File: srfi-60.html

package info (click to toggle)
drscheme 1%3A352-6
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 71,608 kB
  • ctags: 55,284
  • sloc: ansic: 278,966; cpp: 63,318; sh: 32,265; lisp: 14,530; asm: 7,327; makefile: 4,846; pascal: 4,363; perl: 2,920; java: 1,632; yacc: 755; lex: 258; sed: 93; xml: 12
file content (884 lines) | stat: -rw-r--r-- 27,046 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<HTML>
  <HEAD>
    <title>SRFI 60: Integers as Bits</title>
  </HEAD>

  <BODY>

<H1>Title</H1>

SRFI 60: Integers as Bits

<H1>Author</H1>

Aubrey Jaffer

<H1>Status</H1> 

This SRFI is currently in ``final'' status. To see an explanation of each
status that a SRFI can hold, see <A
href="http://srfi.schemers.org/srfi-process.html">here</A>. You can access
previous messages via <A
href="http://srfi.schemers.org/srfi-60/mail-archive/maillist.html">the
archive of the mailing list</A>.

<P> 
<UL>
  <LI>Received: <A HREF="http://srfi.schemers.org/cgi-bin/viewcvs.cgi/*checkout*/srfi/srfi-60/srfi-60.html?rev=1.1">2005/01/03</A></LI>
  <LI>Draft: 2005/01/03 - 2005/03/03</LI>
  <LI>Revised: <A HREF="http://srfi.schemers.org/cgi-bin/viewcvs.cgi/*checkout*/srfi/srfi-60/srfi-60.html?rev=1.2">2005/01/10</A></LI>
  <LI>Revised: <A HREF="http://srfi.schemers.org/cgi-bin/viewcvs.cgi/*checkout*/srfi/srfi-60/srfi-60.html?rev=1.4">2005/01/27</A></LI>
  <LI>Revised: <A HREF="http://srfi.schemers.org/cgi-bin/viewcvs.cgi/*checkout*/srfi/srfi-60/srfi-60.html?rev=1.5">2005/01/29</A></LI>
  <LI>Final: 2005/03/08</LI>
</UL>

<H1>Abstract</H1>

Treating integers as two's-complement strings of bits is an arcane but
important domain of computer science.  It is used for:

<UL>
<LI>hashing;

<LI>Galois-field[2] calculations of error-detecting and
    error-correcting codes;

<LI>cryptography and ciphers;

<LI>pseudo-random number generation;

<LI>register-transfer-level modeling of digital logic designs;

<LI>Fast-Fourier transforms;

<LI>packing and unpacking numbers in persistant data structures;

<LI>space-filling curves with applications to dimension reduction and
    sparse multi-dimensional database indexes; and

<LI>generating approximate seed values for root-finders and
    transcendental function algorithms.

</UL>
<P>

<H1>Rationale</H1>

This proposal describes the
<A HREF="http://swiss.csail.mit.edu/~jaffer/SLIB">SLIB</A> module
<A HREF="http://swiss.csail.mit.edu/~jaffer/slib_5.html#SEC88"><TT>logical</TT></A>,
which has been used for those purposes listed above.
<P>
The discussions of the withdrawn
<A HREF="http://srfi.schemers.org/srfi-33/">SRFI-33: "Integer
Bitwise-operation Library"</A> seemed to founder on consistency of
procedure names and arity; and on perceived competition with the
boolean arrays of SRFI-47.
<P>
I have implemented both logical number operations and boolean arrays;
and have not been conflicted as to their application.  I used boolean
arrays to construct very fast indexes for database tables having
millions of records.  To avoid running out of RAM, creation of megabit
arrays should be explicit; so the boolean array procedures put their
results into a passed array.  In contrast, these procedures are purely
functional.
<P>

<H3>Bits and Complements</H3>

A bit-index in these descriptions is nonnegative with the least
significant bit at index 0.
A positive integer has a finite number of "1" bits.
A negative integer has a finite number of "0" bits.
<P>
The reference implementation is written using only Scheme integer
operations.  Thus the only exposure of the underlying representation
is the ranges of fixnums.
<P>
The <DFN>complement</DFN> describes the representation of negative
integers.  With one's-complement fixnums, the range of integers is
-(2<SUP><I>n</I></SUP>) to 2<SUP><I>n</I></SUP>, and there are two
possible representations of 0.  With two's-complement fixnums, the
range of integers is -(2<SUP><I>n</I></SUP>+1) to
2<SUP><I>n</I></SUP>.
<P>
Since we treat integers as having two's-complement negations,
the two's-complement of an integer is simply its negation.
The one's-complement of an integer is computed by lognot:

<PRE>
(define (lognot n) (- -1 n))
</PRE>
<P>

<H3>Bitwise Operations and Integer Properties</H3>

The <TT>logior</TT>, <TT>logxor</TT>, <TT>logand</TT>,
<TT>lognot</TT>, <TT>logtest</TT>, <TT>logbit?</TT> (logbitp),
<TT>ash</TT>, <TT>logcount</TT>, and <TT>integer-length</TT>
procedures are from Common-Lisp.  <TT>Logior</TT>, <TT>logxor</TT>,
and <TT>logand</TT> have been extended to accept any arity.
Opportunities to use an <I>n</I>-ary version of <TT>logtest</TT> have
not been frequent enough to justify its extension.
<P>
In the <DFN>Bitwise Operations</DFN>, rather than striving for
orthogonal completeness, I have concentrated on a nearly minimal set
of bitwise logical functions sufficient to support the uses listed
above.
<P>
Although any two of <TT>logior</TT>, <TT>logxor</TT>, and
<TT>logand</TT> (in combination with <TT>lognot</TT>) are sufficient
to generate all the two-input logic functions, having these three
means that any nontrivial two-input logical function can be
synthesized using just one of these two-input primaries with zero or
one calls to <TT>lognot</TT>.
<P>
<TT>bitwise-if</TT> is what SRFI-33 calls <TT>bitwise-merge</TT>.
<P>
The SRFI-33 aliases: <TT>bitwise-ior</TT>, <TT>bitwise-xor</TT>,
<TT>bitwise-and</TT>, <TT>bitwise-not</TT>, <TT>bitwise-merge</TT>,
<TT>any-bits-set?</TT>, and <TT>bit-count</TT> are also provided.
<P>
<TT>log2-binary-factors</TT> (alias <TT>first-set-bit</TT>) is a
useful function which is simple but non-obvious:

<PRE>
(define (log2-binary-factors n)
  (+ -1 (integer-length (logand n (- n)))))
</PRE>

<H3>Bit Within Word and Field of Bits</H3>

The <DFN>Bit Within Word</DFN> and <DFN>Field of Bits</DFN> procedures
are used for modeling digital logic and accessing binary data
structures in software.
<P>
I have changed to <TT>copy-bit-field</TT> argument order to be
consistent with the other <DFN>Field of Bits</DFN> procedures: the
<VAR>start</VAR> and <VAR>end</VAR> index arguments are last.
This makes them analogous to the argument order to <TT>substring</TT>
and SRFI-47 arrays, which took their cue from <TT>substring</TT>.
<P>
These <VAR>start</VAR> and <VAR>end</VAR> index arguments are not
compatible with SRFI-33's <VAR>size</VAR> and <VAR>position</VAR>
arguments (occurring first) in its <TT>bit-field</TT> procedures.
Both define <TT>copy-bit-field</TT>; the arguments and purposes being
incompatible.
<P>
A procedure in slib/logical.scm, <TT>logical:rotate</TT>, rotated a
given number of low-order bits by a given number of bits.  This
function was quite servicable, but I could not name it adequately.  I
have replaced it with <TT>rotate-bit-field</TT> with the addition of a
<VAR>start</VAR> argument.  This new function rotates a given field
(from positions <VAR>start</VAR> to <VAR>end</VAR>) within an integer;
leaving the rest unchanged.
<P>
Another problematic name was <TT>logical:ones</TT>, which generated an
integer with the least significant <VAR>k</VAR> bits set.  Calls to
<TT>bit-field</TT> could have replaced its uses .  But the definition
was so short that I just replaced its uses with:

<PRE>
(lognot (ash -1 <VAR>k</VAR>))
</PRE>
<P>
The <TT>bit-reverse</TT> procedure was then the only one which took a
<VAR>width</VAR> argument.  So I replaced it with
<TT>reverse-bit-field</TT>.
<P>
The <DFN>Lamination</DFN> and <DFN>Gray-code</DFN> functions were
moved to
<A HREF="http://savannah.gnu.org/cgi-bin/viewcvs/*checkout*/slib/slib/phil-spc.scm?rev=HEAD&amp;content-type=text/vnd.viewcvs-markup">slib/phil-spc.scm</A>
<P>

<H3>Bits as Booleans</H3>

<DFN>Bits as Booleans</DFN> provides the procedures to convert between
integers and lists of booleans.  There is no comparable facility in
SRFI-33.
<P>


<H1>Specification</H1>



<H3><A NAME="SEC97">Bitwise Operations</A></H3>

<P>
<DL>
<DT><U>Function:</U> <B>logand</B> <I>n1 ...</I>
<DD><A NAME="IDX487"></A>
<DT><U>Function:</U> <B>bitwise-and</B> <I>n1 ...</I>
<DD><A NAME="IDX488"></A>
Returns the integer which is the bit-wise AND of the integer
arguments.


<P>
Example:

<PRE>
(number-&#62;string (logand #b1100 #b1010) 2)
    => "1000"
</PRE>

</DL>

<P>
<DL>
<DT><U>Function:</U> <B>logior</B> <I>n1 ...</I>
<DD><A NAME="IDX489"></A>
<DT><U>Function:</U> <B>bitwise-ior</B> <I>n1 ...</I>
<DD><A NAME="IDX490"></A>
Returns the integer which is the bit-wise OR of the integer arguments.


<P>
Example:

<PRE>
(number-&#62;string (logior #b1100 #b1010) 2)
    => "1110"
</PRE>

</DL>

<P>
<DL>
<DT><U>Function:</U> <B>logxor</B> <I>n1 ...</I>
<DD><A NAME="IDX491"></A>
<DT><U>Function:</U> <B>bitwise-xor</B> <I>n1 ...</I>
<DD><A NAME="IDX492"></A>
Returns the integer which is the bit-wise XOR of the integer
arguments.


<P>
Example:

<PRE>
(number-&#62;string (logxor #b1100 #b1010) 2)
    => "110"
</PRE>

</DL>

<P>
<DL>
<DT><U>Function:</U> <B>lognot</B> <I>n</I>
<DD><A NAME="IDX493"></A>
<DT><U>Function:</U> <B>bitwise-not</B> <I>n</I>
<DD><A NAME="IDX494"></A>
Returns the integer which is the one's-complement of the integer argument.


<P>
Example:

<PRE>
(number-&#62;string (lognot #b10000000) 2)
    => "-10000001"
(number-&#62;string (lognot #b0) 2)
    => "-1"
</PRE>

</DL>

<P>
<DL>
<DT><U>Function:</U> <B>bitwise-if</B> <I>mask n0 n1</I>
<DD><A NAME="IDX495"></A>
<DT><U>Function:</U> <B>bitwise-merge</B> <I>mask n0 n1</I>
<DD><A NAME="IDX496"></A>
Returns an integer composed of some bits from integer <VAR>n0</VAR> and some
from integer <VAR>n1</VAR>.  A bit of the result is taken from <VAR>n0</VAR> if the
corresponding bit of integer <VAR>mask</VAR> is 1 and from <VAR>n1</VAR> if that bit
of <VAR>mask</VAR> is 0.
</DL>


<P>
<DL>
<DT><U>Function:</U> <B>logtest</B> <I>j k</I>
<DD><A NAME="IDX497"></A>
<DT><U>Function:</U> <B>any-bits-set?</B> <I>j k</I>
<DD><A NAME="IDX498"></A>

<PRE>
(logtest j k) == (not (zero? (logand j k)))

(logtest #b0100 #b1011) => #f
(logtest #b0100 #b0111) => #t
</PRE>

</DL>



<H3><A NAME="SEC98">Integer Properties</A></H3>

<P>
<DL>
<DT><U>Function:</U> <B>logcount</B> <I>n</I>
<DD><A NAME="IDX499"></A>
<DT><U>Function:</U> <B>bit-count</B> <I>n</I>
<DD><A NAME="IDX500"></A>
Returns the number of bits in integer <VAR>n</VAR>.  If integer is positive,
the 1-bits in its binary representation are counted.  If negative, the
0-bits in its two's-complement binary representation are counted.  If 0,
0 is returned.


<P>
Example:

<PRE>
(logcount #b10101010)
    => 4
(logcount 0)
    => 0
(logcount -2)
    => 1
</PRE>

</DL>

<P>
<DL>
<DT><U>Function:</U> <B>integer-length</B> <I>n</I>
<DD><A NAME="IDX501"></A>
Returns the number of bits neccessary to represent <VAR>n</VAR>.


<P>
Example:

<PRE>
(integer-length #b10101010)
    => 8
(integer-length 0)
    => 0
(integer-length #b1111)
    => 4
</PRE>

</DL>

<P>
<DL>
<DT><U>Function:</U> <B>log2-binary-factors</B> <I>n</I>
<DD><A NAME="IDX502"></A>
<DT><U>Function:</U> <B>first-set-bit</B> <I>n</I>
<DD><A NAME="IDX503"></A>
Returns the number of factors of two of integer <VAR>n</VAR>.  This value
is also the bit-index of the least-significant <SAMP>`1'</SAMP> bit in
<VAR>n</VAR>.



<PRE>
(require 'printf)
(do ((idx 0 (+ 1 idx)))
      ((&#62; idx 16))
    (printf "%s(%3d) ==&#62; %-5d %s(%2d) ==&#62; %-5d\n"
            'log2-binary-factors
            (- idx) (log2-binary-factors (- idx))
            'log2-binary-factors
            idx (log2-binary-factors idx)))
-|
log2-binary-factors(  0) ==&#62; -1    log2-binary-factors( 0) ==&#62; -1   
log2-binary-factors( -1) ==&#62; 0     log2-binary-factors( 1) ==&#62; 0    
log2-binary-factors( -2) ==&#62; 1     log2-binary-factors( 2) ==&#62; 1    
log2-binary-factors( -3) ==&#62; 0     log2-binary-factors( 3) ==&#62; 0    
log2-binary-factors( -4) ==&#62; 2     log2-binary-factors( 4) ==&#62; 2    
log2-binary-factors( -5) ==&#62; 0     log2-binary-factors( 5) ==&#62; 0    
log2-binary-factors( -6) ==&#62; 1     log2-binary-factors( 6) ==&#62; 1    
log2-binary-factors( -7) ==&#62; 0     log2-binary-factors( 7) ==&#62; 0    
log2-binary-factors( -8) ==&#62; 3     log2-binary-factors( 8) ==&#62; 3    
log2-binary-factors( -9) ==&#62; 0     log2-binary-factors( 9) ==&#62; 0    
log2-binary-factors(-10) ==&#62; 1     log2-binary-factors(10) ==&#62; 1    
log2-binary-factors(-11) ==&#62; 0     log2-binary-factors(11) ==&#62; 0    
log2-binary-factors(-12) ==&#62; 2     log2-binary-factors(12) ==&#62; 2    
log2-binary-factors(-13) ==&#62; 0     log2-binary-factors(13) ==&#62; 0    
log2-binary-factors(-14) ==&#62; 1     log2-binary-factors(14) ==&#62; 1    
log2-binary-factors(-15) ==&#62; 0     log2-binary-factors(15) ==&#62; 0    
log2-binary-factors(-16) ==&#62; 4     log2-binary-factors(16) ==&#62; 4    
</PRE>

</DL>



<H3><A NAME="SEC99">Bit Within Word</A></H3>

<P>
<DL>
<DT><U>Function:</U> <B>logbit?</B> <I>index n</I>
<DD><A NAME="IDX504"></A>
<DT><U>Function:</U> <B>bit-set?</B> <I>index n</I>
<DD><A NAME="IDX505"></A>

<PRE>
(logbit? index n) == (logtest (expt 2 index) n)

(logbit? 0 #b1101) => #t
(logbit? 1 #b1101) => #f
(logbit? 2 #b1101) => #t
(logbit? 3 #b1101) => #t
(logbit? 4 #b1101) => #f
</PRE>

</DL>

<P>
<DL>
<DT><U>Function:</U> <B>copy-bit</B> <I>index from bit</I>
<DD><A NAME="IDX506"></A>
Returns an integer the same as <VAR>from</VAR> except in the <VAR>index</VAR>th bit,
which is 1 if <VAR>bit</VAR> is <CODE>#t</CODE> and 0 if <VAR>bit</VAR> is <CODE>#f</CODE>.


<P>
Example:

<PRE>
(number-&#62;string (copy-bit 0 0 #t) 2)       => "1"
(number-&#62;string (copy-bit 2 0 #t) 2)       => "100"
(number-&#62;string (copy-bit 2 #b1111 #f) 2)  => "1011"
</PRE>

</DL>



<H3><A NAME="SEC100">Field of Bits</A></H3>

<P>
<DL>
<DT><U>Function:</U> <B>bit-field</B> <I>n start end</I>
<DD><A NAME="IDX507"></A>
Returns the integer composed of the <VAR>start</VAR> (inclusive) through
<VAR>end</VAR> (exclusive) bits of <VAR>n</VAR>.  The <VAR>start</VAR>th bit becomes
the 0-th bit in the result.


<P>
Example:

<PRE>
(number-&#62;string (bit-field #b1101101010 0 4) 2)
    => "1010"
(number-&#62;string (bit-field #b1101101010 4 9) 2)
    => "10110"
</PRE>

</DL>

<P>
<DL>
<DT><U>Function:</U> <B>copy-bit-field</B> <I>to from start end</I>
<DD><A NAME="IDX508"></A>
Returns an integer the same as <VAR>to</VAR> except possibly in the
<VAR>start</VAR> (inclusive) through <VAR>end</VAR> (exclusive) bits, which are
the same as those of <VAR>from</VAR>.  The 0-th bit of <VAR>from</VAR> becomes the
<VAR>start</VAR>th bit of the result.


<P>
Example:

<PRE>
(number-&#62;string (copy-bit-field #b1101101010 0 0 4) 2)
    => "1101100000"
(number-&#62;string (copy-bit-field #b1101101010 -1 0 4) 2)
    => "1101101111"
(number-&#62;string (copy-bit-field #b110100100010000 -1 5 9) 2)
    => "110100111110000"
</PRE>

</DL>

<P>
<DL>
<DT><U>Function:</U> <B>ash</B> <I>n count</I>
<DD><A NAME="IDX509"></A>
<DT><U>Function:</U> <B>arithmetic-shift</B> <I>n count</I>
<DD><A NAME="IDX510"></A>
Returns an integer equivalent to
<CODE>(inexact-&#62;exact (floor (* <VAR>n</VAR> (expt 2 <VAR>count</VAR>))))</CODE>.


<P>
Example:

<PRE>
(number-&#62;string (ash #b1 3) 2)
    => "1000"
(number-&#62;string (ash #b1010 -1) 2)
    => "101"
</PRE>

</DL>

<P>
<DL>
<DT><U>Function:</U> <B>rotate-bit-field</B> <I>n count start end</I>
<DD><A NAME="IDX511"></A>
Returns <VAR>n</VAR> with the bit-field from <VAR>start</VAR> to <VAR>end</VAR>
cyclically permuted by <VAR>count</VAR> bits towards high-order.


<P>
Example:

<PRE>
(number-&#62;string (rotate-bit-field #b0100 3 0 4) 2)
    => "10"
(number-&#62;string (rotate-bit-field #b0100 -1 0 4) 2)
    => "10"
(number-&#62;string (rotate-bit-field #b110100100010000 -1 5 9) 2)
    => "110100010010000"
(number-&#62;string (rotate-bit-field #b110100100010000 1 5 9) 2)
    => "110100000110000"
</PRE>

</DL>

<P>
<DL>
<DT><U>Function:</U> <B>reverse-bit-field</B> <I>n start end</I>
<DD><A NAME="IDX512"></A>
Returns <VAR>n</VAR> with the order of bits <VAR>start</VAR> to <VAR>end</VAR>
reversed.



<PRE>
(number-&#62;string (reverse-bit-field #xa7 0 8) 16)
    => "e5"
</PRE>

</DL>



<H3><A NAME="SEC101">Bits as Booleans</A></H3>

<P>
<DL>
<DT><U>Function:</U> <B>integer-&#62;list</B> <I>k len</I>
<DD><A NAME="IDX513"></A>
<DT><U>Function:</U> <B>integer-&#62;list</B> <I>k</I>
<DD><A NAME="IDX514"></A>
<CODE>integer-&#62;list</CODE> returns a list of <VAR>len</VAR> booleans corresponding
to each bit of the given integer.  #t is coded for each 1; #f for 0.
The <VAR>len</VAR> argument defaults to <CODE>(integer-length <VAR>k</VAR>)</CODE>.


<P>
<DT><U>Function:</U> <B>list-&#62;integer</B> <I>list</I>
<DD><A NAME="IDX515"></A>
<CODE>list-&#62;integer</CODE> returns an integer formed from the booleans in the
list <VAR>list</VAR>, which must be a list of booleans.  A 1 bit is coded for
each #t; a 0 bit for #f.


<P>
<CODE>integer-&#62;list</CODE> and <CODE>list-&#62;integer</CODE> are inverses so far as
<CODE>equal?</CODE> is concerned.
</DL>


<P>
<DL>
<DT><U>Function:</U> <B>booleans-&#62;integer</B> <I>bool1 ...</I>
<DD><A NAME="IDX516"></A>
Returns the integer coded by the <VAR>bool1</VAR> ... arguments.
</DL>



<H1>Implementation</H1>

<A HREF="http://savannah.gnu.org/cgi-bin/viewcvs/*checkout*/slib/slib/logical.scm?rev=HEAD&amp;content-type=text/vnd.viewcvs-markup">slib/logical.scm</A>
implements the integers-as-bits procedures for R4RS or R5RS compliant
Scheme implementations.
<P>
<PRE>
;;;; "logical.scm", bit access and operations for integers for Scheme
;;; Copyright (C) 1991, 1993, 2001, 2003, 2005 Aubrey Jaffer
;
;Permission to copy this software, to modify it, to redistribute it,
;to distribute modified versions, and to use it for any purpose is
;granted, subject to the following restrictions and understandings.
;
;1.  Any copy made of this software must include this copyright notice
;in full.
;
;2.  I have made no warranty or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
;3.  In conjunction with products arising from the use of this
;material, there shall be no use of my name in any advertising,
;promotional, or sales literature without prior written consent in
;each case.

(define logical:boole-xor
 '#(#(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)
    #(1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14)
    #(2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13)
    #(3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12)
    #(4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11)
    #(5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10)
    #(6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9)
    #(7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8)
    #(8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7)
    #(9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6)
    #(10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5)
    #(11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4)
    #(12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3)
    #(13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2)
    #(14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1)
    #(15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0)))

(define logical:boole-and
 '#(#(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
    #(0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1)
    #(0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2)
    #(0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3)
    #(0 0 0 0 4 4 4 4 0 0 0 0 4 4 4 4)
    #(0 1 0 1 4 5 4 5 0 1 0 1 4 5 4 5)
    #(0 0 2 2 4 4 6 6 0 0 2 2 4 4 6 6)
    #(0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7)
    #(0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8)
    #(0 1 0 1 0 1 0 1 8 9 8 9 8 9 8 9)
    #(0 0 2 2 0 0 2 2 8 8 10 10 8 8 10 10)
    #(0 1 2 3 0 1 2 3 8 9 10 11 8 9 10 11)
    #(0 0 0 0 4 4 4 4 8 8 8 8 12 12 12 12)
    #(0 1 0 1 4 5 4 5 8 9 8 9 12 13 12 13)
    #(0 0 2 2 4 4 6 6 8 8 10 10 12 12 14 14)
    #(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)))

(define (logical:ash-4 x)
  (if (negative? x)
      (+ -1 (quotient (+ 1 x) 16))
      (quotient x 16)))

(define (logical:reduce op4 ident)
  (lambda args
    (do ((res ident (op4 res (car rgs) 1 0))
         (rgs args (cdr rgs)))
        ((null? rgs) res))))

;@
(define logand
  (letrec
      ((lgand
        (lambda (n2 n1 scl acc)
          (cond ((= n1 n2) (+ acc (* scl n1)))
                ((zero? n2) acc)
                ((zero? n1) acc)
                (else (lgand (logical:ash-4 n2)
                             (logical:ash-4 n1)
                             (* 16 scl)
                             (+ (* (vector-ref (vector-ref logical:boole-and
                                                           (modulo n1 16))
                                               (modulo n2 16))
                                   scl)
                                acc)))))))
    (logical:reduce lgand -1)))
;@
(define logior
  (letrec
      ((lgior
        (lambda (n2 n1 scl acc)
          (cond ((= n1 n2) (+ acc (* scl n1)))
                ((zero? n2) (+ acc (* scl n1)))
                ((zero? n1) (+ acc (* scl n2)))
                (else (lgior (logical:ash-4 n2)
                             (logical:ash-4 n1)
                             (* 16 scl)
                             (+ (* (- 15 (vector-ref
                                          (vector-ref logical:boole-and
                                                      (- 15 (modulo n1 16)))
                                          (- 15 (modulo n2 16))))
                                   scl)
                                acc)))))))
    (logical:reduce lgior 0)))
;@
(define logxor
  (letrec
      ((lgxor
        (lambda (n2 n1 scl acc)
          (cond ((= n1 n2) acc)
                ((zero? n2) (+ acc (* scl n1)))
                ((zero? n1) (+ acc (* scl n2)))
                (else (lgxor (logical:ash-4 n2)
                             (logical:ash-4 n1)
                             (* 16 scl)
                             (+ (* (vector-ref (vector-ref logical:boole-xor
                                                           (modulo n1 16))
                                               (modulo n2 16))
                                   scl)
                                acc)))))))
    (logical:reduce lgxor 0)))
;@
(define (lognot n) (- -1 n))
;@
(define (logtest n1 n2)
  (not (zero? (logand n1 n2))))
;@
(define (logbit? index n)
  (logtest (expt 2 index) n))
;@
(define (copy-bit index to bool)
  (if bool
      (logior to (arithmetic-shift 1 index))
      (logand to (lognot (arithmetic-shift 1 index)))))
;@
(define (bitwise-if mask n0 n1)
  (logior (logand mask n0)
          (logand (lognot mask) n1)))
;@
(define (bit-field n start end)
  (logand (lognot (ash -1 (- end start)))
          (arithmetic-shift n (- start))))
;@
(define (copy-bit-field to from start end)
  (bitwise-if (arithmetic-shift (lognot (ash -1 (- end start))) start)
              (arithmetic-shift from start)
              to))
;@
(define (rotate-bit-field n count start end)
  (define width (- end start))
  (set! count (modulo count width))
  (let ((mask (lognot (ash -1 width))))
    (define zn (logand mask (arithmetic-shift n (- start))))
    (logior (arithmetic-shift
             (logior (logand mask (arithmetic-shift zn count))
                     (arithmetic-shift zn (- count width)))
             start)
            (logand (lognot (ash mask start)) n))))
;@
(define (arithmetic-shift n count)
  (if (negative? count)
      (let ((k (expt 2 (- count))))
        (if (negative? n)
            (+ -1 (quotient (+ 1 n) k))
            (quotient n k)))
      (* (expt 2 count) n)))
;@
(define integer-length
  (letrec ((intlen (lambda (n tot)
                     (case n
                       ((0 -1) (+ 0 tot))
                       ((1 -2) (+ 1 tot))
                       ((2 3 -3 -4) (+ 2 tot))
                       ((4 5 6 7 -5 -6 -7 -8) (+ 3 tot))
                       (else (intlen (logical:ash-4 n) (+ 4 tot)))))))
    (lambda (n) (intlen n 0))))
;@
(define logcount
  (letrec ((logcnt (lambda (n tot)
                     (if (zero? n)
                         tot
                         (logcnt (quotient n 16)
                                 (+ (vector-ref
                                     '#(0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4)
                                     (modulo n 16))
                                    tot))))))
    (lambda (n)
      (cond ((negative? n) (logcnt (lognot n) 0))
            ((positive? n) (logcnt n 0))
            (else 0)))))
;@
(define (log2-binary-factors n)
  (+ -1 (integer-length (logand n (- n)))))

(define (bit-reverse k n)
  (do ((m (if (negative? n) (lognot n) n) (arithmetic-shift m -1))
       (k (+ -1 k) (+ -1 k))
       (rvs 0 (logior (arithmetic-shift rvs 1) (logand 1 m))))
      ((negative? k) (if (negative? n) (lognot rvs) rvs))))
;@
(define (reverse-bit-field n start end)
  (define width (- end start))
  (let ((mask (lognot (ash -1 width))))
    (define zn (logand mask (arithmetic-shift n (- start))))
    (logior (arithmetic-shift (bit-reverse width zn) start)
            (logand (lognot (ash mask start)) n))))
;@
(define (integer-&gt;list k . len)
  (if (null? len)
      (do ((k k (arithmetic-shift k -1))
           (lst '() (cons (odd? k) lst)))
          ((&lt;= k 0) lst))
      (do ((idx (+ -1 (car len)) (+ -1 idx))
           (k k (arithmetic-shift k -1))
           (lst '() (cons (odd? k) lst)))
          ((negative? idx) lst))))
;@
(define (list-&gt;integer bools)
  (do ((bs bools (cdr bs))
       (acc 0 (+ acc acc (if (car bs) 1 0))))
      ((null? bs) acc)))
(define (booleans-&gt;integer . bools)
  (list-&gt;integer bools))

;;;;@ SRFI-60 aliases
(define ash arithmetic-shift)
(define bitwise-ior logior)
(define bitwise-xor logxor)
(define bitwise-and logand)
(define bitwise-not lognot)
(define bit-count logcount)
(define bit-set?   logbit?)
(define any-bits-set? logtest)
(define first-set-bit log2-binary-factors)
(define bitwise-merge bitwise-if)

;;; Legacy
;;(define (logical:rotate k count len) (rotate-bit-field k count 0 len))
;;(define (logical:ones deg) (lognot (ash -1 deg)))
;;(define integer-expt expt)            ; legacy name
</PRE>


<H1>Copyright</H1>
<p>Copyright (C) Aubrey Jaffer (2004, 2005). All Rights Reserved.</p>

<p>
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
</p>
<p>
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
</p>
<p>
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
</p>


    <HR>
    <ADDRESS>Editor: <A HREF="mailto:srfi-editors@srfi.schemers.org">David Van Horn</A></ADDRESS>
<!-- Created: Tue Sep 29 19:20:08 EDT 1998 -->
<!-- hhmts start -->
Last modified: Sat Jan 29 13:16:05 EST 2005
<!-- hhmts end -->
  </BODY>
</HTML>