1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD><title>SRFI 57: Records</title>
</HEAD>
<BODY>
<H1>Title</H1>
Records
<H1>Author</H1>
André van Tonder
<H1>Status</H1>
This SRFI is currently in ``final'' status. To see an explanation of each
status that a SRFI can hold, see <A
href="http://srfi.schemers.org/srfi-process.html">here</A>. You can access
previous messages via <A
href="http://srfi.schemers.org/srfi-57/mail-archive/maillist.html"> the
archive of the mailing list</A>.
<P>
<UL>
<LI>Received: <A HREF="http://srfi.schemers.org/cgi-bin/viewcvs.cgi/*checkout*/srfi/srfi-57/srfi-57.html?rev=1.1">2004/09/08</A></LI>
<LI>Draft: 2004/09/08 - 2005/01/08</LI>
<LI>Revised: <A HREF="http://srfi.schemers.org/cgi-bin/viewcvs.cgi/*checkout*/srfi/srfi-57/srfi-57.html?rev=1.2">2004/09/22</A></LI>
<LI>Revised: <A HREF="http://srfi.schemers.org/cgi-bin/viewcvs.cgi/*checkout*/srfi/srfi-57/srfi-57.html?rev=1.3">2004/11/08</A></LI>
<LI>Revised: <A HREF="http://srfi.schemers.org/cgi-bin/viewcvs.cgi/*checkout*/srfi/srfi-57/srfi-57.html?rev=1.6">2004/11/25</A></LI>
<LI>Revised: <A HREF="http://srfi.schemers.org/cgi-bin/viewcvs.cgi/*checkout*/srfi/srfi-57/srfi-57.html?rev=1.7">2004/12/08</A></LI>
<LI>Revised: <A HREF="http://srfi.schemers.org/cgi-bin/viewcvs.cgi/*checkout*/srfi/srfi-57/srfi-57.html?rev=1.8">2005/03/07</A></LI>
<LI>Final: 2005/03/07</LI>
</UL>
<H1>Abstract</H1>
We describe a syntax for defining record types.
A predicate, constructor,
and field accessors and modifiers may be specified for each record
type.
We also introduce a syntax for declaring record type schemes, representing
families of record types that share a set of field labels.
A polymorphic predicate and
polymorphic field accessors and modifiers may be specified for each
record type scheme.
A syntax is provided for constructing records by
field label, for in-place and for functional record
update, and for composing records.
<H1>Rationale</H1>
We extend the existing SRFI-9 [1] with the following features,
each listed with a brief justification. Expanded rationales appear
in the specification section below.
<ul>
<li>A syntax for constructing record values by field label. Such a
feature is common in the prior art [2]. Indeed, the ability to
address fields by labels instead of position is one of the main
reasons for introducing the concept of records in the first
place.
Taking advantage of this feature can ease coding and increase readability and
robustness of code.
</li><li>
A mechanism for defining and incrementally extending
polymorphic functions on families
of record types sharing a set of field labels. This automates
a common programming pattern which would otherwise be laborious to
code explicitly.
</li><li>Facilities for record composition, functional record update,
including polymorphic
update, and linear in-place update.
These facilitate functional style programming with records.
</li><li>A declaration syntax that allows shorter variations and
optional elements, to save labor and reduce namespace
pollution.
</li></ul>
<H1>Specification</H1>
<h2>Declaration</h2>
<pre> <command or definition>
-> <record type definition>
-> <record scheme definition> ; addition to 7.1.6 in R5RS
<record type definition> -> (define-record-type <type clause>
<constructor clause>
<predicate clause>
<field clause> ...)
-> (define-record-type <type clause>
<constructor clause>)
-> (define-record-type <type clause>)
<record scheme definition> -> (define-record-scheme <scheme clause>
<deconstructor clause>
<predicate clause>
<field clause> ...)
-> (define-record-scheme <scheme clause>
<deconstructor clause>)
-> (define-record-scheme <scheme clause>)
<type clause> -> <type name>
-> (<type name> <scheme name> ...)
<scheme clause> -> <scheme name>
-> (<scheme name> <parent scheme name> ...)
<constructor clause> -> (<constructor name> <field label> ...)
-> <constructor name>
-> #f
<deconstructor clause> -> (<deconstructor name> <field label> ...)
-> <deconstructor name>
-> #f
<predicate clause> -> <predicate name>
-> #f
<field clause> -> (<field label> <accessor clause> <modifier clause>)
-> (<field label> <accessor clause>)
-> (<field label>)
<accessor clause> -> <accessor name>
-> #f
<modifier clause> -> <modifier name>
-> #f
<field label> -> <identifier>
<... name> -> <identifier>
</pre>
<h3>Record types</h3>
An instance of <code>define-record-type</code> is equivalent to the following:
<ul>
<li> A list of field labels is associated with the record type <code><type name></code>,
obtained by appending from left to right the lists of field labels
of any record
type schemes (see below) appearing in the <code><type clause></code>,
followed by the list of labels in the
<code><constructor clause></code>, followed by the labels
in order of appearance in the <code><field
clause></code>s.
Duplicates are removed from the resulting list according
to the semantics of <code>delete-duplicates</code> of SRFI-1.
Labels in the constructor clause must be
distinct. Labels in the field clauses must also be distinct.
<p>
</p></li><li>For each <code><scheme name></code> in <code><type clause></code>, the record type
<code><type name></code> is said to be an <i>instance</i> of, or to
<i>conform</i> to the corresponding
record type scheme <code><scheme name></code> and to all
parent type schemes (see below) of <code><scheme name></code>.
<p></p></li><li> <code><type name></code> is bound to a macro, described below, that can be used to construct record
values by label. It may also be registered, as specified in a
future SRFI, for performing pattern matching on record values of
type <code><type name></code>.
<p>
</p></li><li> If <code><constructor clause></code> is
of the form <code>(<constructor name> <field label> ...)</code>, then
<code><constructor name></code> is bound to a procedure that takes as many arguments as
there are <code><field label></code>s following it
and returns a new <code><type name></code> record.
Fields whose labels are listed with <code><type name></code> have the corresponding
argument as their initial value. The initial values of all other fields are unspecified.
If <code><constructor clause></code> is of the form <code><constructor name></code>,
the procedure
<code><constructor name></code> takes as many arguments as there are field labels
associated with <code><type name></code>, in the default order defined above.
<p></p><p>
<code><constructor name></code> may be
registered, in a way to be described in a future SRFI, for performing a
positional pattern match of the fields <code><field label> ...</code>
of record
values of type <code><type name></code> in the first case,
or of all fields
associated with <code><scheme name></code> in the default
order defined above in the second case.
</p></li><li> <code><predicate name></code>, is bound to a predicate procedure
that returns <code>#t</code> when given a record value that has been constructed using
the macro <code><type name></code> or the procedure <code><constructor name></code>,
and <code>#f</code> for any other
value. Values on which <code><predicate name></code>, if applied, would return
<code>#t</code>, are said to be <i>of type</i> <code><type name></code>.
<p>
</p></li><li> Field labels inherited from a <code><type scheme></code> or
introduced in the <code><constructor clause></code> do not have to be
repeated in the
<code><field clause></code>s.
Where present, <code><field
clause></code>s may provide additional information on such fields, or may
declare additional fields.
<p></p><p>
Field labels may be reused as the name of accessors or modifiers (a practice known
as punning).
</p><p>
</p><ul>
<p></p><li> Each <code><accessor name></code> is bound to
a procedure that takes a
value of type <code><type name></code>,
and returns the current value of the corresponding
field. It is an error to pass an accessor a value not of type
<code><type name></code>.
<p></p></li><li> Each <code><modifier name></code> is bound to
a procedure that takes a value of type <code><type name></code>
and a value which becomes the new value of the corresponding field.
It is an error to pass a modifier a first argument that is not of type
<code><type name></code>.
The return value of <code><modifier name></code> is unspecified.
<p>
</p></li></ul></li></ul>
<p>
<code>Define-record-type</code> is generative: each use creates a new record type that is distinct
from all existing types, including
other record types and Scheme's predefined types. This SRFI only
specifies the behaviour of <code>define-record-type</code> at
top-level.
</p><h3>Record type schemes</h3>
An instance of <code>define-record-scheme</code> is equivalent to the following:
<ul>
<li> A list of field labels is associated with the type scheme <code><scheme name></code>,
obtained by appending from left to right the lists of field labels
of any parent
type schemes appearing in the <code><scheme clause></code>,
followed by the list of labels in the
<code><deconstructor clause></code>, followed by the labels
in order of appearance in the <code><field clause></code>s.
Duplicates are removed from the resulting list according
to the semantics of <code>delete-duplicates</code> of SRFI-1.
Labels in the constructor clause must be
distinct. Labels in the field clauses must also be distinct.
<p>
</p></li><li>A record type scheme is called a <i>parent scheme</i> of
<code><scheme name></code> if it appears in the
<code><scheme clause></code>, or if it is a parent scheme of
one of the <code><parent scheme name></code>'s appearing in the
<code><scheme clause></code>.
The type scheme
<code><scheme name></code> is said to
<i>extend</i> its parent type schemes. It is an error to extend a type scheme
that has not yet been defined.
<p></p></li><li> <code><scheme name></code> may be bound to a macro or otherwise
registered, in a way to be
described in a future
SRFI,
for performing pattern matching on record
values conforming to <code><scheme name></code>.
<p>
</p></li><li>If <code><deconstructor clause></code> is
of the form <code>(<deconstructor name> <field label> ...)</code>, then
<code><deconstructor name></code> may be bound to a macro or otherwise
registered, in a way to be described in a future SRFI, for performing a
positional pattern match of the fields <code><field label> ...</code>
on record
values conforming to <code><scheme name></code>.
If <code><deconstructor clause></code> is of the form <code><deconstructor name></code>,
the positional match will be on all fields
associated with <code><scheme name></code>, in the default order defined above.
<p></p><p>
</p></li><li> <code><predicate name></code>, is bound to a predicate procedure
that returns <code>#t</code> when given a record value of any record type conforming
to <code><scheme name></code>,
and <code>#f</code> for any other
value.
<p>
</p></li><li> Field labels inherited from a <code><parent type scheme></code> or
introduced in the <code><deconstructor clause></code> do not have to be
repeated in the
<code><field clause></code>s.
Where present, <code><field
clause></code>s may provide additional information on such fields, or may
declare additional fields.
<p></p><p>
Field labels may be reused as the name of accessors or modifiers (a practice known
as punning).
</p><p>
</p><ul>
<p></p><li> Each <code><accessor name></code> is bound to
a procedure that takes a
value conforming to <code><scheme name></code>,
and returns the current value of the corresponding
field. It is an error to pass an accessor a value not conforming to
<code><scheme name></code>.
<p></p></li><li> Each <code><modifier name></code> is bound to
a procedure that takes a value conforming to <code><scheme name></code>
and a value which becomes the new value of the corresponding field.
It is an error to pass a modifier a first argument that does not conform to
<code><scheme name></code>.
The return value of <code><modifier name></code> is unspecified.
<p>
</p></li></ul></li></ul>
<p></p><h3>Examples</h3>
<h4>A simple record:</h4>
<pre> (define-record-type point (make-point x y) point?
(x get-x set-x!)
(y get-y set-y!))
(define p (make-point 1 2))
(get-y p) ==> 2
(set-y! p 3))
(get-y p) ==> 3
(point? p) ==> #t
</pre>
<h4>Record type schemes:</h4>
Let's declare a couple of record schemes. Record schemes do not have constructors.
They introduce polymorphic predicates and accessors.
<pre> (define-record-scheme <point #f <point?
(x <point.x)
(y <point.y))
(define-record-scheme <color #f <color?
(hue <color.hue))
</pre>
We now declare concrete instances of the above schemes.
Constructors may be introduced.
Predicates and accessors for concrete record types, when declared, are monomorphic.
<pre> (define-record-type (point <point) make-point point?
(x point.x)
(y point.y))
(define-record-type (color <color) make-color)
(define-record-type (color-point <color <point)
(make-color-point x y hue) color-point?
(info color-point.info))
(define cp (make-color-point 1 2 'blue))
(<point? cp) ==> #t
(<color? cp) ==> #t
(<point.y cp) ==> 2
(<color.hue cp) ==> blue
(point? cp) ==> #f
(point.x cp) ==> error
(color-point? cp) ==> #t
(color-point.info cp) ==> <undefined>
</pre>
<h4>Optional elements:</h4>
Elements may be left out if not desired, as the following examples illustrate:
<pre>
(define-record-type node (make-node left right))
(define-record-type leaf (make-leaf value))
</pre>
In these declarations, no predicates are bound. Also note that field labels listed in the
constructor do not have to be repeated in the field clause list unless
we want to bind getters or setters.
<pre>
(define-record-type monday)
(define-record-type tuesday #f tuesday?)
</pre>
Here <code>monday</code> has no declared constructor or predicate, while <code>tuesday</code>
has a predicate but no constructor.
<pre> (define-record-type node make-node #f
(left left)
(right right))
</pre>
Here the constructor <code>make-node</code> has the default argument order and no predicate
is bound. Also note that field labels are
punned.
<p></p><h4>A note on repeated fields and redefinitions</h4>
In the following example, two record type schemes define different accessors for the same field:
<pre> (define-record-scheme foo #f #f (x foo-x))
(define-record-scheme bar #f #f (x bar-x))
(define-record-type (foo-bar foo bar))
</pre>
Since any value <code>fb</code> of type <code>foo-bar</code> conforms to both
<code>foo</code> and <code>bar</code>, both <code>foo-x</code> and <code>bar-x</code>
can be applied to <code>fb</code>, returning the value of the <code>x</code> field.
<p>
In the following example, two declarations introduce
the same accessor:
</p><pre> (define-record-scheme foo #f #f (x foo-x))
(define-record-type (bar foo) #f #f (x foo-x))
</pre>
As in any <code>define-...</code> form, later bindings replace earlier bindings.
After the second declaration is executed,
<code>foo-x</code> will be bound to the monomorphic accessor applicable only to values
of type <code>bar</code>, replacing its binding to the polymorphic accessor procedure
introduced in the <code>foo</code> declaration.
<h2>Labeled record expressions</h2>
The following syntax allows one to construct a record value by labels. The result
is a record value of type <code><type name></code> with each field
<code><field label></code> populated with the value of the corresponding
<code><expression></code>. The order of evaluation of the expressions
<code><expression> ...</code> is undefined. All the
<code><field label></code>s have to belong to the record type <code><type name></code>.
If this condition is not satisfied, an expansion time error must be signaled. The
runtime efficiency of a labeled record expression is required to be at least that of
the equivalent positional constructor.
<pre> <expression> -> (<type name> (<field label> <expression>) ...)
</pre>
</p><p>
The order of evaluation of the expressions
<code><expression> ...</code> is undefined.
<h4>Rationale</h4>
The traditional practice of instantiating record values with a positional constructor procedure
can lead to code that is hard to read and fragile under common operations such as
adding, removing, or rearranging field declarations. The ability to populate record values
by labels provides a more robust and readable alternative, especially useful when a record has
more than two or three fields, or if it inherits fields from a type scheme.
Field labels are checked for validity
and the macro may be compiled to a positional constructor at expansion time,
thus eliminating a large class of potential programmer errors at no cost in efficiency.
<h4>Example</h4>
<pre> (color-point (info 'hi)
(x 1)
(y 2))
==> (color-point (hue <undefined>) (x 1) (y 2) (info hi))
</pre>
<h2>Record update</h2>
The following syntax allows different forms of record update:
<pre> <expression> -> (record-update <record> <scheme name> (<field label> <expression>) ...)
-> (record-update <record> <type name> (<field label> <expression>) ...)
-> (record-update! <record> <type name> (<field label> <expression>) ...)
-> (record-update! <record> <scheme name> (<field label> <expression>) ...)
</pre>
The first alternative is used for polymorphic functional record update. The expression
<code><record></code> must evaluate to a record value that conforms to
<code><scheme name></code>.
The result will be a new record value of the same type as
the original <code><record></code>, with the given fields updated. The original
record value is unaffected. All the
<code><field label></code>s have to belong to the record type scheme <code><scheme name></code>.
If this condition is not satisfied, an expansion time error must be signaled.
<p>
The second alternative is used for monomorphic functional record update. The expression
<code><record></code> must evaluate to a record value of type
<code><type name></code>. The result will be a new record value of type
<code><type name></code>, with the given fields updated. The original
record value is unaffected. All the
<code><field label></code>s have to belong to the record type <code><type name></code>.
If this condition is not satisfied, an expansion time error must be signaled.
</p><p>
The third and fourth alternatives are used for linear, in-place record update. The expression
<code><record></code> must evaluate to a record value of type
<code><type name></code> or conforming to scheme <code><scheme name></code> . The result will be the original record value
with the given fields
mutated in place.
Note that a useful value is returned. All the
<code><field label></code>s have to belong to the record type <code><type name></code> or scheme <code><scheme name></code>.
If this condition is not satisfied, an expansion time error must be signaled.
</p><p>
In these forms, the order of evaluation of the expressions
<code><expression> ...</code> is undefined.
</p><h4>Rationale</h4>
A mechanism for functional update facilitates and encourages functional-style programming
with records.
Note that polymorphic record update is not reducible
to the other operations we have listed and therefore has to be
provided as a built-in primitive [2].
<p></p><p>The linear version
<code>update!</code> is provided especially for cases where the programmer
knows that no other references to a value exist to produce what is, observationally, a
pure-functional result. In these cases, an <code>update</code>
operation may be replaced by <code>update!</code> for efficiency.
See SRFI-1 for a good discussion of the rationale behind linear update procedures.
Note, however, that in contrast with the linear procedures in SRFI-1, <code>update!</code> here is <i>required</i>
to mutate the original record.
</p><h4>Examples</h4>
Monomorphic update:
<pre> (define p (point (x 1) (y 2)))
(record-update p point (x 7)) ==> (point (x 7) (y 2))
p ==> (point (x 1) (y 2)) - original unaffected
</pre>
Polymorphic update:
<pre> (define cp (color-point (hue 'blue) (x 1) (y 2)))
(record-update cp <point (x 7)) ==> (color-point (info <undefined>) (hue blue) (x 7) (y 2))
cp ==> (color-point (info <undefined>) (hue blue) (x 1) (y 2))
</pre>
In-place update:
<pre> (record-update! cp <point (x 7))) ==> (color-point (info <undefined>) (hue blue) (x 7) (y 2))
cp ==> (color-point (info <undefined>) (hue blue) (x 7) (y 2))
</pre>
<h2>Record composition</h2>
The following syntax provides a shorthand for composing record values:
<pre> <expression> -> (record-compose (<import name> <record>)
...
(<export-type name> (<field label> <expression>) ...))
<import name> -> <type name>
-> <scheme name>
</pre>
Here each expression <code><record></code> must evaluate to a record value of type
<code><type name></code> or conforming to type scheme <code><scheme name></code>. The expression
evaluates to a new record value of type <code><export-type name></code>
whose fields are
populated as follows: For each field label belonging to <code><import name></code>
that is also a field label of the type
<export-type name>, the corresponding field of <code><record></code>
is copied into the result. This is done for all imports from left to
right, dropping any repeated fields. The additional fields <code><field label></code>
are then populated with the value of the
corresponding <code><expression></code>, overwriting
any fields with the same labels already imported. Any remaining fields are undefined.
All the
<code><field label></code>s have to belong to the record type <code><export type name></code>.
If this condition is not satisfied, an expansion time error must be signaled.
<p>
The order of evaluation of the expressions <code><record> ...</code> and
<code><expression> ...</code> is undefined. All the
expressions <code><record> ...</code> will be evaluated, even
if their values might not be used in
the result.
</p><h4>Rationale</h4>
Calculi for composing record values, such as the above scheme,
may be used, for example, as units are used in
PLT Scheme, or for writing what amounts to modules and functors in the sense of ML.<p>
Monomorphic record update is a special case of <code>record-compose</code>. The latter
may be used to express more general updates polymorphic in the
argument but monomorphic in the result type.
</p><p>
</p><h4>Examples</h4>
Use <code>record-compose</code> for updates polymorphic in the argument but
monomorphic in the result type:
<pre> (define cp (make-color-point 1 2 'green))
(record-compose (<point cp) (point (x 8))) ==> (point (x 8) (y 2))
</pre>
A more general composition example:
<pre> (define cp (make-color-point 1 2 'green))
(define c (make-color 'blue))
(record-compose (<point cp) ; polymorphic import - only fields x and y of cp taken
(color c) ; monomorphic import
(color-point (x 8) ; overrides imported field
(info 'hi)))
==> (color-point (info hi) (hue blue) (x 8) (y 2))
</pre>
Small module-functor example:
<pre>
(define-record-type monoid #f #f
(mult monoid.mult)
(one monoid.one))
(define-record-type abelian-group #f #f
(add group.add)
(zero group.zero)
(sub group.sub))
(define-record-type ring #f #f
(mult ring.mult)
(one ring.one)
(add ring.add)
(zero ring.zero)
(sub ring.sub))
(define integer-monoid (monoid (mult *)
(one 1)))
(define integer-group (abelian-group (add +)
(zero 0)
(sub -)))
(define (make-ring g m) ; simple functor a la ML
(record-compose (monoid m)
(abelian-group g)
(ring)))
(define integer-ring (make-ring integer-group
integer-monoid))
((ring.add integer-ring) 1
2) ==> 3
</pre>
<H1>Implementation</H1>
<p>
The reference implementation uses the macro mechanism of
R5RS. It assumes an existing implementation of SRFI-9, here denoted
srfi-9:define-record-type. It also contains a trivial use of
case-lambda from SRFI-16.
</p><p>
The reference implementation, though relatively portable as a set of
<code>syntax-rules</code> macros, is slow. For practical
implementations, it is recommended that a procedural macro system be
used. Such implementations are provided separately in the discussion
archives. Unless otherwise stated by the author(s), they are covered
by the same copyright agreement as this document.
</p><p>
This version depends on <code>define</code> being treated as a binding
form by <code>syntax-rules</code>. This is true for recent versions of portable syntax-case as used in Chez Scheme. It is
also true for PLT, for Scheme48, and possibly others. It also assumes
that the implementation of SRFI-9 binds the type name passed to it, which is a
hygienically introduced internal identifier,
using <code>define</code>.
</p><p>
The SRFI specification was designed with the constraint that
all record expressions containing field labels be translatable into positional
expressions at macro-expansion time. For example, labeled record expressions
and patterns should be just as efficient as positional constructors and
patterns. This is true for the reference implementation.
</p><p>
Only the names mentioned in the specification should be visible to
the user. Other
names should be hidden by a module system or naming convention.
</p><p>
The last section contains a few examples and (non-exhaustive) tests.
</p>
<h2>Reference implementation </h2>
<pre>;============================================================================================
; IMPLEMENTATION:
;
; Andre van Tonder, 2004.
;
;============================================================================================
(define-syntax define-record-type
(syntax-rules ()
((define-record-type . body)
(parse-declaration #f . body))))
(define-syntax define-record-scheme
(syntax-rules ()
((define-record-scheme . body)
(parse-declaration #t . body))))
(define-syntax parse-declaration
(syntax-rules ()
((parse-declaration is-scheme? (name super ...) constructor-clause predicate field-clause ...)
(build-record 0 constructor-clause (super ...) (field-clause ...) name predicate is-scheme?))
((parse-declaration is-scheme? (name super ...) constructor-clause)
(parse-declaration is-scheme? (name super ...) constructor-clause #f))
((parse-declaration is-scheme? (name super ...))
(parse-declaration is-scheme? (name super ...) #f #f))
((parse-declaration is-scheme? name . rest)
(parse-declaration is-scheme? (name) . rest))))
(define-syntax record-update!
(syntax-rules ()
((record-update! record name (label exp) ...)
(meta
`(let ((r record))
((meta ,(name ("setter") label)) r exp)
...
r)))))
(define-syntax record-update
(syntax-rules ()
((record-update record name (label exp) ...)
(name ("is-scheme?")
(meta
`(let ((new ((meta ,(name ("copier"))) record)))
(record-update! new name (label exp) ...)))
(record-compose (name record) (name (label exp) ...))))))
(define-syntax record-compose
(syntax-rules ()
((record-compose (export-name (label exp) ...))
(export-name (label exp) ...))
((record-compose (import-name record) ... (export-name (label exp) ...))
(help-compose 1 (import-name record) ... (export-name (label exp) ...)))))
(define-syntax help-compose
(syntax-rules ()
((help-compose 1 (import-name record) import ... (export-name (label exp) ...))
(meta
`(help-compose 2
(meta ,(intersection
(meta ,(export-name ("labels")))
(meta ,(remove-from (meta ,(import-name ("labels")))
(label ...)
if-free=))
if-free=))
(import-name record)
import ...
(export-name (label exp) ...))))
((help-compose 2 (copy-label ...) (import-name record) import ... (export-name . bindings))
(meta
`(let ((r record))
(record-compose import ...
(export-name (copy-label ((meta ,(import-name ("getter") copy-label)) r))
...
. bindings)))))))
(define-syntax build-record
(syntax-rules ()
((build-record 0 (constructor . pos-labels) . rest) ; extract positional labels from constructor clause
(build-record 1 (constructor . pos-labels) pos-labels . rest)) ;
((build-record 0 constructor . rest) ;
(build-record 1 (constructor . #f) () . rest)) ;
((build-record 1 constructor-clause (pos-label ...) (super ...)
((label . accessors) ...) . rest)
(meta
`(build-record 2
constructor-clause
(meta ,(union (meta ,(super ("labels"))) ; compute union of labels from supers,
... ; constructor clause and field clauses
(pos-label ...)
(label ...)
top:if-free=))
((label . accessors) ...)
(meta ,(union (meta ,(super ("supers"))) ; compute transitive union of supers
...
top:if-free=))
. rest)))
((build-record 2 (constructor . pos-labels) labels . rest) ; insert default constructor labels if not given
(syntax-if pos-labels
(build-record 3 (constructor . pos-labels) labels . rest)
(build-record 3 (constructor . labels) labels . rest)))
((build-record 3 constructor-clause labels ((label . accessors) ...) . rest)
(meta
`(build-record 4
(meta ,(remove-from labels ; separate the labels that do not appear in a
(label ...) ; field clause for next step
top:if-free=))
((label . accessors) ...)
constructor-clause
labels
. rest)))
((build-record 4
(undeclared-label ...)
(field-clause ...)
(constructor . pos-labels)
labels
supers
name
predicate
is-scheme?)
(meta
`(build-record 5 ; generate identifiers for constructor, predicate
is-scheme? ; getters and setters as needed
name
supers
supers
labels
(meta ,(to-identifier constructor))
(meta ,(add-temporaries pos-labels)) ; needed for constructor below
(meta ,(to-identifier predicate))
(meta ,(augment-field field-clause))
...
(undeclared-label (meta ,(generate-identifier))
(meta ,(generate-identifier)))
...)))
((build-record 5
is-scheme?
name
(super ...)
supers
(label ...)
constructor
((pos-label pos-temp) ...)
predicate
(field-label getter setter)
...)
(begin
(syntax-if is-scheme?
(begin
(define-generic (predicate x) (lambda (x) #f))
(define-generic (getter x))
...
(define-generic (setter x v))
...
(define-generic (copy x)))
(begin
(srfi-9:define-record-type internal-name
(maker field-label ...)
predicate
(field-label getter setter) ...)
(define constructor
(lambda (pos-temp ...)
(populate 1 maker (field-label ...) (pos-label pos-temp) ...)))
(extend-predicates supers predicate)
(extend-accessors supers field-label predicate getter setter)
...
(define (copy x)
(maker (getter x) ...))
(extend-copiers supers copy predicate)
(define-method (show (r predicate))
(list 'name
(list 'field-label (getter r))
...))))
(define-syntax name
(syntax-rules (field-label ...)
((name ("is-scheme?") sk fk) (syntax-if is-scheme? sk fk))
((name ("predicate") k) (syntax-apply k predicate))
((name ("supers") k) (syntax-apply k (super ... name)))
((name ("labels") k) (syntax-apply k (label ...)))
((name ("pos-labels") k) (syntax-apply k (pos-label ...)))
((name ("getter") field-label k) (syntax-apply k getter))
...
((name ("getter") other k) (syntax-apply k #f))
((name ("setter") field-label k) (syntax-apply k setter))
...
((name ("setter") other k) (syntax-apply k #f))
((name ("copier") k) (syntax-apply k copy))
((name . bindings) (populate 1 maker (field-label ...) . bindings))))))))
(define-syntax to-identifier
(syntax-rules ()
((to-identifier #f k) (syntax-apply k generated-identifier))
((to-identifier id k) (syntax-apply k id))))
(define-syntax augment-field
(syntax-rules ()
((augment-field (label) k) (syntax-apply k (label generated-getter generated-setter)))
((augment-field (label getter) k) (meta `(label (meta ,(to-identifier getter)) generated-setter) k))
((augment-field (label getter setter) k) (meta `(label (meta ,(to-identifier getter))
(meta ,(to-identifier setter))) k))))
(define-syntax extend-predicates
(syntax-rules ()
((extend-predicates (super ...) predicate)
(begin
(meta
`(define-method (meta ,(super ("predicate")))
(predicate)
(x)
any?))
...))))
(define-syntax extend-copiers
(syntax-rules ()
((extend-copiers (super ...) copy predicate)
(begin
(meta
`(define-method (meta ,(super ("copier")))
(predicate)
(x)
copy))
...))))
(define-syntax extend-accessors
(syntax-rules ()
((extend-accessors (super ...) label predicate selector modifier)
(meta
`(begin
(syntax-if (meta ,(super ("getter") label))
(define-method (meta ,(super ("getter") label))
(predicate)
(x)
selector)
(begin))
...
(syntax-if (meta ,(super ("setter") label))
(define-method (meta ,(super ("setter") label))
(predicate any?)
(x v)
modifier)
(begin))
...)))))
(define-syntax populate
(syntax-rules ()
((populate 1 maker labels . bindings)
(meta
`(populate 2 maker
(meta ,(order labels bindings ('<undefined>))))))
((populate 2 maker ((label exp) ...))
(maker exp ...))))
(define-syntax order
(syntax-rules ()
((order (label ...) ((label* . binding) ...) default k)
(meta
`(if-empty? (meta ,(remove-from (label* ...)
(label ...)
if-free=))
(order "emit" (label ...) ((label* . binding) ...) default k)
(syntax-error "Illegal labels in" ((label* . binding) ...)
"Legal labels are" (label ...)))))
((order "emit" (label ...) bindings default k)
(meta
`((label . (meta ,(syntax-lookup label
bindings
if-free=
default)))
...)
k))))
;============================================================================================
; Simple generic functions:
(define-syntax define-generic
(syntax-rules ()
((define-generic (name arg ...))
(define-generic (name arg ...)
(lambda (arg ...) (error "Inapplicable method:" 'name
"Arguments:" (show arg) ... ))))
((define-generic (name arg ...) proc)
(define name (make-generic (arg ...) proc)))))
(define-syntax define-method
(syntax-rules ()
((define-method (generic (arg pred?) ...) . body)
(define-method generic (pred? ...) (arg ...) (lambda (arg ...) . body)))
((define-method generic (pred? ...) (arg ...) procedure)
(let ((next ((generic) 'get-proc))
(proc procedure))
(((generic) 'set-proc)
(lambda (arg ...)
(if (and (pred? arg) ...)
(proc arg ...)
(next arg ...))))))))
(define-syntax make-generic
(syntax-rules ()
((make-generic (arg arg+ ...) default-proc)
(let ((proc default-proc))
(case-lambda
((arg arg+ ...)
(proc arg arg+ ...))
(()
(lambda (msg)
(case msg
((get-proc) proc)
((set-proc) (lambda (new)
(set! proc new)))))))))))
(define-generic (show x)
(lambda (x) x))
(define (any? x) #t)
;============================================================================================
; Syntax utilities:
(define-syntax syntax-error
(syntax-rules ()))
(define-syntax syntax-apply
(syntax-rules ()
((syntax-apply (f . args) exp ...)
(f exp ... . args))))
(define-syntax syntax-cons
(syntax-rules ()
((syntax-cons x rest k)
(syntax-apply k (x . rest)))))
(define-syntax syntax-cons-after
(syntax-rules ()
((syntax-cons-after rest x k)
(syntax-apply k (x . rest)))))
(define-syntax if-empty?
(syntax-rules ()
((if-empty? () sk fk) sk)
((if-empty? (h . t) sk fk) fk)))
(define-syntax add-temporaries
(syntax-rules ()
((add-temporaries lst k) (add-temporaries lst () k))
((add-temporaries () lst-temps k) (syntax-apply k lst-temps))
((add-temporaries (h . t) (done ...) k) (add-temporaries t (done ... (h temp)) k))))
(define-syntax if-free=
(syntax-rules ()
((if-free= x y kt kf)
(let-syntax
((test (syntax-rules (x)
((test x kt* kf*) kt*)
((test z kt* kf*) kf*))))
(test y kt kf)))))
(define-syntax top:if-free=
(syntax-rules ()
((top:if-free= x y kt kf)
(begin
(define-syntax if-free=:test
(syntax-rules (x)
((if-free=:test x kt* kf*) kt*)
((if-free=:test z kt* kf*) kf*)))
(if-free=:test y kt kf)))))
(define-syntax meta
(syntax-rules (meta quasiquote unquote)
((meta `(meta ,(function argument ...)) k)
(meta `(argument ...) (syntax-apply-to function k)))
((meta `(a . b) k)
(meta `a (descend-right b k)))
((meta `whatever k) (syntax-apply k whatever))
((meta `arg)
(meta `arg (syntax-id)))))
(define-syntax syntax-apply-to
(syntax-rules ()
((syntax-apply-to (argument ...) function k)
(function argument ... k))))
(define-syntax descend-right
(syntax-rules ()
((descend-right evaled b k)
(meta `b (syntax-cons-after evaled k)))))
(define-syntax syntax-id
(syntax-rules ()
((syntax-id arg) arg)))
(define-syntax remove-duplicates
(syntax-rules ()
((remove-duplicates lst compare? k)
(remove-duplicates lst () compare? k))
((remove-duplicates () done compare? k)
(syntax-apply k done))
((remove-duplicates (h . t) (d ...) compare? k)
(if-member? h (d ...) compare?
(remove-duplicates t (d ...) compare? k)
(remove-duplicates t (d ... h) compare? k)))))
(define-syntax syntax-filter
(syntax-rules ()
((syntax-filter () (if-p? arg ...) k)
(syntax-apply k ()))
((syntax-filter (h . t) (if-p? arg ...) k)
(if-p? h arg ...
(syntax-filter t (if-p? arg ...) (syntax-cons-after h k))
(syntax-filter t (if-p? arg ...) k)))))
(define-syntax if-member?
(syntax-rules ()
((if-member? x () compare? sk fk)
fk)
((if-member? x (h . t) compare? sk fk)
(compare? x h
sk
(if-member? x t compare? sk fk)))))
(define-syntax union
(syntax-rules ()
((union (x ...) ... compare? k)
(remove-duplicates (x ... ...) compare? k))))
(define-syntax intersection
(syntax-rules ()
((intersection list1 list2 compare? k)
(syntax-filter list1 (if-member? list2 compare?) k))))
(define-syntax remove-from
(syntax-rules ()
((remove-from list1 list2 compare? k)
(syntax-filter list1 (if-not-member? list2 compare?) k))))
(define-syntax if-not-member?
(syntax-rules ()
((if-not-member? x list compare? sk fk)
(if-member? x list compare? fk sk))))
(define-syntax generate-identifier
(syntax-rules ()
((generate-identifier k) (syntax-apply k generated-identifier))))
(define-syntax syntax-if
(syntax-rules ()
((syntax-if #f sk fk) fk)
((syntax-if other sk fk) sk)))
(define-syntax syntax-lookup
(syntax-rules ()
((syntax-lookup label () compare fail k)
(syntax-apply k fail))
((syntax-lookup label ((label* . value) . bindings) compare fail k)
(compare label label*
(syntax-apply k value)
(syntax-lookup label bindings compare fail k)))))
</pre>
<h2>Tests and examples</h2>
<pre>;============================================================================================
; Examples:
; A simple record declaration:
(define-record-type point (make-point x y) point?
(x point.x point.x-set!)
(y point.y point.y-set!))
(define p (make-point 1 2))
(point? p) ;==> #t
(point.y p) ;==> 2
(point.y-set! p 7)
(point.y p) ;==> 7
; Simple record schemes.
; Record schemes don't have constructors.
; The predicates and accessors are polymorphic.
(define-record-scheme <point #f <point?
(x <point.x)
(y <point.y))
(define-record-scheme <color #f <color?
(hue <color.hue))
; Concrete instances of the above schemes.
; Constructors may be declared.
; Predicates and accessors, when provided, are monomorphic.
(define-record-type (point <point) make-point point?
(x point.x)
(y point.y))
(define-record-type (color <color) make-color)
(define-record-type (color-point <color <point) (make-color-point x y hue) color-point?
(extra color-point.extra))
(define cp (make-color-point 1 2 'blue))
(<point? cp) ;==> #t
(<color? cp) ;==> #t
(color-point? cp) ;==> #t
;(point.x cp) ;==> error
(<point.y cp) ;==> 2
(<color.hue cp) ;==> blue
(color-point.extra cp) ;==> <undefined>
; Constructing records by field labels:
(define p (point (x 1)
(y 2)))
(define cp (color-point (hue 'blue)
(x 1)
(y 2)))
; Monomorphic functional update:
(show
(record-update p point (x 7))) ;==> (point (x 7) (y 2))
(show p) ;==> (point (x 1) (y 2)) - original unaffected
; Polymorphic functional update:
(show
(record-update cp <point (x 7))) ;==> (color-point (extra <undefined>) (hue blue) (x 7) (y 2))
(show cp) ;==> (color-point (extra <undefined>) (hue blue) (x 1) (y 2))
; In-place update:
(show
(record-update! cp <point (x 7))) ;==> color-point (extra <undefined>) (hue blue) (x 7) (y 2))
(show cp) ;==> color-point (extra <undefined>) (hue blue) (x 7) (y 2))
; Use record-compose for updates polymorphic in argument but monomorphic in result type:
(show
(record-compose (<point cp) (point (x 8)))) ;==> (point (x 8) (y 2))
(show cp) ;==> (color-point (extra <undefined>) (hue blue) (x 7) (y 2))
; More general record composition example:
(define cp (make-color-point 1 2 'green))
(define c (make-color 'blue))
(show
(record-compose (<point cp) ; polymorphic import - only fields x and y of cp taken
(color c) ; monomorphic import
(color-point (x 8) ; override imported field
(extra 'hi))))
;==> (color-point (extra hi) (hue blue) (x 8) (y 2))
; Small module-functor example:
(define-record-type monoid #f #f
(mult monoid.mult)
(one monoid.one))
(define-record-type abelian-group #f #f
(add group.add)
(zero group.zero)
(sub group.sub))
(define-record-type ring #f #f
(mult ring.mult)
(one ring.one)
(add ring.add)
(zero ring.zero)
(sub ring.sub))
(define integer-monoid (monoid (mult *)
(one 1)))
(define integer-group (abelian-group (add +)
(zero 0)
(sub -)))
(define (make-ring g m) ; simple "functor"
(record-compose (monoid m)
(abelian-group g)
(ring)))
(define integer-ring (make-ring integer-group
integer-monoid))
((ring.add integer-ring) 1 2) ;==> 3
; Example of tree data type
(define-record-scheme <tree #f <tree?)
(define-record-type (node <tree) make-node node?
(lhs node.lhs)
(rhs node.rhs))
(define-record-type (leaf <tree) make-leaf leaf?
(val leaf.val))
(define (tree->list t)
(cond
((leaf? t) (leaf.val t))
((node? t) (cons (tree->list (node.lhs t))
(tree->list (node.rhs t))))))
(define t
(make-node (make-node (make-leaf 1)
(make-leaf 2))
(make-leaf 3)))
(<tree? t) ;==> #t
(tree->list t) ;==> ((1 . 2) . 3)
</pre>
<h2>References</h2>
<pre>[1] Richard Kelsey, Defining Record Types, SRFI-9: http://srfi.schemers.org/srfi-9/srfi-9.html
[2] See e.g.
Benjamin C. Pierce, Types and Programming Languages, MIT Press 2002, and references therein.
Mitchell Wand, Type inference for record concatenation and multiple inheritance,
Information and Computation, v.93 n.1, p.1-15, July 1991
John Reppy, Jon Riecke, Simple objects for Standard ML,
Proceedings of the ACM SIGPLAN '96 Conference on Programming Language Design and Implementation
</pre>
<H1>Copyright</H1>
<p>Copyright (C) André van Tonder (2004). All Rights Reserved.</p>
<p>
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
</p>
<p>
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
</p>
<p>
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
</p>
<HR>
<ADDRESS>Author: <A href="mailto:andre@het.brown.edu">André van
Tonder</A></ADDRESS>
<ADDRESS>Editor: <A href="mailto:srfi-editors@srfi.schemers.org">David Van Horn</A></ADDRESS>
<!-- Created: Tue Mar 16 19:01:34 EST 2004 --><!-- hhmts start -->
Last modified: Wed Dec 8 15:31:34 EST 2004
<!-- hhmts end --></BODY></HTML>
|