a href="#string-xcopy!">string-xcopy!</a>
</pre>
<dt class=proc-index>Miscellaneous: insertion, parsing
<dd class=proc-index>
<pre class=proc-index>
<a href="#string-replace">string-replace</a> <a href="#string-tokenize">string-tokenize</a>
</pre>
<dt class=proc-index>Filtering & deleting
<dd class=proc-index>
<pre class=proc-index>
<a href="#string-filter">string-filter</a> <a href="#string-delete">string-delete</a> 
</pre>
<dt class=proc-index>Low-level procedures
<dd class=proc-index>
<pre class=proc-index>
<a href="#string-parse-start+end">string-parse-start+end</a>
<a href="#string-parse-final-start+end">string-parse-final-start+end</a>
<a href="#let-string-start+end">let-string-start+end</a>
<a href="#check-substring-spec">check-substring-spec</a>
<a href="#substring-spec-ok-p">substring-spec-ok?</a>
<a href="#make-kmp-restart-vector">make-kmp-restart-vector</a> <a href="#kmp-step">kmp-step</a> <a href="#string-kmp-partial-search">string-kmp-partial-search</a>
</pre>
</dl>
</div>
<!--========================================================================-->
<h1><a name="Rationale">Rationale</a></h1>
<p>
This SRFI defines two libraries that provide a rich set of operations for
manipulating strings. These are frequently useful for scripting and other
text-manipulation applications. The library's design was influenced by the
string libraries found in MIT Scheme, Gambit, RScheme, MzScheme, slib, Common
Lisp, Bigloo, guile, Chez, APL, Java, and the SML standard basis.
<p>
All procedures involving character comparison are available in
both case-sensitive and case-insensitive forms.
<p>
All functionality is available in substring and full-string forms.
<!--========================================================================-->
<h2><a name="StringsAreCodePointSeqs">Strings are code-point sequences</a></h2>
<p>
This SRFI considers strings simply to be a sequence of "code points" or
character encodings. Operations such as comparison or reversal are always done
code point by code point. See the comments below on super-ASCII character
types for implications that follow.
<p>
It's entirely possible that a legal string might not be a sensible "text"
sequence. For example, consider a string comprised entirely of zero-width
Unicode accent characters with no preceding base character to modify --
this is a legal string, albeit one that does not make a great deal of sense
when interpreted as a sequence of natural-language text. The routines in
this SRFI do not handle these "text" concerns; they restrict themselves
to the underlying view of strings as merely a sequence of "code points."
<!--========================================================================-->
<h2><a name="NoLocales">String operations are locale- and context-independent</a></h2>
<p>
This SRFI defines string operations that are locale- and context-independent.
While it is certainly important to have a locale-sensitive comparison or
collation procedure when processing text, it is also important to have a suite
of operations that are reliably invariant for basic string processing ---
otherwise, a change of locale could cause data structures such as hash tables,
b-trees, symbol tables, directories of filenames, <em>etc.</em> 
to become corrupted.
<p>
Locale- and context-sensitive text operations, such as collation, are
explicitly deferred to a subsequent, companion "text" SRFI.
<!--========================================================================-->
<h2><a name="Unicode">Internationalisation & super-ASCII character types</a></h2>
<p>
The major issue confronting this SRFI is the existence of super-ASCII
character encodings, such as eight-bit Latin-1 or 16- and 32-bit Unicode.  It
is a design goal of this SRFI for the API to be portable across string
implementations based on at least these three standard encodings.
Unfortunately, this places strong limitations on the API design. Here are
some relevant issues. Be warned that life in a super-ASCII world is
significantly more complex; there are no easy answers for many of these issues.
<!--========================================================================-->
<h3><a name="Case">Case mapping and case-folding</a></h3>
<p>
Upper- and lower-casing characters is complex in super-ASCII encodings.
<ul>
<li> Some characters case-map to more than one character. For example,
  the Latin-1 German eszet character upper-cases to "SS." 
  <ul>
  <li> This means that the <abbr title="Revised^5 Report on Scheme">
    <a href="#R5RS">R5RS</a></abbr> function <code>char-upcase</code> is not well-defined, 
    since it is defined to produce a (single) character result. 
  <li> It means that an in-place <code>string-upcase!</code> procedure cannot be reliably
    defined, since the original string may not be long enough to contain
    the result -- an N-character string might upcase to a 2N-character result.
  <li> It means that case-insensitive string-matching or searching is quite
    tricky. For example, an n-character string <var>s</var> might match a 2N-character
    string <var>s'</var>.
  </ul>
<li> Some characters case-map in different ways depending upon their surrounding
  context. For example, the Unicode Greek capital sigma character downcases
  differently depending upon whether or not it is the final character in a
  word. Again, this spells trouble for the simple <abbr title="Revised^5 Report on Scheme"><a href="#R5RS">R5RS</a></abbr> <code>char-downcase</code> function.
<li> Unicode defines three cases: lowercase, uppercase and titlecase. The
  distinction between uppercase and titlecase arises in the presence of
  Unicode's compound characters. For example, Unicode has a single character
  representing the compound pair "dz." Uppercasing the "dz" character produces
  the compound character "DZ", while titlecasing (or, as Americans say,
  capitalizing) it produces compound character "Dz".
<li> Turkish actually has different case-mappings from other languages.
</ul>
<p>
The Unicode Consortium's web site
<div class=inset>
    <a href="http://www.unicode.org/">http://www.unicode.org/</a>
</div>
<p class=continue>
has detailed discussions of the issues. See in particular technical report
21 on case mappings
<div class=inset>
    <a href="http://www.unicode.org/unicode/reports/tr21/">http://www.unicode.org/unicode/reports/tr21/</a>
</div>
<p>
SRFI 13 makes no attempt to deal with these issues; it uses a simple 1-1
locale- and context-independent case-mapping, specifically Unicode's 1-1
case-mappings given in
<div class=inset>
    <a href="ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.txt">ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.txt</a>
</div>
<p class=continue>
The format of this file is explained in
<div class=inset>
    <a href="ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.html">ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.html</a>
</div>
<p class=continue>
Note that this means that German eszet upper-cases to itself, not "SS".
<p>
Case-mapping and case-folding operations in SRFI 13 are locale-independent so
that shifting locales won't wreck hash tables, b-trees, symbol tables, <em>etc.</em>
<!--========================================================================-->
<h3><a name="Eq">String equality & string normalisation</a></h3>
<p>
Comparing strings for equality is complicated because in some cases Unicode
actually provides multiple encodings for the "same" character, and because
what we usually think of as a "character" can be represented in Unicode as a
<em>sequence</em> of several code-points. For example, consider the letter "e" with
an acute accent. There is a single Unicode character for this. However,
Unicode also allows one to represent this with a two-character sequence: the
"e" character followed by a zero-width acute-accent character. As another
example, Unicode provides some Asian characters in "narrow" and "full" widths.
<p>
There are multiple ways we might want to compare strings for equality. In
(roughly) decreasing order of precision,
<ul>
<li> we might want a precise comparison of the actual encoding, so that
  <e-acute> would <em>not</em> compare equal to <e, acute>.
<li> We might want a "normalised" comparison, where these two sequences 
     would compare equal.
<li> We might want an even more-permissive normalisation, where visually-distinct
  properties of "the same" character would be ignored. For example, we might
  want narrow/full-width versions of the same Asian character to compare equal.
<li> We might want comparisons that are insensitive to accents and diacritical
  marks.
<li> We might want comparisons that are case-insensitive.
<li> We might want comparisons that are insensitive to several of the above
  properties.
<li> We might want ways to "normalise" strings into various canonical forms.
</ul>
<p>
This library does not address these complexities. SRFI 13 string equality is
simply based upon comparing the encoding values used for the characters.
Accent-insensitive and other types of comparison are not provided; only
a simple form of case-insensitive comparison is provided, which uses the
1-1 case mappings specified by Unicode in
<div class=inset>
    <a href="ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.txt">ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.txt</a>
</div>
<p class=continue>
These are adequate for "program" or "systems" use of strings (<em>e.g.</em>, to 
manipulate program identifiers and operating-system filenames).
<!--========================================================================-->
<h3><a name="Ineq">String inequality</a></h3>
<p>
Above and beyond the issues arising in string-equality, when we attempt
to order strings there are even further considerations.
<ul>
<li> French orders accents with right-to-left significance -- the reverse of
  the significance of the characters.
<li> Case-insensitive ordering is not well defined by simple "code-point"
  considerations, even for simple ASCII: there are punctuation characters
  between the ASCII's upper-case range of letters and its lower-case range
  (left-bracket, backslash, right-bracket, caret, underbar and backquote).
  Does left-bracket compare less-than or greater-than "a" in a
  case-insensitive comparison? 
<li> The German eszet character should sort as if it were the <em>pair</em> of
  letters "ss".
</ul>
<p>
Unicode defines a complex set of machinery for ordering or "collating"
strings, which involves mapping each string to a multi-byte sort key,
and then doing simple lexicographic sorting with these keys. These rules
can be overlaid by additional domain- or language-specific rules. Again,
this SRFI does not address these issues. SRFI 13 string ordering is strictly
based upon a character-by-character comparison of the values used for
representing the string.
<!--========================================================================-->
<h2><a name="NamingConventions">Naming conventions</a></h2>
<p>
This library contains a large number of procedures, but they follow
a consistent naming scheme, and are consistent with the conventions
developed in SRFI 1. The names are composed of smaller lexemes
in a regular way that exposes the structure and relationships between the
procedures. This should help the programmer to recall or reconstitute the name
of the particular procedure that he needs when writing his own code. In
particular
<ul>
    <li> Procedures whose names end in "-ci" are case-insensitive variants.
    <li> Procedures whose names end in "!" are side-effecting variants.
      What values these procedures return is usually not specified.
    <li> The order of common parameters is consistent across the
      different procedures.
    <li> Left/right/both directionality:
      Procedures that have left/right directional variants
      use the following convention:
          <div class=indent>
          <table cellspacing=0 cellpadding=0>
          <tr align=left><th>Direction</th>
                         <th>  </th>
                         <th>Suffix</th></tr>
          <tr><td>left-to-right</td><td></td><td><em>none</em></td></tr>
          <tr><td>right-to-left</td><td></td><td><code>-right</code></td></tr>
          <tr><td>both         </td><td></td><td><code>-both</code></td></tr>
          </table>
          </div>
      This is a general convention that was established in SRFI 1.
      The value of a convention is proportional to the extent of its 
      use.
</ul>
      
<!--========================================================================-->
<h2><a name="SharedStorage">Shared storage</a></h2>
<p>
Some Scheme implementations, <em>e.g.</em> guile and T, provide ways to construct
substrings that share storage with other strings. This facility is called
"shared-text substrings." Shared-text substrings can be used to eliminate the
allocation and copying time and space required to produce substrings, which
can be a tremendous savings for some applications, reducing a linear-time
operation to constant time.  Additionally, some algorithms rely on the sharing
property of these substrings -- the application assumes that if the underlying
storage is mutated, then all strings sharing that storage will show the
change.  However, shared-text substrings are not a common feature; most Scheme
implementations do not provide them.
<p>
SRFI 13 takes a middle ground with respect to shared-text substrings.  In
particular, a Scheme implementation does not need to have shared-text
substrings in order to implement this SRFI.
<p>
There is an additional form of storage sharing enabled by some SRFI 13
procedures, even without the benefit of shared-text substrings. In 
some cases, some SRFI 13 routines are allowed to return as a result one
of the strings that was passed in as a parameter. For example, when
constructing a substring with the <code>substring/shared</code> procedure, if the
requested substring is the entire string, the procedure is permitted
simply to return the original value. That is,
<pre class=code-example>
(eq? s (substring/shared s 0 (string-length s))) => true or false
</pre>
<p class=continue>
whereas the <abbr title="Revised^5 Report on Scheme"><a href="#R5RS">R5RS</a></abbr> 
<code>substring</code> function is required to allocate a fresh copy
<pre class=code-example>
(eq? s (substring s 0 (string-length s))) => false.
</pre>
<p>
In keeping with SRFI 13's general approach to sharing, compliant
implementations are allowed, but not required, to provide this kind of
sharing. Hence, procedures may not <em>rely</em> upon sharing in these cases.
<p class=continue>
Most procedures that permit results to share storage with inputs have
equivalent procedures that require allocating fresh storage for results. 
If an application wishes to be sure a new, fresh string is allocated, then 
these "pure" procedures should be used.
<div class=inset>
<table cellpadding=0 cellspacing=0>
<tr align=left><th>Fresh copy guaranteed</th>
               <th>Sharing permitted</th></tr>
<tr><td><code>string-copy</code></td>
    <td><code>substring/shared</code></td></tr>
<tr><td><code>string-copy</code></td>
    <td><code>string-take string-take-right</code></td></tr>
<tr><td><code>string-copy</code></td>
    <td><code>string-drop string-drop-right</code></tr>
<tr><td><code>string-concatenate</code></td>
    <td><code>string-concatenate/shared</code></tr>
<tr><td><code>string-append</code></td> 
    <td><code>string-append/shared</code></td></tr>
<tr><td><code>string-concatenate-reverse</code>
    <td><code>string-concatenate-reverse/shared</code></td></tr>
<tr><td></td>
    <td><code>string-pad string-pad-right</code></td></tr>
<tr><td></td>
    <td><code>string-trim string-trim-right</code></td></tr>
<tr><td></td>
    <td><code>string-trim-both</code></td></tr> <!-- netscape blows up. -->
<tr><td></td>
    <td><code>string-filter string-delete</code></td></tr>
</table>
</div>
<p>
On the other hand, the functionality is present to allow one to write
efficient code <em>without</em> shared-text substrings. You can write efficient code
that works by passing around start/end ranges indexing into a string instead
of simply building a shared-text substring. The API would be much simpler
without this consideration -- if we had cheap shared-text substrings, all the
start/end index parameters would vanish. However, since SRFI 13 does not
require implementations to provide shared-text substrings, the extended
API is provided.
<!--========================================================================-->
<h2><a name="R5RS-procs">R4RS/R5RS procedures</a></h2>
<p>
The R4RS and <abbr title="Revised^5 Report on Scheme"><a href="#R5RS">R5RS</a></abbr> reports define 22 string procedures. The string-lib
package includes 8 of these exactly as defined, 3 in an extended,
backwards-compatible way, and drops the remaining 11 (whose functionality
is available via other bindings).
<p>
The 8 procedures provided exactly as documented in the reports are
    <code>string?</code>,
    <code>make-string</code>,
    <code>string</code>,
    <code>string-length</code>,
    <code>string-ref</code>,
    <code>string-set!</code>,
    <code>string-append</code>, and
    <code>list->string</code>.
<p>
The eleven functions not included are
    <code>string=?</code>, <code>string-ci=?</code>,
    <code>string<?</code>,  <code>string-ci<?</code>,
    <code>string>?</code>,  <code>string-ci>?</code>,
    <code>string<=?</code>, <code>string-ci<=?</code>,
    <code>string>=?</code>, <code>string-ci>=?</code>, and
    <code>substring</code>.
The string-lib package provides alternate bindings and extended functionality.
<p>
Additionally, the three extended procedures are
<pre class=code-example>
string-fill! <var>s char [start end] -> unspecified</var>
string->list <var>s [start end] -> char-list</var>
string-copy  <var>s [start end] -> string</var>
</pre>
<p class=continue>
They are uniformly extended to take optional start/end parameters specifying
substring ranges.
<!--========================================================================-->
<h2><a name="ExtraSRFI">Extra-SRFI recommendations</a></h2>
<p>
This SRFI recommends the following
<ul>
<li> A SRFI be defined for shared-text substrings, allowing programs to
  be written that actually rely on the shared-storage properties of these data
  structures.
<li> A SRFI be defined for manipulating Unicode text -- various normalisation
  operations, collation, searching, <em>etc.</em> Collation operations might be
  parameterised by a "collation" structure representing collation rules
  for a particular locale or language. Alternatively, a data structure
  specifying collation rules could be activated with dynamic scope by
  special procedures, possibly overridden by allowing collation rules
  to be optional arguments to procedures that need to order strings, <em>e.g.</em>
<pre class=code-example>
(with-locale* denmark-locale
  (lambda () 
    (f x)
    (g 42)))
(with-locale taiwan-locale
  (f x)
  (h denmark-locale)
  (g 42))
(set-locale! denmark-locale)
</pre>
<li> A SRFI be defined for manipulating characters that is portable across
  at least ASCII, Latin-1 and Unicode. 
  <ul>
  <li> For backwards-compatibility, <code>char-upcase</code> and <code>char-downcase</code> should 
    be defined to use the 1-1 locale- and context-insensitive case
    mappings given by Unicode's UnicodeData.txt table.
  
  <li> numeric codes for standard functions that map between characters and
    integers should be required to use the Unicode/Latin-1/ASCII mapping. This
    allows programmers to write portable code.
  <li> <code>char-titlecase</code> be added to <code>char-upcase</code> and <code>char-downcase</code>.
  <li> <code>char-titlecase?</code> be added to <code>char-upcase?</code> and <code>char-downcase?</code>.
  <li> Title/up/down-case functions be added to the character-processing suite
    which allow 1->n case maps by returning immutable,
    possibly-multi-character strings instead of single characters. These case
    mappings need not be locale- or context-sensitive.
  </ul>
</ul>
<p>
  These recommendations are not a part of the SRFI 13 spec. Note also that
  requiring a Unicode/Latin-1/ASCII interface to integer/char mapping
  functions does not imply anything about the actual underlying encodings of
  characters.
<!--========================================================================-->
<h1><a name="Procedures">Procedure Specification</a></h1>
<p>
In the following procedure specifications:
<ul>
    <li> An <var>s</var> parameter is a string.
    <li> A <var>char</var> parameter is a character.
    <li> <var>Start</var> and <var>end</var> parameters are half-open string indices specifying 
      a substring within a string parameter; when optional, they default
      to 0 and the length of the string, respectively. When specified, it
      must be the case that 0 <= <var>start</var> <= <var>end</var> 
      <= <code>(string-length <var>s</var>)</code>, for
      the corresponding parameter <var>s</var>. They typically restrict a procedure's
      action to the indicated substring.
    <li> A <var>pred</var> parameter is a unary character predicate procedure, returning 
      a true/false value when applied to a character.
    <li> A <var>char/char-set/pred</var> parameter is a value used to select/search
      for a character in a string. If it is a character, it is used in
      an equality test; if it is a character set, it is used as a
      membership test; if it is a procedure, it is applied to the 
      characters as a test predicate.
    <li> An <var>i</var> parameter is an exact non-negative integer specifying an index
      into a string.
    
    <li> <var>Len</var> and <var>nchars</var> parameters are exact non-negative integers specifying a
      length of a string or some number of characters.
    <li> An <var>obj</var> parameter may be any value at all.
</ul>
<p class=continue>
Passing values to procedures with these parameters that do not satisfy these
types is an error.
<p>
Parameters given in square brackets are optional. Unless otherwise noted in the
text describing the procedure, any prefix of these optional parameters may
be supplied, from zero arguments to the full list. When a procedure returns
multiple values, this is shown by listing the return values in square
brackets, as well. So, for example, the procedure with signature
<pre class=code-example>
halts? <var>f [x init-store]</var> -> <var>[boolean integer]</var>
</pre>
would take one (<var>f</var>), two (<var>f</var>, <var>x</var>) 
or three (<var>f</var>, <var>x</var>, <var>init-store</var>) input parameters, 
and return two values, a boolean and an integer.
<p>
A parameter followed by "<code>...</code>" means zero-or-more elements. 
So the procedure with the signature
<pre class=code-example>
sum-squares <var>x ... </var> -> <var>number</var>
</pre>
takes zero or more arguments (<var>x ...</var>), 
while the procedure with signature
<pre class=code-example>
spell-check <var>doc dict<sub>1</sub> dict<sub>2</sub> ...</var> -> <var>string-list</var>
</pre>
takes two required parameters 
(<var>doc</var> and <var>dict<sub>1</sub></var>) 
and zero or more optional parameters (<var>dict<sub>2</sub> ...</var>).
<p>
If a procedure is said to return "unspecified," this means that nothing at
all is said about what the procedure returns. Such a procedure is not even
required to be consistent from call to call. It is simply required to
return a value (or values) that may be passed to a command continuation,
<em>e.g.</em> as the value of an expression appearing as a non-terminal 
subform of a <code>begin</code> expression. 
Note that in 
    <abbr title="Revised^5 Report on Scheme"><a href="#R5RS">R5RS</a></abbr>,
this restricts such a procedure to returning a single value; 
non-R5RS systems may not even provide this restriction.
<!--========================================================================-->
<h2><a name="MainProcs">Main procedures</a></h2>
<p>
In a Scheme system that has a module or package system, these procedures
should be contained in a module named "string-lib".
<!--========================================================================-->
<h3><a name="Predicates">Predicates</a></h3>
<dl>
<!--
==== string?
============================================================================-->
<dt class=proc-def>
<a name="string-p"></a>
<code class=proc-def>string?</code><var> obj -> boolean</var>
<dd class=proc-def>
    [<abbr title="Revised^5 Report on Scheme"><a href="#R5RS">R5RS</a></abbr>]
Returns <code>#t</code> if <var>obj</var> is a string, otherwise returns <code>#f</code>.
<!--
==== string-null?
============================================================================-->
<dt class=proc-def>
<a name="string-null-p"></a>
<code class=proc-def>string-null?</code><var> s -> boolean</var>
<dd class=proc-def>
    Is <var>s</var> the empty string?
</dd>
<!--
==== string-every string-any
============================================================================-->
<dt class=proc-def1>
<a name="string-every"></a>
<a name="string-any"></a>
<code class=proc-def>string-every</code><var> char/char-set/pred s [start end] -> value</var>
<dt class=proc-defn><code class=proc-def>string-any</code><var> char/char-set/pred s [start end] -> value</var>
<dd class=proc-def>
    Checks to see if the given criteria is true of every / any character in <var>s</var>,
    proceeding from left (index <var>start</var>) to right (index <var>end</var>).
<p>
    If <var>char/char-set/pred</var> is a character, it is tested for equality with
    the elements of <var>s</var>.
<p>
    If <var>char/char-set/pred</var> is a character set, the elements of <var>s</var> are tested
    for membership in the set.
<p>
    If <var>char/char-set/pred</var> is a predicate procedure, it is applied to the 
    elements of <var>s</var>. The predicate is "witness-generating:"
    <ul>
      <li> If <code>string-any</code> returns true, the returned true value is the one produced
        by the application of the predicate.
    
      <li> If <code>string-every</code> returns true, the returned true value is the one
        produced by the final application of the predicate to <var>s</var>[<var>end</var>]. 
        If <code>string-every</code> is applied to an empty sequence of characters, 
        it simply returns <code>#t</code>.
    </ul>
      If <code>string-every</code> or <code>string-any</code> apply the predicate to the final element
      of the selected sequence (<em>i.e.</em>, <var>s</var>[<var>end</var>-1]), that final application is a
      tail call.
<p>
    The names of these procedures do not end with a question mark -- this is to
    indicate that, in the predicate case, they do not return a simple boolean
    (<code>#t</code> or <code>#f</code>), but a general value.
</dl>
<!--========================================================================-->
<h3><a name="Constructors">Constructors</a></h3>
<dl>
<!--
==== make-string
============================================================================-->
<dt class=proc-def>
<a name="make-string"></a>
<code class=proc-def>make-string</code> <var>len [char] -> string</var>
<dd class=proc-def>
  [<abbr title="Revised^5 Report on Scheme"><a href="#R5RS">R5RS</a></abbr>]
  <code>make-string</code> returns a newly allocated string of length <var>len</var>.  If
  <var>char</var> is given, then all elements of the string are initialized
  to <var>char</var>, otherwise the contents of the string are unspecified.
<!--
==== string
============================================================================-->
<dt class=proc-def>
<a name="string"></a>
<code class=proc-def>string</code><var> char<sub>1</sub> ... -> string</var>
<dd class=proc-def>
  [<abbr title="Revised^5 Report on Scheme"><a href="#R5RS">R5RS</a></abbr>]
  Returns a newly allocated string composed of the argument characters.
    
<!--
==== string-tabulate
============================================================================-->
<dt class=proc-def>
<a name="string-tabulate"></a>
<code class=proc-def>string-tabulate</code><var> proc len -> string</var>
<dd class=proc-def>
    <var>Proc</var> is an integer->char procedure. Construct a string of size <var>len</var>
    by applying <var>proc</var> to each index to produce the corresponding string
    element. The order in which <var>proc</var> is applied to the indices is not
    specified.
</dl>
<!--========================================================================-->
<h3><a name="List2String">List & string conversion</a></h3>
<dl>
<!--
==== string->list list->string
============================================================================-->
<dt class=proc-def1>
<a name="string2list"></a>
<a name="list2string"></a>
<code class=proc-def>string->list</code><var> s [start end] -> char-list</var>
<dt class=proc-defn><code class=proc-def>list->string</code><var> char-list -> string</var>
<dd class=proc-def>
    [<abbr title="Revised^5 Report on Scheme"><a href="#R5RS">R5RS</a></abbr>+]
    <code>string->list</code> returns a newly allocated list of the characters
    that make up the given string.  <code>list->string</code> returns a newly
    allocated string formed from the characters in the list <var>char-list</var>,
    which must be a list of characters. <code>string->list</code> and <code>list->string</code> 
    are inverses so far as <code>equal?</code> is concerned.
    <p>
    <code>string->list</code> is extended from the <abbr title="Revised^5 Report on Scheme"><a href="#R5RS">R5RS</a></abbr> definition to take optional
    <var>start/end</var> arguments.
<!--
==== reverse-list->string
============================================================================-->
<dt class=proc-def>
<a name="reverse-list2string"></a>
<code class=proc-def>reverse-list->string</code><var> char-list -> string</var>
<dd class=proc-def>
    An efficient implementation of <code>(compose list->string reverse)</code>:
<pre class=code-example>
(reverse-list->string '(#\a #\B #\c)) -> "cBa"
</pre>
    This is a common idiom in the epilog of string-processing loops
    that accumulate an answer in a reverse-order list. (See also
    <code>string-concatenate-reverse</code> for the "chunked" variant.)
<!--
==== string-join
============================================================================-->
<dt class=proc-def>
<a name="string-join"></a>
<code class=proc-def>string-join</code><var> string-list [delimiter grammar] -> string</var>
<dd class=proc-def>
    This procedure is a simple unparser --- it pastes strings together using
    the delimiter string. 
    <p>
    The <var>grammar</var> argument is a symbol that determines how the delimiter is
    used, and defaults to <code>'infix</code>.
    
<ul>
      <li> <code>'infix</code> means an infix or separator grammar: 
        insert the delimiter
        between list elements.  An empty list will produce an empty string --
        note, however, that parsing an empty string with an infix or separator
        grammar is ambiguous. Is it an empty list, or a list of one element,
        the empty string?
    
      <li> <code>'strict-infix</code> means the same as <code>'infix</code>, 
        but will raise an error if given an empty list.
    
      <li> <code>'suffix</code> means a suffix or terminator grammar: 
        insert the delimiter
        after every list element. This grammar has no ambiguities.
      <li> <code>'prefix</code> means a prefix grammar: insert the delimiter
        before every list element. This grammar has no ambiguities.
</ul>
    The delimiter is the string used to delimit elements; it defaults to
    a single space " ".
<pre class=code-example>
(string-join '("foo" "bar" "baz") ":")         => "foo:bar:baz"
(string-join '("foo" "bar" "baz") ":" 'suffix) => "foo:bar:baz:"
;; Infix grammar is ambiguous wrt empty list vs. empty string,
(string-join '()   ":") => ""
(string-join '("") ":") => ""
;; but suffix & prefix grammars are not.
(string-join '()   ":" 'suffix) => ""
(string-join '("") ":" 'suffix) => ":"
</pre>
</dl>
<!--========================================================================-->
<h3><a name="Selection">Selection</a></h3>
<dl>
<!--
==== string-length
============================================================================-->
<dt class=proc-def>
<a name="string-length"></a>
<code class=proc-def>string-length</code><var> s -> integer</var>
<dd class=proc-def>
  [<abbr title="Revised^5 Report on Scheme"><a href="#R5RS">R5RS</a></abbr>]
  Returns the number of characters in the string <var>s</var>.
<!--
==== string-ref
============================================================================-->
<dt class=proc-def>
<a name="string-ref"></a>
<code class=proc-def>string-ref</code><var> s i -> char</var>
<dd class=proc-def>
  [<abbr title="Revised^5 Report on Scheme"><a href="#R5RS">R5RS</a></abbr>]
  Returns character <var>s[i]</var> using zero-origin indexing.
  <var>I</var> must be a valid index of <var>s</var>.  
<!--
==== string-copy substring/shared
============================================================================-->
<dt class=proc-def1>
<a name="string-copy"></a>
<a name="substring/shared"></a>
<code class=proc-def>string-copy</code><var>      s [start end] -> string</var>
<dt class=proc-defn><code class=proc-def>substring/shared</code><var> s start [end] -> string</var>
<dd class=proc-def>
    [<abbr title="Revised^5 Report on Scheme"><a href="#R5RS">R5RS</a></abbr>+]
    <code>substring/shared</code> returns a string whose contents are the characters of <var>s</var>
    beginning with index <var>start</var> (inclusive) and ending with index <var>end</var>
    (exclusive). It differs from the <abbr title="Revised^5 Report on Scheme"><a href="#R5RS">R5RS</a></abbr> <code>substring</code> in two ways:
    <ul>
      <li> The <var>end</var> parameter is optional, not required.
      <li> <code>substring/shared</code> may return a value that shares memory with <var>s</var> or
        is <code>eq?</code> to <var>s</var>.
    </ul>
    <p>
    <code>string-copy</code> is extended from its <abbr title="Revised^5 Report on Scheme"><a href="#R5RS">R5RS</a></abbr> definition by the addition of
    its optional <var>start/end</var> parameters. In contrast to <code>substring/shared</code>,
    it is guaranteed to produce a freshly-allocated string.
    <p>
    Use <code>string-copy</code> when you want to indicate explicitly in your code that you
    wish to allocate new storage; use <code>substring/shared</code> when you don't care if 
    you get a fresh copy or share storage with the original string.
<pre class=code-example>
(string-copy "Beta substitution") => "Beta substitution"
(string-copy "Beta substitution" 1 10) 
    => "eta subst"
(string-copy "Beta substitution" 5) => "substitution"
</pre>
<!--
==== string-copy!
============================================================================-->
<dt class=proc-def>
<a name="string-copy!"></a>
<code class=proc-def>string-copy!</code><var> target tstart s [start end] -> unspecified</var>
<dd class=proc-def>
    Copy the sequence of characters from index range [<var>start</var>,<var>end</var>) in
    string <var>s</var> to string <var>target</var>, beginning at index <var>tstart</var>. The characters 
    are copied left-to-right or right-to-left as needed -- the copy is
    guaranteed to work, even if <var>target</var> and <var>s</var> are the same string.
    <p>
    It is an error if the copy operation runs off the end of the target
    string, <em>e.g.</em>
<pre class=code-example>
(string-copy! (string-copy "Microsoft") 0
              "Regional Microsoft Operating Companies") => <em>error</em>
</pre>
<!--
==== string-take string-drop string-take-right string-drop-right
============================================================================-->
<dt class=proc-def1>
<a name="string-take"></a>
<a name="string-drop"></a>
<a name="string-take-right"></a>
<a name="string-drop-right"></a>
<code class=proc-def>string-take</code><var> s nchars -> string</var>
<dt class=proc-defi><code class=proc-def>string-drop</code><var> s nchars -> string</var>
<dt class=proc-defi><code class=proc-def>string-take-right</code><var> s nchars -> string</var>
<dt class=proc-defn><code class=proc-def>string-drop-right</code><var> s nchars -> string</var>
<dd class=proc-def>
    <code>string-take</code> returns the first <var>nchars</var> of <var>s</var>; 
    <code>string-drop</code> returns all but the first <var>nchars</var> of <var>s</var>.
    <code>string-take-right</code> returns the last <var>nchars</var> of <var>s</var>;
    <code>string-drop-right</code> returns all but the last <var>nchars</var> of <var>s</var>.
    If these procedures produce the entire string, they may return either
    <var>s</var> or a copy of <var>s</var>; in some implementations, proper substrings may share
    memory with <var>s</var>.
<pre class=code-example>
(string-take "Pete Szilagyi" 6) => "Pete S"
(string-drop "Pete Szilagyi" 6) => "zilagyi"
(string-take-right "Beta rules" 5) => "rules"
(string-drop-right "Beta rules" 5) => "Beta "
</pre>
    It is an error to take or drop more characters than are in the string:
<pre class=code-example>
(string-take "foo" 37) => <em>error</em>
</pre>
<!--
==== string-pad string-pad-right
============================================================================-->
<dt class=proc-def1>
<a name="string-pad"></a>
<a name="string-pad-right"></a>
<code class=proc-def>string-pad</code><var>       s len [char start end] -> string</var>
<dt class=proc-defn><code class=proc-def>string-pad-right</code><var> s len [char start end] -> string</var>
<dd class=proc-def>
    Build a string of length <var>len</var> comprised of <var>s</var> padded on the left (right)
    by as many occurrences of the character <var>char</var> as needed. If <var>s</var> has more
    than <var>len</var> chars, it is truncated on the left (right) to length <var>len</var>. <var>Char</var>
    defaults to #\space.
    <p>
    If <var>len</var> <= <var>end</var>-<var>start</var>, the returned value is allowed to share storage
    with <var>s</var>, or be exactly <var>s</var> (if <var>len</var> = <var>end</var>-<var>start</var>).
<pre class=code-example>
(string-pad     "325" 5) => "  325"
(string-pad   "71325" 5) => "71325"
(string-pad "8871325" 5) => "71325"
</pre>
<!--
==== string-trim string-trim-right string-trim-both
============================================================================-->
<dt class=proc-def1>
<a name="string-trim"></a>
<a name="string-trim-right"></a>
<a name="string-trim-both"></a>
<code class=proc-def>string-trim      </code><var> s [char/char-set/pred start end] -> string</var>
<dt class=proc-defi><code class=proc-def>string-trim-right</code><var> s [char/char-set/pred start end] -> string</var>
<dt class=proc-defi><code class=proc-def>string-trim-both </code><var> s [char/char-set/pred start end] -> string</var>
<dd class=proc-defn>
    Trim <var>s</var> by skipping over all characters on the left / on the right /
    on both sides that satisfy the second parameter <var>char/char-set/pred</var>:
    <ul>
        <li> if it is a character <var>char</var>, characters equal to <var>char</var> are trimmed;
        <li> if it is a char set <var>cs</var>, characters contained in <var>cs</var> are trimmed;
        <li> if it is a predicate <var>pred</var>, it is a test predicate that is applied
          to the characters in <var>s</var>; a character causing it to return true
          is skipped.
    </ul>
    <var>Char/char-set/pred</var> defaults to the character set <code>char-set:whitespace</code>
    defined in <a href="#SRFI-14">SRFI 14</a>.
    <p>
    If no trimming occurs, these functions may return either <var>s</var> or a copy of <var>s</var>;
    in some implementations, proper substrings may share memory with <var>s</var>.
<pre class=code-example>
(string-trim-both "  The outlook wasn't brilliant,  \n\r")
    => "The outlook wasn't brilliant,"
</pre>
</dl>
<!--========================================================================-->
<h3><a name="Modification">Modification</a></h3>
<dl>
<!--
==== string-set!
============================================================================-->
<dt class=proc-def>
<a name="string-set!"></a>
<code class=proc-def>string-set!</code><var> s i char -> unspecified                                     </var>
<dd class=proc-def>
  [<abbr title="Revised^5 Report on Scheme"><a href="#R5RS">R5RS</a></abbr>]
  <var>I</var> must be a valid index of <var>s</var>.  <code>string-set!</code> stores <var>char</var> in
  element <var>i</var> of <var>s</var>. Constant string literals appearing in code are 
  immutable; it is an error to use them in a <code>string-set!.</code>
<pre class=code-example>
(define (f) (make-string 3 #\*))
(define (g) "***")
(string-set! (f) 0 #\?)                ==>  <em>unspecified</em>
(string-set! (g) 0 #\?)                ==>  <em>error</em>
(string-set! (symbol->string 'immutable)
             3
             #\?)                      ==>  <em>error</em>
</pre>
<!--
==== string-fill!
============================================================================-->
<dt class=proc-def>
<a name="string-fill!"></a>
<code class=proc-def>string-fill!</code><var> s char [start end] -> unspecified                          </var>
<dd class=proc-def>
    [<abbr title="Revised^5 Report on Scheme"><a href="#R5RS">R5RS</a></abbr>+]
    Stores <var>char</var> in every element of <var>s</var>.
    <p>
    <code>string-fill</code> is extended from the <abbr title="Revised^5 Report on Scheme"><a href="#R5RS">R5RS</a></abbr> definition to take optional
    <var>start/end</var> arguments.
</dl>
<!--========================================================================-->
<h3><a name="Comparison">Comparison</a></h3>
<dl>
<!--
==== string-compare string-compare-ci
============================================================================-->
<dt class=proc-def1>
<a name="string-compare"></a>
<a name="string-compare-ci"></a>
<code class=proc-def>string-compare   </code><var> s1 s2 proc< proc= proc> [start1 end1 start2 end2] -> values</var>
<dt class=proc-defi><code class=proc-def>string-compare-ci</code><var> s1 s2 proc< proc= proc> [start1 end1 start2 end2] -> values</var>
<dd class=proc-defn>
Apply <var>proc<</var>, <var>proc=</var>, or <var>proc></var>
 to the mismatch index, depending
upon whether <var>s1</var> is less than, equal to, or greater than <var>s2</var>.
The "mismatch index" is the largest index <var>i</var> such that for
every 0 <= <var>j</var> < <var>i</var>, 
<var>s1[j]</var> = <var>s2[j]</var>
-- that is, <var>i</var> is the first position that doesn't match.
<p>
<code>string-compare-ci</code> is the case-insensitive variant. Case-insensitive
comparison is done by case-folding characters with the operation
<pre class=code-example>
(char-downcase (char-upcase <var>c</var>))
</pre>
where the two case-mapping operations are assumed to be 1-1, locale- and
context-insensitive, and compatible with the 1-1 case mappings specified
by Unicode's UnicodeData.txt table:
<div class=inset>
    <a href="ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.txt">ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.txt</a>
</div>
<p>
The optional start/end indices restrict the comparison to the indicated
substrings of <var>s1</var> and <var>s2</var>. The mismatch index is always an index into <var>s1</var>;
in the case of <var>proc=</var>, it is always <var>end1</var>; 
we observe the protocol
in this redundant case for uniformity.
<pre class=code-example>
(string-compare "The cat in the hat" "abcdefgh" 
                values values values
                4 6         ; Select "ca" 
                2 4)        ; & "cd"
    => 5    ; Index of S1's "a"
</pre>
Comparison is simply done on individual code-points of the string. 
True text collation is not handled by this SRFI.
<!--
==== string= string<> string< string> string<= string>=
============================================================================-->
<dt class=proc-def1>
<a name="string="></a>
<a name="string<>"></a>
<a name="string<"></a>
<a name="string>"></a>
<a name="string<="></a>
<a name="string>="></a>
<code class=proc-def>string= </code><var> s1 s2 [start1 end1 start2 end2] -> boolean</var>
<dt class=proc-defi><code class=proc-def>string<></code><var> s1 s2 [start1 end1 start2 end2] -> boolean</var>
<dt class=proc-defi><code class=proc-def>string< </code><var> s1 s2 [start1 end1 start2 end2] -> boolean</var>
<dt class=proc-defi><code class=proc-def>string> </code><var> s1 s2 [start1 end1 start2 end2] -> boolean</var>
<dt class=proc-defi><code class=proc-def>string<=</code><var> s1 s2 [start1 end1 start2 end2] -> boolean</var>
<dt class=proc-defn><code class=proc-def>string>=</code><var> s1 s2 [start1 end1 start2 end2] -> boolean</var>
<dd class=proc-def>
    These procedures are the lexicographic extensions to strings of the
    corresponding orderings on characters.  For example, <code>string<</code> is the
    lexicographic ordering on strings induced by the ordering <code>char<?</code> on
    characters.  If two strings differ in length but are the same up to 
    the length of the shorter string, the shorter string is considered to 
    be lexicographically less than the longer string.
    <p>
    The optional start/end indices restrict the comparison to the indicated
    substrings of <var>s1</var> and <var>s2</var>. 
    <p>
    Comparison is simply done on individual code-points of the string. 
    True text collation is not handled by this SRFI.
<!--
==== string-ci= string-ci<> string-ci< string-ci> string-ci<= string-ci>=
============================================================================-->
<dt class=proc-def1>
<a name="string-ci="></a>
<a name="string-ci<>"></a>
<a name="string-ci<"></a>
<a name="string-ci>"></a>
<a name="string-ci<="></a>
<a name="string-ci>="></a>
<code class=proc-def>string-ci= </code><var> s1 s2 [start1 end1 start2 end2] -> boolean</var>
<dt class=proc-defi><code class=proc-def>string-ci<></code><var> s1 s2 [start1 end1 start2 end2] -> boolean</var>
<dt class=proc-defi><code class=proc-def>string-ci< </code><var> s1 s2 [start1 end1 start2 end2] -> boolean</var>
<dt class=proc-defi><code class=proc-def>string-ci> </code><var> s1 s2 [start1 end1 start2 end2] -> boolean</var>
<dt class=proc-defi><code class=proc-def>string-ci<=</code><var> s1 s2 [start1 end1 start2 end2] -> boolean</var>
<dt class=proc-defn><code class=proc-def>string-ci>=</code><var> s1 s2 [start1 end1 start2 end2] -> boolean</var>
<dd class=proc-def>
    Case-insensitive variants.
    <p>
    Case-insensitive comparison is done by case-folding characters with 
    the operation
<pre class=code-example>
(char-downcase (char-upcase <var>c</var>))
</pre>
    where the two case-mapping operations are assumed to be 1-1, locale- and
    context-insensitive, and compatible with the 1-1 case mappings specified
    by Unicode's UnicodeData.txt table:
<div class=inset>
        <a href="ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.txt">ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.txt</a>
</div>
<!--
==== string-hash string-hash-ci
============================================================================-->
<dt class=proc-def1>
<a name="string-hash"></a>
<a name="string-hash-ci"></a>
<code class=proc-def>string-hash   </code><var> s [bound start end] -> integer</var>
<dt class=proc-defn><code class=proc-def>string-hash-ci</code><var> s [bound start end] -> integer</var>
<dd class=proc-def>
Compute a hash value for the string <var>s</var>. 
<var>Bound</var> is a non-negative
exact integer specifying the range of the hash function. A positive
value restricts the return value to the range [0,<var>bound</var>).
<p>
If <var>bound</var> is either zero or not given, the implementation may use
an implementation-specific default value, chosen to be as large as
is efficiently practical. For instance, the default range might be chosen
for a given implementation to map all strings into the range of
integers that can be represented with a single machine word.
<p>
The optional start/end indices restrict the hash operation to the 
indicated substring of <var>s</var>.
<p>
<code>string-hash-ci</code> is the case-insensitive variant. Case-insensitive
comparison is done by case-folding characters with the operation
<pre class=code-example>
(char-downcase (char-upcase <var>c</var>))
</pre>
where the two case-mapping operations are assumed to be 1-1, locale- and
context-insensitive, and compatible with the 1-1 case mappings specified
by Unicode's UnicodeData.txt table:
<div class=inset>
     <a href="ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.txt">
         ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.txt</a>
</div>
<p>
Invariants:
<pre class=code-example>
(<= 0 (string-hash s b) (- b 1)) ; When B > 0.
(string=    s1 s2)  =>  (= (string-hash s1 b)    (string-hash s2 b))
(string-ci= s1 s2)  =>  (= (string-hash-ci s1 b) (string-hash-ci s2 b))
</pre>
<p>
A legal but nonetheless discouraged implementation:
<pre class=code-example>
(define (string-hash    s . other-args) 1)
(define (string-hash-ci s . other-args) 1)
</pre>
<p>
    Rationale: allowing the user to specify an explicit bound simplifies user
    code by removing the mod operation that typically accompanies every hash
    computation, and also may allow the implementation of the hash function to
    exploit a reduced range to efficiently compute the hash value. 
    <em>E.g.</em>, for
    small bounds, the hash function may be computed in a fashion such that
    intermediate values never overflow into bignum integers, allowing the
    implementor to provide a fixnum-specific "fast path" for computing the
    common cases very rapidly.
</dl>
<!--========================================================================-->
<h3><a name="PrefixesSuffixes">Prefixes & suffixes</a></h3>
<dl>
<!--
==== string-prefix-length    string-suffix-length
==== string-prefix-length-ci string-suffix-length-ci
============================================================================-->
<dt class=proc-def1>
<a name="string-prefix-length"></a>
<a name="string-suffix-length"></a>
<a name="string-prefix-length-ci"></a>
<a name="string-suffix-length-ci"></a>
<code class=proc-def>string-prefix-length   </code><var> s1 s2 [start1 end1 start2 end2] -> integer</var>
<dt class=proc-defi><code class=proc-def>string-suffix-length   </code><var> s1 s2 [start1 end1 start2 end2] -> integer</var>
<dt class=proc-defi><code class=proc-def>string-prefix-length-ci</code><var> s1 s2 [start1 end1 start2 end2] -> integer</var>
<dt class=proc-defn><code class=proc-def>string-suffix-length-ci</code><var> s1 s2 [start1 end1 start2 end2] -> integer</var>
<dd class=proc-def>
Return the length of the longest common prefix/suffix of the two strings.
For prefixes, this is equivalent to the "mismatch index" for the strings
(modulo the <var>start</var>i index offsets).
<p>
The optional start/end indices restrict the comparison to the indicated
substrings of <var>s1</var> and <var>s2</var>.
<p>
<code>string-prefix-length-ci</code> and <code>string-suffix-length-ci</code> are the
case-insensitive variants. Case-insensitive comparison is done by
case-folding characters with the operation
<pre class=code-example>
(char-downcase (char-upcase c))
</pre>
where the two case-mapping operations are assumed to be 1-1, locale- and
context-insensitive, and compatible with the 1-1 case mappings specified
by Unicode's UnicodeData.txt table:
<div class=inset>
        <a href="ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.txt">ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.txt</a>
</div>
Comparison is simply done on individual code-points of the string. 
<!--
==== string-prefix? string-suffix? string-prefix-ci? string-suffix-ci?
============================================================================-->
<dt class=proc-def1>
<a name="string-prefix-p"></a>
<a name="string-suffix-p"></a>
<a name="string-prefix-ci-p"></a>
<a name="string-suffix-ci-p"></a>
<code class=proc-def>string-prefix?   </code><var> s1 s2 [start1 end1 start2 end2] -> boolean</var>
<dt class=proc-defi><code class=proc-def>string-suffix?   </code><var> s1 s2 [start1 end1 start2 end2] -> boolean</var>
<dt class=proc-defi><code class=proc-def>string-prefix-ci?</code><var> s1 s2 [start1 end1 start2 end2] -> boolean</var>
<dt class=proc-defn><code class=proc-def>string-suffix-ci?</code><var> s1 s2 [start1 end1 start2 end2] -> boolean</var>
<dd class=proc-def>
Is <var>s1</var> a prefix/suffix of <var>s2</var>?
<p>
The optional start/end indices restrict the comparison to the indicated
substrings of <var>s1</var> and <var>s2</var>.
<p>
<code>string-prefix-ci?</code> and <code>string-suffix-ci?</code> are the case-insensitive variants.
Case-insensitive comparison is done by case-folding characters with the
operation
<pre class=code-example>
(char-downcase (char-upcase c))
</pre>
where the two case-mapping operations are assumed to be 1-1, locale- and
context-insensitive, and compatible with the 1-1 case mappings specified
by Unicode's UnicodeData.txt table:
<div class=inset>
    <a href="ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.txt">ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.txt</a>
</div>
<p>
Comparison is simply done on individual code-points of the string. 
</dl>
<!--========================================================================-->
<h3><a name="Searching">Searching</a></h3>
<dl>
<!--
==== string-index string-index-right string-skip string-skip-right
============================================================================-->
<dt class=proc-def1>
<a name="string-index"></a>
<a name="string-index-right"></a>
<a name="string-skip"></a>
<a name="string-skip-right"></a>
<code class=proc-def>string-index</code><var>       s char/char-set/pred [start end] -> integer or #f</var>
<dt class=proc-defi><code class=proc-def>string-index-right</code><var> s char/char-set/pred [start end] -> integer or #f</var>
<dt class=proc-defi><code class=proc-def>string-skip</code><var> s char/char-set/pred [start end] -> integer or #f</var>
<dt class=proc-defn><code class=proc-def>string-skip-right</code><var> s char/char-set/pred [start end] -> integer or #f</var>
<dd class=proc-def>
<code>string-index</code> (<code>string-index-right</code>) searches through the string from the 
left (right), returning the index of the first occurrence of a character 
which
<ul>
    <li> equals <var>char/char-set/pred</var> (if it is a character);
    <li> is in <var>char/char-set/pred</var> (if it is a character set);
    <li> satisfies the predicate <var>char/char-set/pred</var> (if it is a procedure).
</ul>
If no match is found, the functions return false.
<p>
The <var>start</var> and <var>end</var> parameters specify the beginning and end indices of
the search; the search includes the start index, but not the end index.
Be careful of "fencepost" considerations: when searching right-to-left, 
the first index considered is
<div class=inset>
    <var>end</var>-1
</div>
whereas when searching left-to-right, the first index considered is
<div class=inset>
      <var>start</var>
</div>
That is, the start/end indices describe a same half-open interval
[<var>start</var>,<var>end</var>) in these procedures that they do
in all the other SRFI 13 procedures.
<p>
The skip functions are similar, but use the complement of the criteria:
they search for the first char that <em>doesn't</em> satisfy the test. <em>E.g.</em>, 
to skip over initial whitespace, say
<pre class=code-example>
(cond ((string-skip s char-set:whitespace) =>
       (lambda (i) ...)) ; s[i] is not whitespace.
      ...)
</pre>
<!--
==== string-count
============================================================================-->
<dt class=proc-def>
<a name="string-count"></a>
<code class=proc-def>string-count</code><var> s char/char-set/pred [start end] -> integer</var>
<dd class=proc-def>
    Return a count of the number of characters in <var>s</var> that satisfy the
    <var>char/char-set/pred</var> argument. If this argument is a procedure, 
    it is applied to the character as a predicate; if it is a character set, 
    the character is tested for membership; if it is a character, it is 
    used in an equality test.
<!--
==== string-contains string-contains-ci
============================================================================-->
<dt class=proc-def1>
<a name="string-contains"></a>
<a name="string-contains-ci"></a>
<code class=proc-def>string-contains   </code><var> s1 s2 [start1 end1 start2 end2] -> integer or false</var>
<dt class=proc-defn><code class=proc-def>string-contains-ci</code><var> s1 s2 [start1 end1 start2 end2] -> integer or false</var>
<dd class=proc-def>
Does string <var>s1</var> contain string <var>s2</var>?
<p>
Return the index in <var>s1</var> where <var>s2</var> occurs as a substring, or false.
The optional start/end indices restrict the operation to the
indicated substrings.
<p>
The returned index is in the range [<var>start1</var>,<var>end1</var>). 
A successful match must lie entirely in the 
[<var>start1</var>,<var>end1</var>) range of <var>s1</var>.
<p>
<pre class=code-example>
(string-contains "eek -- what a geek." "ee"
                 12 18) ; Searches "a geek"
    => 15
</pre>
<p>
<code>string-contains-ci</code> is the case-insensitive variant. Case-insensitive
comparison is done by case-folding characters with the operation
<pre class=code-example>
(char-downcase (char-upcase <var>c</var>))
</pre>
where the two case-mapping operations are assumed to be 1-1, locale- and
context-insensitive, and compatible with the 1-1 case mappings specified
by Unicode's UnicodeData.txt table:
<div class=inset>
    <a href="ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.txt">ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.txt</a>
</div>
<p>
Comparison is simply done on individual code-points of the string. 
<p>
The names of these procedures do not end with a question mark -- this is to
indicate that they do not return a simple boolean (<code>#t</code> or <code>#f</code>). Rather,
they return either false (<code>#f</code>) or an exact non-negative integer.
</dl>
<!--========================================================================-->
<h3><a name="CaseMapping">Alphabetic case mapping</a></h3>
<dl>
<!--
==== string-titlecase string-titlecase!
============================================================================-->
<dt class=proc-def1>
<a name="string-titlecase"></a>
<a name="string-titlecase!"></a>
<code class=proc-def>string-titlecase </code><var> s [start end] -> string</var>
<dt class=proc-defn><code class=proc-def>string-titlecase!</code><var> s [start end] -> unspecified</var>
<dd class=proc-def>
For every character <var>c</var> in the selected range of <var>s</var>, 
if <var>c</var> is preceded by a cased character, it is downcased; 
otherwise it is titlecased.
<p>
<code>string-titlecase</code> returns the result string and does not alter its <var>s</var>
parameter. <code>string-titlecase!</code> is the in-place side-effecting variant.
<p>
<pre class=code-example>
(string-titlecase "--capitalize tHIS sentence.") =>
  "--Capitalize This Sentence."
(string-titlecase "see Spot run. see Nix run.") =>
  "See Spot Run. See Nix Run."
(string-titlecase "3com makes routers.") =>
  "3Com Makes Routers."
</pre>
<p>
Note that if a <var>start</var> index is specified, then the character
preceding <var>s</var>[<var>start</var>] has no effect on the titlecase decision for
character <var>s</var>[<var>start</var>]:
<pre class=code-example>
(string-titlecase "greasy fried chicken" 2) => "Easy Fried Chicken"
</pre>
<p>
Titlecase and cased information must be compatible with the Unicode
specification.
<!--
==== string-upcase string-upcase! string-downcase string-downcase!
============================================================================-->
<dt class=proc-def1>
<a name="string-upcase"></a>
<a name="string-upcase!"></a>
<a name="string-downcase"></a>
<a name="string-downcase!"></a>
<code class=proc-def>string-upcase </code><var> s [start end] -> string</var>
<dt class=proc-defi><code class=proc-def>string-upcase!</code><var> s [start end] -> unspecified</var>
<dt class=proc-defi><code class=proc-def>string-downcase </code><var> s [start end] -> string</var>
<dt class=proc-defn><code class=proc-def>string-downcase!</code><var> s [start end] -> unspecified</var>
<dd class=proc-def>
    Raise or lower the case of the alphabetic characters in the string.
    <p>
    <code>string-upcase</code> and <code>string-downcase</code> return the result string and do not
    alter their <var>s</var> parameter. <code>string-upcase!</code> and <code>string-downcase!</code> are the
    in-place side-effecting variants.    
    <p>
    These procedures use the locale- and context-insensitive 1-1 case mappings
    defined by Unicode's UnicodeData.txt table:
    <div class=inset>
         <a href="ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.txt">ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.txt</a>
    </div>
</dl>
<!--========================================================================-->
<h3><a name="ReverseAppend">Reverse & append</a></h3>
<dl>
<!--
==== string-reverse string-reverse!
============================================================================-->
<dt class=proc-def1>
<a name="string-reverse"></a>
<a name="string-reverse!"></a>
<code class=proc-def>string-reverse </code><var> s [start end] -> string</var>
<dt class=proc-defn><code class=proc-def>string-reverse!</code><var> s [start end] -> unspecified</var>
<dd class=proc-def>
Reverse the string.
<p>
<code>string-reverse</code> returns the result string 
and does not alter its <var>s</var> parameter. 
<code>string-reverse!</code> is the in-place side-effecting variant.
<pre class=code-example>
(string-reverse "Able was I ere I saw elba.") 
    => ".able was I ere I saw elbA"
;;; In-place rotate-left, the Bell Labs way:
(lambda (s i)
  (let ((i (modulo i (string-length s))))
    (string-reverse! s 0 i)
    (string-reverse! s i)
    (string-reverse! s)))
</pre>
<p>
Unicode note: Reversing a string simply reverses the sequence of
code-points it contains. So a zero-width accent character <var>a</var> 
coming <em>after</em> a base character <var>b</var> in string <var>s</var> 
would come out <em>before</em> <var>b</var> in the reversed result.
<!--
==== string-append
============================================================================-->
<dt class=proc-def>
<a name="string-append"></a>
<code class=proc-def>string-append</code><var> s<sub>1</sub> ... -> string</var>
<dd class=proc-def>
  [<abbr title="Revised^5 Report on Scheme"><a href="#R5RS">R5RS</a></abbr>]
  Returns a newly allocated string whose characters form the
  concatenation of the given strings.
<!--
==== string-concatenate
============================================================================-->
<dt class=proc-def>
<a name="string-concatenate"></a>
<code class=proc-def>string-concatenate</code><var> string-list -> string</var>
<dd class=proc-def>
    Append the elements of <code>string-list</code> together into a single string.
    Guaranteed to return a freshly allocated string.
    <p>
    Note that the <code>(apply string-append <var>string-list</var>)</code>
    idiom is
    not robust for long lists of strings, as some Scheme implementations
    limit the number of arguments that may be passed to an n-ary procedure.
<!--
==== string-concatenate/shared string-append/shared
============================================================================-->
<dt class=proc-def1>
<a name="string-concatenate/shared"></a>
<a name="string-append/shared"></a>
<code class=proc-def>string-concatenate/shared</code><var> string-list -> string</var>
<dt class=proc-defn><code class=proc-def>string-append/shared</code><var> s<sub>1</sub> ... -> string</var>
<dd class=proc-def>
    These two procedures are variants of <code>string-concatenate</code> 
    and <code>string-append</code>
    that are permitted to return results that share storage with their
    parameters. 
    In particular, if <code>string-append/shared</code> is applied to just 
    one argument, it may return exactly that argument, 
    whereas <code>string-append</code> is required to allocate a fresh string.
<!--
==== string-concatenate-reverse string-concatenate-reverse/shared
============================================================================-->
<dt class=proc-def1>
<a name="string-concatenate-reverse"></a>
<a name="string-concatenate-reverse/shared"></a>
<code class=proc-def>string-concatenate-reverse</code><var>        string-list [final-string end] -> string</var>
<dt class=proc-defn><code class=proc-def>string-concatenate-reverse/shared</code><var> string-list [final-string end] -> string</var>
<dd class=proc-def>
With no optional arguments, these functions are equivalent to
<pre class=code-example>
(string-concatenate (reverse <var>string-list</var>))
</pre>
and
<pre class=code-example>
(string-concatenate/shared (reverse <var>string-list</var>))
</pre>
respectively.
<p>
If the optional argument <var>final-string</var> is specified, it is consed
onto the beginning of <var>string-list</var>
before performing the list-reverse and string-concatenate operations.
</p>
If the optional argument <var>end</var> is given, 
only the first <var>end</var> characters
of <var>final-string</var> are added to the string list, thus producing
<pre class=code-example>
(string-concatenate 
  (reverse (cons (substring/shared <var>final-string</var> 0 <var>end</var>)
                 <var>string-list</var>)))
</pre>
<em>E.g.</em>
<pre class=code-example>
(string-concatenate-reverse '(" must be" "Hello, I") " going.XXXX" 7)
  => "Hello, I must be going."
</pre>
<p>
This procedure is useful in the construction of procedures that 
accumulate character data into lists of string buffers, and wish to
convert the accumulated data into a single string when done.
<p>
Unicode note: Reversing a string simply reverses the sequence of
code-points it contains. 
So a zero-width accent character <var>ac</var> coming <em>after</em>
a base character <var>bc</var> in string <var>s</var> would come out 
<em>before</em> <var>bc</var> in the reversed result.
</dl>
<!--========================================================================-->
<h3><a name="FoldUnfoldMap">Fold, unfold & map</a></h3>
<dl>
<!--
==== string-map string-map!
============================================================================-->
<dt class=proc-def1>
<a name="string-map"></a>
<a name="string-map!"></a>
<code class=proc-def>string-map </code><var> proc s [start end] -> string</var>
<dt class=proc-defn><code class=proc-def>string-map!</code><var> proc s [start end] -> unspecified</var>
<dd class=proc-def>
    <var>Proc</var> is a char->char procedure; it is mapped over <var>s</var>.
    
    <p>
    <code>string-map</code> returns the result string and does not alter its <var>s</var> parameter.
    <code>string-map!</code> is the in-place side-effecting variant.
    <p>
    Note: The order in which <var>proc</var> is applied to the elements of
    <var>s</var> is not specified.
<!--
==== string-fold string-fold-right
============================================================================-->
<dt class=proc-def1>
<a name="string-fold"></a>
<a name="string-fold-right"></a>
<code class=proc-def>string-fold</code><var>       kons knil s [start end] -> value</var>
<dt class=proc-defn><code class=proc-def>string-fold-right</code><var> kons knil s [start end] -> value</var>
<dd class=proc-def>
These are the fundamental iterators for strings.
<p>
The left-fold operator maps the <var>kons</var> procedure across the
string from left to right
<pre class=code-example>
(... (<var>kons</var> <var>s</var>[2] (<var>kons</var> <var>s</var>[1] (<var>kons</var> <var>s</var>[0] <var>knil</var>))))
</pre>
In other words, <code>string-fold</code> obeys the (tail) recursion
<pre class=code-example>
(string-fold <var>kons</var> <var>knil</var> <var>s</var> <var>start</var> <var>end</var>) =
    (string-fold <var>kons</var> (<var>kons</var> <var>s</var>[<var>start</var>] <var>knil</var>) <var>start+1</var> <var>end</var>)
</pre>
<p>
The right-fold operator maps the <var>kons</var> procedure across the
string from right to left
<pre class=code-example>
(<var>kons</var> <var>s</var>[0] (... (<var>kons</var> <var>s</var>[<var>end-3</var>] (<var>kons</var> <var>s</var>[<var>end-2</var>] (<var>kons</var> <var>s</var>[<var>end-1</var>] <var>knil</var>)))))
</pre>
obeying the (tail) recursion
<pre class=code-example>
(string-fold-right <var>kons</var> <var>knil</var> <var>s</var> <var>start</var> <var>end</var>) =
    (string-fold-right <var>kons</var> (<var>kons</var> <var>s</var>[<var>end-1</var>] <var>knil</var>) <var>start</var> <var>end-1</var>)
</pre>
    
<p>
Examples: 
<pre class=code-example>
;;; Convert a string to a list of chars.
(string-fold-right cons '() s)
;;; Count the number of lower-case characters in a string.
(string-fold (lambda (c count)
               (if (char-lower-case? c)
                   (+ count 1)
                   count))
             0
             s)
;;; Double every backslash character in S.
(let* ((ans-len (string-fold (lambda (c sum)
                               (+ sum (if (char=? c #\\) 2 1)))
                             0 s))
       (ans (make-string ans-len)))
  (string-fold (lambda (c i)
                 (let ((i (if (char=? c #\\)
                              (begin (string-set! ans i #\\) (+ i 1))
                              i)))
                   (string-set! ans i c)
                   (+ i 1)))
               0 s)
  ans)
</pre>
<p>
The right-fold combinator is sometimes called a "catamorphism."
<!--
==== string-unfold
============================================================================-->
<dt class=proc-def>
<a name="string-unfold"></a>
<code class=proc-def>string-unfold</code><var> p f g seed [base make-final] -> string</var>
<dd class=proc-def>
This is a fundamental constructor for strings. 
<ul>
<li> <var>G</var> is used to generate a series of "seed" values from the initial seed:
<div class=inset>
    <var>seed</var>, (<var>g</var> <var>seed</var>), (<var>g<sup>2</sup></var> <var>seed</var>), (<var>g<sup>3</sup></var> <var>seed</var>), ...
</div>
<li> <var>P</var> tells us when to stop -- when it returns true when applied to one 
  of these seed values.
<li> <var>F</var> maps each seed value to the corresponding character 
  in the result string. These chars are assembled into the
  string in a left-to-right order.
<li> <var>Base</var> is the optional initial/leftmost portion of the constructed string;
  it defaults to the empty string "".
<li> <var>Make-final</var> is applied to the terminal seed value (on which <var>p</var> returns
  true) to produce the final/rightmost portion of the constructed string.
  It defaults to <code>(lambda (x) "")</code>.
</ul>
<p>
More precisely, the following (simple, inefficient) definitions hold:
<pre class=code-example>
;;; Iterative
(define (string-unfold p f g seed base make-final)
  (let lp ((seed seed) (ans base))
    (if (p seed) 
        (string-append ans (make-final seed))
        (lp (g seed) (string-append ans (string (f seed)))))))
                                    
;;; Recursive
(define (string-unfold p f g seed base make-final)
  (string-append base
                 (let recur ((seed seed))
                   (if (p seed) (make-final seed)
                       (string-append (string (f seed))
                                      (recur (g seed)))))))
</pre>
<p>
<code>string-unfold</code> is a fairly powerful string constructor -- you can use it to
convert a list to a string, read a port into a string, reverse a string,
copy a string, and so forth. Examples:
<pre class=code-example>
(port->string p) = (string-unfold eof-object? values
                                  (lambda (x) (read-char p))
                                  (read-char p))
(list->string lis) = (string-unfold null? car cdr lis)
(string-tabulate f size) = (string-unfold (lambda (i) (= i size)) f add1 0)
</pre>
<p>
To map <var>f</var> over a list <var>lis</var>, producing a string:
<pre class=code-example>
(string-unfold null? (compose f car) cdr lis)
</pre>
<p>
Interested functional programmers may enjoy noting that 
<code>string-fold-right</code> 
and <code>string-unfold</code> are in some sense inverses. That is, given operations 
<var>knull?</var>, <var>kar</var><var>, kdr</var>, <var>kons</var>, and <var>knil</var> satisfying
<pre class=code-example>
(<var>kons</var> (<var>kar</var> x) (<var>kdr</var> x)) = x  and (<var>knull?</var> <var>knil</var>) = #t
</pre>
then
<pre class=code-example>
(string-fold-right <var>kons</var> <var>knil</var> (string-unfold <var>knull?</var> <var>kar</var> <var>kdr</var> <var>x</var>)) = <var>x</var>
</pre>
and
<pre class=code-example>
(string-unfold <var>knull?</var> <var>kar</var> <var>kdr</var> (string-fold-right <var>kons</var> <var>knil</var> <var>s</var>)) = <var>s</var>.
</pre>
The final string constructed does not share storage with either <var>base</var>
or the value produced by <var>make-final</var>.
<p>
This combinator sometimes is called an "anamorphism."
<p>
Note: implementations should take care that runtime stack limits do not
cause overflow when constructing large (<em>e.g.</em>, megabyte) strings with
<code>string-unfold</code>.
<!--
==== string-unfold-right
============================================================================-->
<dt class=proc-def>
<a name="string-unfold-right"></a>
<code class=proc-def>string-unfold-right</code><var> p f g seed [base make-final] -> string</var>
<dd class=proc-def>
    This is a fundamental constructor for strings. 
    <ul>
    <li> <var>G</var> is used to generate a series of "seed" values from the initial seed:
        <var>seed</var>, (<var>g</var> <var>seed</var>), (<var>g<sup>2</sup></var> <var>seed</var>), (<var>g<sup>3</sup></var> <var>seed</var>), ...
    <li> <var>P</var> tells us when to stop -- when it returns true when applied to one 
      of these seed values.
    <li> <var>F</var> maps each seed value to the corresponding character 
      in the result string. These chars are assembled into the
      string in a right-to-left order.
    <li> <var>Base</var> is the optional initial/rightmost portion of the constructed string;
      it defaults to the empty string "".
    <li> <var>Make-final</var> is applied to the terminal seed value (on which <var>P</var> returns
      true) to produce the final/leftmost portion of the constructed string.
      It defaults to <code>(lambda (x) "")</code>.
    </ul>
    <p>
    More precisely, the following (simple, inefficient) definitions hold:
<pre class=code-example>
;;; Iterative
(define (string-unfold-right p f g seed base make-final)
  (let lp ((seed seed) (ans base))
    (if (p seed) 
        (string-append (make-final seed) ans)
        (lp (g seed) (string-append (string (f seed)) ans)))))
;;; Recursive
(define (string-unfold-right p f g seed base make-final)
  (string-append (let recur ((seed seed))
                   (if (p seed) (make-final seed)
                       (string-append (recur (g seed))
                                      (string (f seed)))))
                 base))
</pre>
    Interested functional programmers may enjoy noting that 
    <code>string-fold</code>
    and <code>string-unfold-right</code> are in some sense inverses. 
    That is, given operations <var>knull?</var>, <var>kar</var>, <var>kdr</var>, <var>kons</var>, and <var>knil</var> satisfying
<div class=inset>
<code>(<var>kons</var> (<var>kar</var> <var>x</var>) (<var>kdr</var> <var>x</var>))</code> = <var>x</var>  and <code>(<var>knull?</var> <var>knil</var>)</code> = #t
</div>
    then
<pre class=code-example>
(string-fold <var>kons</var> <var>knil</var> (string-unfold-right <var>knull?</var> <var>kar</var> <var>kdr</var> <var>x</var>)) = <var>x</var>
</pre>
    and
<pre class=code-example>
(string-unfold-right <var>knull?</var> <var>kar</var> <var>kdr</var> (string-fold <var>kons</var> <var>knil</var> <var>s</var>)) = <var>s</var>.
</pre>
    The final string constructed does not share storage with either <var>base</var>
    or the value produced by <var>make-final</var>.
    <p>
    Note: implementations should take care that runtime stack limits do not
    cause overflow when constructing large (<em>e.g.</em>, megabyte) strings with
    <code>string-unfold-right.</code>
<!--
==== string-for-each
============================================================================-->
<dt class=proc-def>
<a name="string-for-each"></a>
<code class=proc-def>string-for-each</code><var>  proc s [start end] -> unspecified</var>
<dd class=proc-def>
    Apply <var>proc</var> to each character in <var>s</var>.
    <code>string-for-each</code> is required to iterate from <var>start</var> to <var>end</var>
    in increasing order.
<!--
==== string-for-each-index
============================================================================-->
<dt class=proc-def>
<a name="string-for-each-index"></a>
<code class=proc-def>string-for-each-index</code><var> proc s [start end] -> unspecified</var>
<dd class=proc-def>
Apply <var>proc</var> to each index of <var>s</var>, in order. The optional <var>start/end</var>
pairs restrict the endpoints of the loop. This is simply a
method of looping over a string that is guaranteed to be safe
and correct.
Example:
<pre class=code-example>
(let* ((len (string-length s))
       (ans (make-string len)))
  (string-for-each-index
      (lambda (i) (string-set! ans (- len i) (string-ref s i)))
      s)
  ans)
</pre>
</dl>
<!--========================================================================-->
<h3><a name="ReplicateRotate">Replicate & rotate</a></h3>
<dl>
<!--
==== xsubstring
============================================================================-->
<dt class=proc-def>
<a name="xsubstring"></a>
<code class=proc-def>xsubstring</code><var> s from [to start end] -> string</var>
<dd class=proc-def>
    This is the "extended substring" procedure that implements replicated
    copying of a substring of some string.
    <p>
    <var>S</var> is a string; <var>start</var> and <var>end</var> are optional arguments that demarcate
    a substring of <var>s</var>, defaulting to 0 and the length of <var>s</var> (<em>i.e.</em>, the whole
    string). Replicate this substring up and down index space, in both the
    positive and negative directions. For example, if <var>s</var> = "abcdefg", <var>start</var>=3, 
    and <var>end</var>=6, then we have the conceptual bidirectionally-infinite string
<div class=inset>
<table>
<tr align=right>
<td>...  <td>d  <td>e  <td>f  <td>d  <td>e  <td>f  <td>d  <td>e  <td>f  <td>d  <td>e  <td>f  <td>d  <td>e  <td>f  <td>d  <td>e  <td>f  <td>d  <td>...
</tr>
<tr align=right>
<td>... <td>-9 <td>-8 <td>-7 <td>-6 <td>-5 <td>-4 <td>-3 <td>-2 <td>-1  <td>0  <td>+1  <td>+2  <td>+3  <td>+4  <td>+5  <td>+6  <td>+7  <td>+8  <td>+9 <td>...
</tr>
</table>
</div>
    <code>xsubstring</code> returns the substring of this string beginning at index <var>from</var>,
    and ending at <var>to</var> 
    (which defaults to <var>from</var>+(<var>end</var>-<var>start</var>)).
    <p>
    You can use <code>xsubstring</code> to perform a variety of tasks:
    <ul>
    <li> To rotate a string left:  <code>(xsubstring "abcdef" 2)</code>  => <code>"cdefab"</code>
    <li> To rotate a string right: <code>(xsubstring "abcdef" -2)</code> => <code>"efabcd"</code>
    <li> To replicate a string:    <code>(xsubstring "abc" 0 7)</code> => <code>"abcabca"</code>
    </ul>
    <p>
    Note that 
      <ul>
      <li> The <var>from</var>/<var>to</var> indices give a half-open range -- the characters from
        index <var>from</var> up to, but not including, index <var>to</var>.
      <li> The <var>from</var>/<var>to</var> indices are not in terms of the index space for string <var>s</var>.
        They are in terms of the replicated index space of the substring
        defined by <var>s</var>, <var>start</var>, and <var>end</var>.
      </ul>
    <p>
    It is an error if <var>start</var>=<var>end</var> -- although this is allowed by special
    dispensation when <var>from</var>=<var>to</var>.
<!--
==== string-xcopy!
============================================================================-->
<dt class=proc-def>
<a name="string-xcopy!"></a>
<code class=proc-def>string-xcopy!</code><var> target tstart s sfrom [sto start end] -> unspecified</var>
<dd class=proc-def>
    Exactly the same as <code>xsubstring,</code> but the extracted text is written
    into the string <var>target</var> starting at index <var>tstart</var>.
    This operation is not defined if <code>(eq? <var>target</var> <var>s</var>)</code>
    or these two arguments
    share storage -- you cannot copy a string on top of itself.
</dl>
<!--========================================================================-->
<h3><a name="Miscellaneous">Miscellaneous: insertion, parsing</a></h3>
<dl>
<!--
==== string-replace
============================================================================-->
<dt class=proc-def>
<a name="string-replace"></a>
<code class=proc-def>string-replace</code><var> s1 s2 start1 end1 [start2 end2] -> string</var>
<dd class=proc-def>
    Returns
<pre class=code-example>
(string-append (substring/shared <var>s1</var> 0 <var>start1</var>)
               (substring/shared <var>s2</var> <var>start2</var> <var>end2</var>)
               (substring/shared <var>s1</var> <var>end1</var> (string-length <var>s1</var>)))
</pre>
    That is, the segment of characters in <var>s1</var> from <var>start1</var> to <var>end1</var>
    is replaced by the segment of characters in <var>s2</var> from <var>start2</var> to <var>end2</var>.
    If <var>start1</var>=<var>end1</var>, this simply splices the <var>s2</var> characters into <var>s1</var> at the
    specified index.
    <p>
    Examples:
<pre class=code-example>
(string-replace "The TCL programmer endured daily ridicule."
                "another miserable perl drone" 4 7 8 22 ) =>
    "The miserable perl programmer endured daily ridicule."
(string-replace "It's easy to code it up in Scheme." "lots of fun" 5 9) =>
    "It's lots of fun to code it up in Scheme."
(define (string-insert s i t) (string-replace s t i i))
(string-insert "It's easy to code it up in Scheme." 5 "really ") =>
    "It's really easy to code it up in Scheme."
</pre>
<!--
==== string-tokenize
============================================================================-->
<dt class=proc-def>
<a name="string-tokenize"></a>
<code class=proc-def>string-tokenize</code><var> s [token-set start end] -> list</var>
<dd class=proc-def>
   Split the string <var>s</var> into a list of substrings, where each substring is
   a maximal non-empty contiguous sequence of characters from the character set
   <var>token-set</var>.
    <ul>
       <li> <var>token-set</var> defaults to <code>char-set:graphic</code> 
         (see <a href="#SRFI-14">SRFI 14</a> 
          for more on character sets and <code>char-set:graphic</code>).
       <li> If <var>start</var> or <var>end</var> indices are provided, they restrict 
         <code>string-tokenize</code> to operating on the indicated substring of <var>s</var>.
    </ul>
    <p>
    This function provides a minimal parsing facility for simple applications.
    More sophisticated parsers that handle quoting and backslash effects can
    easily be constructed using regular-expression systems; be careful not
    to use <code>string-tokenize</code> in contexts where more serious parsing is needed.
<pre class=code-example>
(string-tokenize "Help make programs run, run, RUN!") =>
  ("Help" "make" "programs" "run," "run," "RUN!")
</pre>
</dl>
<!--========================================================================-->
<h3><a name="FilterDelete">Filtering & deleting</a></h3>
<dl>
<!--
==== string-filter string-delete
============================================================================-->
<dt class=proc-def1>
<a name="string-filter"></a>
<a name="string-delete"></a>
<code class=proc-def>string-filter</code><var> char/char-set/pred s [start end] -> string</var>
<dt class=proc-defn><code class=proc-def>string-delete</code><var> char/char-set/pred s [start end] -> string</var>
<dd class=proc-def>
    Filter the string <var>s</var>, retaining only those characters that
    satisfy / do not satisfy the <var>char/char-set/pred</var> argument. If
    this argument is a procedure, it is applied to the character
    as a predicate; if it is a char-set, the character is tested
    for membership; if it is a character, it is used in an equality test.
    <p>
    If the string is unaltered by the filtering operation, these
    functions may return either <var>s</var> or a copy of <var>s</var>.
</dl>
<!--========================================================================-->
<h2><a name="LowLevelProcs">Low-level procedures</a></h2>
<p>
The following procedures are useful for writing other string-processing
functions. In a Scheme system that has a module or package system, these
procedures should be contained in a module named "string-lib-internals".
<!--========================================================================-->
<h3><a name="ArgUtils">Start/end optional-argument parsing & checking utilities</a></h3>
<dl>
<!--
==== string-parse-start+end string-parse-final-start+end
============================================================================-->
<dt class=proc-def1>
<a name="string-parse-start+end"></a>
<a name="string-parse-final-start+end"></a>
<code class=proc-def>string-parse-start+end</code><var> proc s args -> [rest start end]</var>
<dt class=proc-defn><code class=proc-def>string-parse-final-start+end</code><var> proc s args -> [start end]</var>
<dd class=proc-def>
    <code>string-parse-start+end</code> may be used to parse a pair of optional <var>start/end</var> 
    arguments from an argument list, defaulting them to 0 and the length of 
    some string <var>s</var>, respectively. Let the length of string <var>s</var> be <var>slen</var>.
    <ul>
    <li> If <var>args</var> = (), the function returns 
         <code>(values '() 0 <var>slen</var>)</code>
    <li> If <var>args</var> = (<var>i</var>), <var>i</var> is checked to ensure it is an exact integer, and
      that 0 <= i <= <var>slen</var>. 
      Returns <code>(values (cdr <var>args</var>) <var>i</var> <var>slen</var>)</code>.
    <li> If <var>args</var> = <code>(<var>i</var> <var>j</var> ...)</code>, 
         <var>i</var> and <var>j</var> are checked to ensure they are exact
      integers, and that 0 <= <var>i</var> <= <var>j</var> <=
         <var>slen</var>. 
      Returns <code>(values (cddr <var>args</var>) <var>i</var> <var>j</var>)</code>.
    </ul>
    <p>
    If any of the checks fail, an error condition is raised, and <var>proc</var> is used
    as part of the error condition -- it should be the client procedure whose
    argument list <code>string-parse-start+end</code> is parsing.
    
    <p>
    <code>string-parse-final-start+end</code> is exactly the same, except that the args list
    passed to it is required to be of length two or less; if it is longer,
    an error condition is raised. It may be used when the optional <var>start/end</var> 
    parameters are final arguments to the procedure.
    <p>
    Note that in all cases, these functions ensure that <var>s</var> is a string
    (by necessity, since all cases apply <code>string-length</code> to <var>s</var> either to
    default <var>end</var> or to bounds-check it).
<dt class=proc-def>
<a name="let-string-start+end"></a>
<code class=proc-def>let-string-start+end</code><var> (start end [rest]) proc-exp s-exp args-exp body ... -> value(s)</var>
<dd class=proc-def>
    [Syntax]
    Syntactic sugar for an application of <code>string-parse-start+end</code> or
    <code>string-parse-final-start+end.</code>
      
    <p>
    If a <var>rest</var> variable is given, the form is equivalent to
<pre class=code-example>
(call-with-values
    (lambda () (string-parse-start+end <var>proc-exp</var> <var>s-exp</var> <var>args-exp</var>))
  (lambda (<var>rest</var> <var>start</var> <var>end</var>) <var>body</var> ...))
</pre>
        
    <p>
    If no <var>rest</var> variable is given, the form is equivalent to
<pre class=code-example>
(call-with-values
    (lambda () (string-parse-final-start+end <var>proc-exp</var> <var>s-exp</var> <var>args-exp</var>))
  (lambda (<var>start</var> <var>end</var>) <var>body</var> ...))
</pre>
<!--
==== check-substring-spec substring-spec-ok?
============================================================================-->
<dt class=proc-def1>
<a name="check-substring-spec"></a>
<a name="substring-spec-ok-p"></a>
<code class=proc-def>check-substring-spec</code><var> proc s start end -> unspecified</var>
<dt class=proc-defn><code class=proc-def>substring-spec-ok?</code><var> s start end -> boolean</var>
<dd class=proc-def>
    Check values <var>s</var>, <var>start</var> and <var>end</var> to ensure they specify a valid substring.
    This means that <var>s</var> is a string, <var>start</var> and <var>end</var> are exact integers, and 
        0 <= <var>start</var> <= <var>end</var> <= 
        <code>(string-length <var>s</var>)</code>
    <p>
    If the values are not proper
        <ul>
        <li> <code>check-substring-spec</code> raises an error condition. <var>proc</var> is used
          as part of the error condition, and should be the procedure whose 
          parameters we are checking.
        <li> <code>substring-spec-ok?</code> returns false.
        </ul>
    Otherwise, <code>substring-spec-ok?</code> returns true, and <code>check-substring-spec</code>
    simply returns (what it returns is not specified).
</dl>
<!--========================================================================-->
<h3><a name="KMP">Knuth-Morris-Pratt searching</a></h3>
<p>
The Knuth-Morris-Pratt string-search algorithm is a method of rapidly scanning
a sequence of text for the occurrence of some fixed string.  It has the
advantage of never requiring backtracking -- hence, it is useful for searching
not just strings, but also other sequences of text that do not support
backtracking or random-access, such as input ports.  These routines package up
the initialisation and searching phases of the algorithm for general use. They
also support searching through sequences of text that arrive in buffered
chunks, in that intermediate search state can be carried across applications
of the search loop from the end of one buffer application to the next.
<p>
A second critical property of KMP search is that it requires the allocation of
auxiliary memory proportional to the length of the pattern, but <em>constant</em>
in the size of the character type. Alternate searching algorithms frequently
require the construction of a table with an entry for every possible
character -- which can be prohibitively expensive in a 16- or 32-bit character
representation.
<dl>
<!--
==== make-kmp-restart-vector
============================================================================-->
<dt class=proc-def>
<a name="make-kmp-restart-vector"></a>
<code class=proc-def>make-kmp-restart-vector</code><var> s [c= start end] -> integer-vector</var>
<dd class=proc-def>
Build a Knuth-Morris-Pratt "restart vector," which is useful for quickly
searching character sequences for the occurrence of string <var>s</var> (or the
substring of <var>s</var> demarcated by the optional <var>start/end</var> parameters, if
provided). <var>C=</var> is a character-equality function used to construct the
restart vector. It defaults to <code>char=?</code>; use <code>char-ci=?</code> instead for
case-folded string search.
<p>
The definition of the restart vector <var>rv</var> for string <var>s</var> is:
If we have matched chars 0..<var>i</var>-1 of <var>s</var> against some search string <var>ss</var>, and
<var>s</var>[<var>i</var>] doesn't match <var>ss</var>[<var>k</var>], then reset <var>i</var> := <var>rv</var>[<var>i</var>], and try again to
match <var>ss</var>[<var>k</var>].  
If <var>rv</var>[<var>i</var>] = -1, 
then punt <var>ss</var>[<var>k</var>] completely, and move on to
<var>ss</var>[<var>k</var>+1] and <var>s</var>[0].
<p>
In other words, if you have matched the first <var>i</var> chars of <var>s</var>, but
the <var>i</var>+1'th char doesn't match, 
<var>rv</var>[<var>i</var>] tells you what the next-longest
prefix of <var>s</var> is that you have matched.
<p>
The following string-search function shows how a restart vector is used to
search.  Note the attractive feature of the search process: it is "on
line," that is, it never needs to back up and reconsider previously seen
data. It simply consumes characters one-at-a-time until declaring a complete
match or reaching the end of the sequence. Thus, it can be easily adapted to
search other character sequences (such as ports) that do not provide random
access to their contents.
<pre class=code-example>
(define (find-substring pattern source start end)
  (let ((plen (string-length pattern))
        (rv (make-kmp-restart-vector pattern)))
    ;; The search loop. SJ & PJ are redundant state.
    (let lp ((si start) (pi 0)
             (sj (- end start))     ; (- end si)  -- how many chars left.
             (pj plen))             ; (- plen pi) -- how many chars left.
      (if (= pi plen) (- si plen)                   ; Win.
          (and (<= pj sj)                           ; Lose.
               (if (char=? (string-ref source si)           ; Test.
                           (string-ref pattern pi))
                   (lp (+ 1 si) (+ 1 pi) (- sj 1) (- pj 1)) ; Advance.
                   (let ((pi (vector-ref rv pi)))           ; Retreat.
                     (if (= pi -1)
                         (lp (+ si 1)  0   (- sj 1)  plen)  ; Punt.
                         (lp si        pi  sj        (- plen pi))))))))))
</pre>
<p>
The optional <var>start/end</var> parameters restrict the restart vector to the
indicated substring of <var>pat</var>; <var>rv</var> is <var>end</var> - <var>start</var> elements long. If <var>start</var> > 0,
then <var>rv</var> is offset by <var>start</var> elements from <var>pat</var>.
That is,  <var>rv[i]</var> describes
pattern element <var>pat[i + start]</var>. 
Elements of <var>rv</var> are themselves indices
that range just over [0, <var>end</var>-<var>start</var>), 
<em>not</em> [<var>start</var>, <var>end</var>).
<p>
Rationale: the actual value of <var>rv</var> is "position independent" -- it
does not depend on where in the <var>pat</var> string the pattern occurs, but
only on the actual characters comprising the pattern.
<!--
==== kmp-step
============================================================================-->
<dt class=proc-def>
<a name="kmp-step"></a>
<code class=proc-def>kmp-step</code><var> pat rv c i c= p-start -> integer</var>
<dd class=proc-def>
This function encapsulates the work performed by one step of the
KMP string search; it can be used to scan strings, input ports,
or other on-line character sources for fixed strings. 
<p>
<var>Pat</var> is the non-empty string specifying the text for which we are searching.
<var>Rv</var> is the Knuth-Morris-Pratt restart vector for the pattern, 
as constructed by <code>make-kmp-restart-vector.</code> 
The pattern begins at <var>pat</var>[<var>p-start</var>], and is
<code>(string-length <var>rv</var>)</code> characters long.
<var>C=</var> is the character-equality function used to construct the
restart vector, typically <code>char=?</code> or <code>char-ci=?</code>.
<p>
Suppose the pattern is N characters in length: 
<var>pat</var>[<var>p-start</var>, <var>p-start</var> + <var>n</var>).
We have already matched <var>i</var> characters: 
<var>pat[p-start, p-start + i)</var>. 
(<var>P-start</var> is typically zero.) 
<var>C</var> is the next character in the input stream. <code>kmp-step</code>
returns the new <var>i</var> value -- that is, how much of the pattern we have
matched, <em>including</em> character <var>c</var>. 
When <var>i</var> reaches <var>n</var>, the entire pattern has been matched.
<p>
Thus a typical search loop looks like this:
<pre class=code-example>
(let lp ((i 0))
  (or (= i n)                           ; Win -- #t
      (and (not (end-of-stream))        ; Lose -- #f
           (lp (kmp-step pat rv (get-next-character) i char=? 0)))))
</pre>
<p>
Example:
<pre class=code-example>
;; Read chars from IPORT until we find string PAT or hit EOF.
(define (port-skip pat iport)
  (let* ((rv (make-kmp-restart-vector pat))
         (patlen (string-length pat)))
    (let lp ((i 0) (nchars 0))
      (if (= i patlen) nchars                    ; Win -- nchars skipped
          (let ((c (read-char iport)))
            (if (eof-object? c) c                ; Fail -- EOF
                (lp (kmp-step pat rv c i char=? 0) ; Continue
                    (+ nchars 1))))))))
</pre>
<p>
This procedure could be defined as follows:
<pre class=code-example>
(define (kmp-step pat rv c i c= p-start)
  (let lp ((i i))
    (if (c= c (string-ref pat (+ i p-start)))     ; Match =>
        (+ i 1)                                   ;   Done.
        (let ((i (vector-ref rv i)))              ; Back up in PAT.
          (if (= i -1) 0                          ; Can't back up more.
              (lp i)))))))                        ; Keep going.
</pre>
<p>
Rationale: this procedure takes no optional arguments because it
is intended as an inner-loop primitive and we do not want any
run-time penalty for optional-argument parsing and defaulting,
nor do we wish barriers to procedure integration/inlining.
<!--
==== string-kmp-partial-search
============================================================================-->
<dt class=proc-def>
<a name="string-kmp-partial-search"></a>
<code class=proc-def>string-kmp-partial-search</code><var> pat rv s i [c= p-start s-start s-end] -> integer</var>
<dd class=proc-def>
Applies <code>kmp-step</code> across <var>s</var>; 
optional <var>s-start</var>/<var>s-end</var> bounds parameters 
restrict search to a substring of <var>s</var>. 
The pattern is <code>(vector-length <var>rv</var>)</code> characters long; 
optional <var>p-start</var> index indicates non-zero start of pattern 
in <var>pat</var>.
<p>
Suppose <var>plen</var> = <code>(vector-length <var>rv</var>)</code>
is the length of the pattern.
<var>I</var> is an integer index into the pattern 
(that is, 0 <= <var>i</var> < <var>plen</var>)
indicating how much of the pattern has already been matched. 
(This means the pattern must be non-empty -- <var>plen</var> > 0.)
<ul>
<li> On success, returns -<var>j</var>, 
where <var>j</var> is the index in <var>s</var> bounding
  the <em>end</em> of the pattern -- <em>e.g.</em>, a value that could be used as 
  the <var>end</var> parameter in a call to <code>substring/shared</code>.
<li> On continue, returns the current search state <var>i'</var> 
(an index into <var>rv</var>)
  when the search reached the end of the string. This is a non-negative
  integer.
</ul>
Hence:
<ul>
<li> A negative return value indicates success, and says
  where in the string the match occured.
<li> A non-negative return value provides the <var>i</var> to use for
  continued search in a following string.
</ul>
<p>
This utility is designed to allow searching for occurrences of a fixed
string that might extend across multiple buffers of text. This is
why, for example, we do not provide the index of the <em>start</em> of the
match on success -- it may have occurred in a previous buffer.
<p>
To search a character sequence that arrives in "chunks," write a
loop of this form:
<pre class=code-example>
(let lp ((i 0))
  (and (not (end-of-data?))             ; Lose -- return #f.
       (let* ((buf (get-next-chunk))    ; Get or fill up the buffer.
              (i (string-kmp-partial-search pat rv buf i)))
         (if (< i 0) (- i)              ; Win -- return end index.
             (lp i)))))                 ; Keep looking.
</pre>
Modulo start/end optional-argument parsing, this procedure could
be defined as follows:
<pre class=code-example>
(define (string-kmp-partial-search pat rv s i c= p-start s-start s-end)
  (let ((patlen (vector-length rv)))
    (let lp ((si s-start)       ; An index into S.
             (vi i))            ; An index into RV.
      (cond ((= vi patlen) (- si))      ; Win.
            ((= si end) vi)             ; Ran off the end.
            (else (lp (+ si 1)          ; Match s[si] & loop.
                      (kmp-step pat rv (string-ref s si)
                                vi c= p-start)))))))
</pre>
</dl>
<!--========================================================================-->
<h1><a name="ReferenceImp">Reference implementation</a></h1>
<p>
This SRFI comes with a reference implementation. It can be found at:
<div class=inset>
    <a href="http://srfi.schemers.org/srfi-13/srfi-13.scm">http://srfi.schemers.org/srfi-13/srfi-13.scm</a>
</div>
<p class=continue>
I have placed this source on the Net with an unencumbered, "open" copyright.
The prefix/suffix and comparison routines in this code had (extremely distant)
origins in MIT Scheme's string lib, and were substantially reworked by myself.
Being derived from that code, they are covered by the MIT Scheme copyright,
which is a generic BSD-style open-source copyright. See the source file for
details.
<p>
The KMP string-search code was influenced by implementations written by
Stephen Bevan, Brian Denheyer and Will Fitzgerald. However, this version was
written from scratch by myself.
<p>
The remainder of the code was written by myself for scsh or for this SRFI; I
have placed this code under the scsh copyright, which is also a generic
BSD-style open-source copyright.
<p>
The code is written for portability and should be straightforward to port to
any Scheme. The source comments contains detailed notes describing the non-<abbr title="Revised^5 Report on Scheme"><a href="#R5RS">R5RS</a></abbr>
dependencies.
<p>
The library is written for clarity and well-commented; the current source is
approximately 1000 lines of source code and 1000 lines of comments and white
space. It is also written for efficiency. Fast paths are provided for common
cases. This is not to say that the implementation can't be tuned up for a
specific Scheme implementation. There are notes in the comments addressing
ways implementors can tune the reference implementation for performance.
<p>
In short, I've written the reference implementation to make it as painless
as possible for an implementor -- or a regular programmer -- to adopt this
library and get good results with it.
<!--========================================================================-->
<h1><a name="Acknowledgements">Acknowledgements</a></h1>
<p>
The design of this library benefited greatly from the feedback provided during
the SRFI discussion phase. Among those contributing thoughtful commentary and
suggestions, both on the mailing list and by private discussion, were Paolo
Amoroso, Lars Arvestad, Alan Bawden, Jim Bender, Dan Bornstein, Per Bothner,
Will Clinger, Brian Denheyer, Mikael Djurfeldt, Kent Dybvig, Sergei Egorov,
Marc Feeley, Matthias Felleisen, Will Fitzgerald, Matthew Flatt, Arthur A.
Gleckler, Ben Goetter, Sven Hartrumpf, Erik Hilsdale, Richard Kelsey, Oleg
Kiselyov, Bengt Kleberg, Donovan Kolbly, Bruce Korb, Shriram Krishnamurthi,
Bruce Lewis, Tom Lord, Brad Lucier, Dave Mason, David Rush, Klaus Schilling,
Jonathan Sobel, Mike Sperber, Mikael Staldal, Vladimir Tsyshevsky, Donald
Welsh, and Mike Wilson. I am grateful to them for their assistance.
<p>
I am also grateful the authors, implementors and documentors of all the systems
mentioned in the introduction. Aubrey Jaffer and Kent Pitman should be noted
for their work in producing Web-accessible versions of the <abbr title="Revised^5 Report on Scheme"><a href="#R5RS">R5RS</a></abbr> and Common
Lisp spec, which was a tremendous aid.
<p>
This is not to imply that these individuals necessarily endorse the final
results, of course. 
<p>
During this document's long development period, great patience was exhibited
by Mike Sperber, who is the editor for the SRFI, and by Hillary Sullivan,
who is not.
<!--========================================================================-->
<h1><a name="Links">References & links</a></h1>
<dl>
<dt class=biblio><strong><a name="Case-map">[Case-map]</a></strong>
<dd>
    Case mappings. <br>
    Unicode Technical Report 21. <br>
    <a href="http://www.unicode.org/unicode/reports/tr21/">http://www.unicode.org/unicode/reports/tr21/</a>
<dt class=biblio><strong><a name="CommonLisp">[CommonLisp]</a></strong></dt>
<dd><em>Common Lisp: the Language.</em><br>
Guy L. Steele Jr. (editor).<br>
Digital Press, Maynard, Mass., second edition 1990.<br>
Available at <a href="http://www.elwood.com/alu/table/references.htm#cltl2">
http://www.elwood.com/alu/table/references.htm#cltl2</a>.
<p>
The Common Lisp "HyperSpec," produced by Kent Pitman, is essentially
the ANSI spec for Common Lisp:
<a href="http://www.harlequin.com/education/books/HyperSpec/">
http://www.harlequin.com/education/books/HyperSpec/</a>.
<dt class=biblio><strong><a name="Java">[Java]</a></strong>
<dd>
    The following URLs provide documentation on relevant Java classes. <br>
    <a href="http://java.sun.com/products/jdk/1.2/docs/api/java/lang/Character.html">http://java.sun.com/products/jdk/1.2/docs/api/java/lang/Character.html</a>
    <br>
    <a href="http://java.sun.com/products/jdk/1.2/docs/api/java/lang/String.html">http://java.sun.com/products/jdk/1.2/docs/api/java/lang/String.html</a>
    <br>
    <a href="http://java.sun.com/products/jdk/1.2/docs/api/java/lang/StringBuffer.html">http://java.sun.com/products/jdk/1.2/docs/api/java/lang/StringBuffer.html</a>
    <br>
    <a href="http://java.sun.com/products/jdk/1.2/docs/api/java/text/Collator.html">http://java.sun.com/products/jdk/1.2/docs/api/java/text/Collator.html</a>
    <br>
    <a href="http://java.sun.com/products/jdk/1.2/docs/api/java/text/package-summary.html">http://java.sun.com/products/jdk/1.2/docs/api/java/text/package-summary.html</a>
<dt class=biblio><strong><a name="MIT-Scheme">[MIT-Scheme]</a></strong>
<dd>
    <a href="http://www.swiss.ai.mit.edu/projects/scheme/">http://www.swiss.ai.mit.edu/projects/scheme/</a>
<dt class=biblio><strong><a name="R5RS">[R5RS]</a></strong></dt>
<dd>Revised<sup>5</sup> report on the algorithmic language Scheme.<br>
    R. Kelsey, W. Clinger, J. Rees (editors). <br>
    Higher-Order and Symbolic Computation, Vol. 11, No. 1, September, 1998. <br>
    and ACM SIGPLAN Notices, Vol. 33, No. 9, October, 1998. <br>
    Available at <a href="http://www.schemers.org/Documents/Standards/">
    http://www.schemers.org/Documents/Standards/</a>.
<dt class=biblio><strong>[SRFI]</strong></dt>
<dd>
    The SRFI web site. <br>
    <a href="http://srfi.schemers.org/">http://srfi.schemers.org/</a>
<dt class=biblio><strong>[SRFI-13]</strong></dt>
<dd>
    SRFI-13: String libraries. <br>
    <a href="http://srfi.schemers.org/srfi-13/">http://srfi.schemers.org/srfi-13/</a>
    <dl>    
    <dt>
      This document, in HTML:
    <dd><a href="http://srfi.schemers.org/srfi-13/srfi-13.html">
        http://srfi.schemers.org/srfi-13/srfi-13.html</a>
    <dt>
      This document, in plain text format:
    <dd><a href="http://srfi.schemers.org/srfi-13/srfi-13.txt">
        http://srfi.schemers.org/srfi-13/srfi-13.txt</a>
    <dt> Source code for the reference implementation:
    <dd>
      <a href="http://srfi.schemers.org/srfi-13/srfi-13.scm">
         http://srfi.schemers.org/srfi-13/srfi-13.scm</a>
    <dt> Scheme 48 module specification, with typings:
    <dd>
      <a href="http://srfi.schemers.org/srfi-13/srfi-13-s48-module.scm">
        http://srfi.schemers.org/srfi-13/srfi-13-s48-module.scm</a>
    </dl>
</dd>
<dt class=biblio><strong><a name=SRFI-14>[SRFI-14]</a></strong>
<dd>
    SRFI-14: Character-set library. <br>
    <a href="http://srfi.schemers.org/srfi-14/">http://srfi.schemers.org/srfi-14/</a> <br>
    The SRFI 14 char-set library defines a character-set data type,
    which is used by some procedures in this library.
<dt class=biblio><strong><a name="Unicode">[Unicode]</a></strong>
<dd>
    <a href="http://www.unicode.org/">http://www.unicode.org/</a>
<dt class=biblio><strong><a name="UnicodeData">[UnicodeData]</a></strong>
<dd>
    The Unicode character database. <br>
    <a href="ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.txt">ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.txt</a>
    <br>
    <a href="ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.html">ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.html</a>
</dl>
<!--========================================================================-->
<h1><a name="Copyright">Copyright</a></h1>
<p>
Certain portions of this document -- the specific, marked segments of text
describing the <abbr title="Revised^5 Report on Scheme"><a href="#R5RS">R5RS</a></abbr> procedures -- were adapted with permission from the R5RS
report.
    
<p>
All other text is copyright (C) Olin Shivers (1998, 1999, 2000). 
All Rights Reserved. 
<p>
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
</p>
<p>
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
</p>
<p>
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
</p>
</body>
</html>
<!--
  LocalWords:  SRFI refs HTML css hackery sans Netscape td pre div init doc
  LocalWords:  proc def procs defi's defn dl dt defi dd NS RS rs procx dict
  LocalWords:  stylesheet IE biblio IE's Internationalisation  subform maillist
  LocalWords:  normalisation lib ref ci ok titlecase upcase downcase Djurfeldt
  LocalWords:  xsubstring xcopy tokenize kmp slib RScheme MzScheme html
  LocalWords:  Bigloo Chez APL SML Unicode API eszet SS dz downcases
  LocalWords:  titlecasing normalised normalise underbar ss eq vs
  LocalWords:  backquote parameterised denmark taiwan UnicodeData txt
  LocalWords:  pred nchars obj len cBa epilog foo baz wrt subst tstart
  LocalWords:  Szilagyi zilagyi cs abcdefgh ca cd cond eek ee tHIS com
  LocalWords:  elba elbA ary consed XXXX ac bc kons knil ans fixnum
  LocalWords:  catamorphism lp eof lis cdr knull kar kdr anamorphism
  LocalWords:  abcdefg sfrom sto TCL perl slen rv exp initialisation
  LocalWords:  plen SJ PJ si sj pj IPORT iport patlen DF buf Bevan
  LocalWords:  Denheyer scsh Paolo Amoroso Arvestad Bawden Dybvig
  LocalWords:  Bornstein Bothner Egorov Feeley Matthias Felleisen
  LocalWords:  Flatt ucs Gleckler Goetter Sven Hartrumpf Hilsdale
  LocalWords:  Kiselyov Bengt Korb Kleberg Kolbly Shriram
  LocalWords:  Krishnamurthi Lucier Schilling Sobel Mikael Staldal
  LocalWords:  Tsyshevsky documentors Jaffer Sperber cltl AE
  LocalWords:  CommonLisp HyperSpec Clinger Rees SIGPLAN uniquified
  LocalWords:  cset EA DrScheme IEC conformant JIS xor diff Posix URL
  LocalWords:  FFF DIAERESIS abcdefghijklmnopqrstuvwxyz EB EC EF ETH
  LocalWords:  FA FB FC FD FF Ll AA diaeresis isLowerCase BA CB CC CE
  LocalWords:  CF DA DC Lt CARON PSILI Lu PROSGEGRAMMENI DASIA VARIA
  LocalWords:  OXIA PERISPOMENI FAA FAB FAC FAE FAF FBC FFC Lm Lo
  LocalWords:  abcdefABCDEF Zs Zl Zp OGHAM IDEOGRAPHIC Pc recognised
  LocalWords:  tokenizers iso Pd Ps Pe Pf AB BB BF Sm Sc Sk AF MACRON
  LocalWords:  PILCROW soh nul ops Shiro Kawai para bignum
-->
 |