1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<HTML>
<HEAD>
<title>SRFI 63: Homogeneous and Heterogeneous Arrays</title>
</HEAD>
<BODY>
<H1>Title</H1>
Homogeneous and Heterogeneous Arrays
<H1>Author</H1>
Aubrey Jaffer
<H1>Status</H1>
This SRFI is currently in ``final'' status. To see an explanation of each
status that a SRFI can hold, see <A
HREF="http://srfi.schemers.org/srfi-process.html">here</A>. You can
access previous messages via <A
HREF="http://srfi.schemers.org/srfi-63/mail-archive/maillist.html">the
archive of the mailing list</A>.
<P>
</P><UL>
<LI>Received: <A HREF="http://srfi.schemers.org/cgi-bin/viewcvs.cgi/*checkout*/srfi/srfi-63/srfi-63.html?rev=1.3">2005/01/17</A></LI>
<LI>Draft: 2005/01/17 - 2005/03/18</LI>
<LI>Revised: <A HREF="http://srfi.schemers.org/cgi-bin/viewcvs.cgi/*checkout*/srfi/srfi-63/srfi-63.html?rev=1.4">2005/01/27</A></LI>
<LI>Revised: <A HREF="http://srfi.schemers.org/cgi-bin/viewcvs.cgi/*checkout*/srfi/srfi-63/srfi-63.html?rev=1.5">2005/01/29</A></LI>
<LI>Revised: <A HREF="http://srfi.schemers.org/cgi-bin/viewcvs.cgi/*checkout*/srfi/srfi-63/srfi-63.html?rev=1.6">2005/04/08</A></LI>
<LI>Revised: <A HREF="http://srfi.schemers.org/cgi-bin/viewcvs.cgi/*checkout*/srfi/srfi-63/srfi-63.html?rev=1.7">2005/04/27</A></LI>
<LI>Final: 2005/04/27</LI>
</UL>
<H1>Abstract</H1>
The SRFI, which is to supersede
<A HREF="http://srfi.schemers.org/srfi-47/srfi-47.html">SRFI-47</A>,
"Array",
<UL>
<LI>synthesizes array concepts from Common-Lisp and Alan Bawden's
"array.scm";
</LI><LI>incorporates all the uniform vector types from
<A HREF="http://srfi.schemers.org/srfi-4/srfi-4.html">SFRI-4</A>
"Homogeneous numeric vector datatypes";
</LI><LI>adds a boolean uniform array type;
</LI><LI>adds 16.bit and 128.bit floating-point uniform-array types;
</LI><LI>adds decimal floating-point uniform-array types; and
</LI><LI>adds array types of (dual) floating-point complex numbers.
</LI></UL>
Multi-dimensional arrays subsume homogeneous vectors as the
one-dimensional case, obviating the need for SRFI-4.
<P>
SRFI-58 gives a read/write invariant syntax for the homogeneous and
heterogeneous arrays described here.
</P><P>
</P><H1>Issues</H1>
<UL>
<!-- <LI> -->
<!-- Character arrays can be supported based on strings; but they do not -->
<!-- necessarily have access times comparable to other types of arrays. -->
<!-- <P> -->
<LI>
The <A HREF="#Conversions">conversion rules</A> for exact decimal
flonums have yet to be determined. Wisdom in this area would come
from experience. Lacking that, it is better to underspecify the
behavior of decimal flonums than to make it wrong.
<P>
<!-- <LI> -->
<!-- <CODE>array->vector</CODE> and <CODE>vector->array</CODE> are -->
<!-- not inverses for rank-0 arrays. -->
<!-- <P> -->
</P></LI></UL>
<H1>Rationale</H1>
<H2>Arrays</H2>
Computations have been organized into multidimensional arrays for over
200 years. Applications for multi-dimensional arrays continue to
arise. Computer graphics and imaging, whether vector or raster based,
use arrays. A general-purpose computer language without
multidimensional arrays is an oxymoron.
<H2>Precision</H2>
R5RS provides an input syntax for inexact numbers which is capable of
distinguishing between <VAR>short</VAR>, <VAR>single</VAR>,
<VAR>double</VAR>, and <VAR>long</VAR> precisions. But R5RS provides
no method for limiting the precision of calculations:
<BLOCKQUOTE>
In particular, implementations that use flonum representations must
follow these rules: A flonum result must be represented with at least
as much precision as is used to express any of the inexact arguments
to that operation.
</BLOCKQUOTE>
And calculation with any exact number inputs blows the precision out
to "the most precise flonum format available":
<BLOCKQUOTE>
If, however, an exact number is operated upon so as to produce an
inexact result (as by <SAMP>`sqrt'</SAMP>), and if the result is
represented as a flonum, then the most precise flonum format available
must be used; but if the result is represented in some other way then
the representation must have at least as much precision as the most
precise flonum format available.
</BLOCKQUOTE>
Scheme is not much hampered by lack of low-precision inexact numbers
for scalar calculations. The extra computation incurred by gratuitous
precision is usually small compared with the overhead of type-dispatch
and boxed data manipulation.
<P>
</P><H2>Homogeneous Arrays</H2>
But if calculations are vectorized, that overhead can become
significant. Sophisticated program analysis may be able to deduce
that aggregated number storage can be made uniformly of the most
precise flonum format available. But even the most aggressive
analysis of uncontrived programs will not be able to reduce the
precision while yielding results equivalent to the most precise
calculation, as R5RS requires.
<P>
<!-- Globally reduced precision is a poor solution. The intermediate -->
<!-- results should be calculated with precision as high or higher than the -->
<!-- inputs, even if the results will be stored with lower precision. -->
<!-- <P> -->
Also significant is that the numerical data in most Scheme
implementations has manifest type information encoded with it.
Varying sizes of number objects means that the vectors hold pointers
to some numbers, requiring data fetches from memory locations unlikely
to be in the same CPU cache-line.
</P><P>
Arrays composed of elements all having the same size representations
can eliminate these indirect accesses and the storage allocation
associated with them. Homogeneous arrays of lower precision flonums
can reduce by factors of 2 or 4 the storage they occupy; which can
also speed execution because of the lower bandwidth to the memory
necessary to supply the CPU data cache.
</P><P>
</P><H2>Common Lisp</H2>
Common-Lisp arrays are serviceable, and are the basis for arrays here.
Common-Lisp's <CODE>make-array</CODE> does not translate well to
Scheme because the array element type and the initial contents are
passed using named arguments.
<P>
Prototype arrays specify both the homogeneous array type (or lack of)
and the initial value or lack of it; allowing these purposes to be
satisfied by one argument to <CODE>make-array</CODE> or other
procedures which create arrays.
</P><P>
Some have objected that restricting type specification to arrays is a
half-measure. In vectorized programs, specifying the precision of
scalar calculations will produce negligible performance improvements.
But the performance improvements of homogeneous arrays can accrue to
both interpreted and compiled Scheme implementations. By avoiding the
morass of general type specification, SRFI-63 can be more easily
accommodated by more Scheme implementations.
</P><P>
</P><H2>Argument Order</H2>
<UL>
<LI>
Most of the procedures originate from Alan Bawden's "array.scm".
SRFI-47's <CODE>array-set!</CODE> argument order is that of Bawden's
package. <a href="http://swissnet.ai.mit.edu/%7Ejaffer/SLIB">SLIB</A>
adopted "array.scm" in 1993. This form of <CODE>array-set!</CODE> has
also been part of the
<a href="http://swissnet.ai.mit.edu/%7Ejaffer/SCM">SCM</A> Scheme
implementation since 1993.<P>
</P></LI><LI>
The <CODE>array-set!</CODE> argument order is different from the
same-named procedure in
<A HREF="http://srfi.schemers.org/srfi-25/srfi-25.html">SRFI-25</A>.
Type dispatch on the first argument to <CODE>array-set!</CODE> could
support both SRFIs simultaneously.<P>
</P></LI><LI>
The <CODE>make-array</CODE> arguments are different from the
same-named procedure in
<A HREF="http://srfi.schemers.org/srfi-25/srfi-25.html">SRFI-25</A>.
Type dispatch on the first argument to <CODE>make-array</CODE> could
support both SRFIs simultaneously.<P>
</P></LI><LI>
The SRFI-47 argument orders are motivated to make easy dealing with
the variable arity resulting from variable rank.
<PRE> (vector->array vect proto bound1 ...)
(make-array proto bound1 ...)
(make-shared-array array mapper bound1 ...)
(array-set! array obj index1 ...)
(array-in-bounds? array index1 ...)
(array-ref array index1 ...)
</PRE>
<P>
The list->array is somewhat dissonant:
</P><PRE> (list->array rank proto list)
</PRE>
<P>
</P></LI></UL>
<P>
</P><H2>Homogeneous Array Types</H2>
All implementations must support Scheme strings as rank 1 character
arrays. This requirement mandates that Scheme strings be valid
arguments to array procedures; their stored representations may be
different from other character arrays.
<P>
Although an implementation is required to define all the prototype
functions, it is not required to support all or even any of the
homogeneous numeric arrays. It is assumed that no uniform numeric
types have larger precision than the Scheme implementation supports as
numbers.
</P><P>
<A name="Table-1"></A>
<TABLE border="1">
<TBODY><TR><th>prototype<br>procedure
</th><th>exactness
</th><th>element type
</th></TR><TR><TD><CODE>vector </CODE></TD><TD> </TD><TD>any
</TD></TR><TR><TD><CODE>A:floC128b</CODE></TD><TD>inexact</TD><TD>128.bit binary flonum complex
</TD></TR><TR><TD><CODE>A:floC64b </CODE></TD><TD>inexact</TD><TD>64.bit binary flonum complex
</TD></TR><TR><TD><CODE>A:floC32b </CODE></TD><TD>inexact</TD><TD>32.bit binary flonum complex
</TD></TR><TR><TD><CODE>A:floC16b </CODE></TD><TD>inexact</TD><TD>16.bit binary flonum complex
</TD></TR><TR><TD><CODE>A:floR128b</CODE></TD><TD>inexact</TD><TD>128.bit binary flonum real
</TD></TR><TR><TD><CODE>A:floR64b </CODE></TD><TD>inexact</TD><TD>64.bit binary flonum real
</TD></TR><TR><TD><CODE>A:floR32b </CODE></TD><TD>inexact</TD><TD>32.bit binary flonum real
</TD></TR><TR><TD><CODE>A:floR16b </CODE></TD><TD>inexact</TD><TD>16.bit binary flonum real
</TD></TR><TR><td colspan="3">
</TD></TR><TR><TD><CODE>A:floQ128d</CODE></TD><TD>exact</TD><TD>128.bit decimal flonum rational
</TD></TR><TR><TD><CODE>A:floQ64d </CODE></TD><TD>exact</TD><TD>64.bit decimal flonum rational
</TD></TR><TR><TD><CODE>A:floQ32d </CODE></TD><TD>exact</TD><TD>32.bit decimal flonum rational
</TD></TR><TR><td colspan="3">
</TD></TR><TR><TD><CODE>A:fixZ64b </CODE></TD><TD>exact</TD><TD>64.bit binary fixnum
</TD></TR><TR><TD><CODE>A:fixZ32b </CODE></TD><TD>exact</TD><TD>32.bit binary fixnum
</TD></TR><TR><TD><CODE>A:fixZ16b </CODE></TD><TD>exact</TD><TD>16.bit binary fixnum
</TD></TR><TR><TD><CODE>A:fixZ8b </CODE></TD><TD>exact</TD><TD>8.bit binary fixnum
</TD></TR><TR><TD><CODE>A:fixN64b </CODE></TD><TD>exact</TD><TD>64.bit nonnegative binary fixnum
</TD></TR><TR><TD><CODE>A:fixN32b </CODE></TD><TD>exact</TD><TD>32.bit nonnegative binary fixnum
</TD></TR><TR><TD><CODE>A:fixN16b </CODE></TD><TD>exact</TD><TD>16.bit nonnegative binary fixnum
</TD></TR><TR><TD><CODE>A:fixN8b </CODE></TD><TD>exact</TD><TD>8.bit nonnegative binary fixnum
</TD></TR><TR><TD><CODE>A:bool </CODE></TD><TD> </TD><TD>boolean
</TD></TR><TR><TD><CODE>string </CODE></TD><TD> </TD><TD>char
</TD></TR></TBODY></TABLE>
</P><P>
Decimal flonums are used for financial calculations so that fractional
errors do not accumulate. They should be exact numbers.
</P><P>
<A NAME="Conversions"></A>
</P><H2>Conversions</H2>
<UL>
<LI> All the elements of arrays of type A:fixN8b, A:fixN16b,
A:fixN32b, A:fixN64b, A:fixZ8b, A:fixZ16b, A:fixZ32b, or
A:fixZ64b are exact.<P>
</P></LI><LI> All the elements of arrays of type A:floR16b, A:floR32b,
A:floR64b, A:floR128b, A:floC16b, A:floC32b, A:floC64b, and
A:floC128b are inexact.<P>
</P></LI><LI> The value retrieved from an exact array element will equal (=)
the value stored in that element.<P>
</P></LI><LI> Assigning a non-integer to array-type A:fixN8b, A:fixN16b,
A:fixN32b, A:fixN64b, A:fixZ8b, A:fixZ16b, A:fixZ32b, or
A:fixZ64b is an error.<P>
</P></LI><LI> Assigning a number larger than can be represented in array-type
A:fixN8b, A:fixN16b, A:fixN32b, A:fixN64b, A:fixZ8b, A:fixZ16b,
A:fixZ32b, or A:fixZ64b is an error.<P>
</P></LI><LI> Assigning a negative number to array-type A:fixN8b, A:fixN16b,
A:fixN32b, or A:fixN64b is an error.<P>
</P></LI><LI> Assigning an inexact number to array-type A:fixN8b, A:fixN16b,
A:fixN32b, A:fixN64b, A:fixZ8b, A:fixZ16b, A:fixZ32b, or
A:fixZ64b is an error.<P>
</P></LI><LI> When assigning an exact number to an inexact array-type, the
procedure may report a violation of an implementation
restriction.<P>
</P></LI><LI> Assigning a non-real number (eg. <CODE>real?</CODE> returns
<CODE>#f</CODE>) to an A:floR128b, A:floR64b, A:floR32b, or
A:floR16b array is an error.<P>
</P></LI><LI> When an inexact number is assigned to an array whose type is
lower precision, the number will be rounded to that lower
precision if possible; otherwise it is an error.<P>
</P></LI></UL>
<A NAME="Prototype Procedures"></A>
<H2>Prototype Procedures</H2>
Implementations are required to define all of the prototype
procedures. Uniform types of matching format and sizes which the
platform supports will be used; the others will be represented as
follows:
<P>
For inexact flonum complex arrays:
</P><UL>
<LI>the next larger complex format is used;
</LI><LI>if there is no larger format,
<UL>
<LI>then if the implementation supports complex floating-point numbers of
unbounded precision,
<UL>
<LI>then a heterogeneous array;
</LI><LI>else the largest inexact flonum complex array.
</LI></UL>
</LI></UL>
</LI></UL>
For inexact flonum real arrays:
<UL>
<LI>the next larger real format is used;
</LI><LI>if there is no larger real format, then the next larger complex format
is used.
</LI><LI>If there is no larger complex format,
<UL>
<LI>then if the implementation supports floating-point real numbers of
unbounded precision,
<UL>
<LI>then a heterogeneous array;
</LI><LI>else the largest inexact flonum real or complex array.
</LI></UL>
</LI></UL>
</LI></UL>
For exact decimal flonum arrays:
<UL>
<LI>the next larger decimal flonum format array is used;
</LI><LI>If there is no larger decimal flonum format, then a
heterogeneous array is used.
</LI></UL>
For exact bipolar fixnum arrays:
<UL>
<LI>the next larger bipolar fixnum format array is used;
</LI><LI>If there is no larger bipolar fixnum format,
<UL>
<LI>then if the implementation supports exact integers of unbounded
precision,
<UL>
<LI>then a heterogeneous array;
</LI><LI>else the largest bipolar fixnum array.
</LI></UL>
</LI></UL>
</LI></UL>
For exact nonnegative fixnum arrays:
<UL>
<LI>the next larger nonnegative fixnum format array is used;
</LI><LI>If there is no larger nonnegative fixnum format,
<UL>
<LI>then the next larger bipolar fixnum format is used.
</LI><LI>If there is no larger bipolar fixnum format,
<UL>
<LI>then if the implementation supports exact integers of
unbounded precision,
<UL>
<LI>then a heterogeneous array;
</LI><LI>else the largest nonnegative or bipolar fixnum array.
</LI></UL>
</LI></UL>
</LI></UL>
</LI></UL>
<P>
Note that these rules are used to configure an implementation's
definitions of the prototype procedures, which should not themselves
be type-dispatching.
</P><P>
This arrangement has platforms which support uniform array types
employing them, with less capable platforms using vectors; but all
working compatibly from the same source code.
</P><P>
</P><H2>Shared Arrays</H2>
To my knowledge, the specification of shared array index mapping by
means of a procedure is original to Alan Bawden in his "array.scm".
<CODE>Make-shared-array</CODE> creates any view into an array whose
coordinates can be mapped by exact integer affine functions. The rank
of the arrays need not match. Shared arrays are quite useful. They
can reverse indexes, make subarrays, and facilitate straightforward
implementations of divide-and-conquer algorithms.
<P>
In Common-Lisp a <DFN>displaced array</DFN> can be created by calls to
<A HREF="http://www-2.cs.cmu.edu/Groups/AI/html/hyperspec/HyperSpec/Body/fun_adjust-array.html">adjust-array</A>.
But displaced arrays are far less flexible than <DFN>shared
arrays</DFN>, constrained to have the same rank as the original and
allowing only index displacements (not reversals, skips, or
shuffling).
</P><P>
</P><H2>Limit Cases</H2>
The bounds for each index in both Alan Bawden's "array.scm" and
<A HREF="http://srfi.schemers.org/srfi-25/srfi-25.html">SRFI-25</A>
can be any consecutive run of integers. All indexes in SRFI-63 are
zero-based for compatibility with R5RS.
<P>
Empty arrays having no elements can be of any positive rank. Empty
arrays can be returned from <CODE>make-shared-array</CODE>.
</P><P>
Following <A HREF="http://www-2.cs.cmu.edu/Groups/AI/html/hyperspec/HyperSpec/Body/sec_15-1-1-3.html">Common-Lisp</A>'s
lead, zero-rank arrays have a single element.
</P><P>
Except for character arrays, array access time is
O(<I>R</I>)+<I>V</I>, where <I>R</I> is the rank of the array and
<I>V</I> is the vector access time.
</P><P>
Character array access time is
O(<I>R</I>)+<I>S</I>, where <I>R</I> is the rank of the array and
<I>S</I> is the string access time.
</P><P>
</P><H1>Specification</H1>
<P>
</P><DL>
<DT><U>Function:</U> <B>array?</B> <I>obj</I>
</DT><DD><A name="IDX1108"></A>
<P>
Returns <CODE>#t</CODE> if the <VAR>obj</VAR> is an array, and <CODE>#f</CODE> if not.
</P></DD></DL>
<P>
<EM>Note:</EM> Arrays are not disjoint from other Scheme types.
Vectors and possibly strings also satisfy <CODE>array?</CODE>.
A disjoint array predicate can be written:
</P><PRE>(define (strict-array? obj)
(and (array? obj) (not (string? obj)) (not (vector? obj))))
</PRE>
<P>
</P><DL>
<DT><U>Function:</U> <B>equal?</B> <I>obj1 obj2</I>
</DT><DD><A name="IDX1109"></A>
<P>
Returns <CODE>#t</CODE> if <VAR>obj1</VAR> and <VAR>obj2</VAR> have the same rank and dimensions and the
corresponding elements of <VAR>obj1</VAR> and <VAR>obj2</VAR> are <CODE>equal?</CODE>.
</P><P>
<CODE>equal?</CODE> recursively compares the contents of pairs, vectors, strings, and
<EM>arrays</EM>, applying <CODE>eqv?</CODE> on other objects such as numbers
and symbols. A rule of thumb is that objects are generally <CODE>equal?</CODE> if
they print the same. <CODE>equal?</CODE> may fail to terminate if its arguments are
circular data structures.
</P><PRE>(equal? 'a 'a) => #t
(equal? '(a) '(a)) => #t
(equal? '(a (b) c)
'(a (b) c)) => #t
(equal? "abc" "abc") => #t
(equal? 2 2) => #t
(equal? (make-vector 5 'a)
(make-vector 5 'a)) => #t
(equal? (make-array (A:fixN32b 4) 5 3)
(make-array (A:fixN32b 4) 5 3)) => #t
(equal? (make-array '#(foo) 3 3)
(make-array '#(foo) 3 3)) => #t
(equal? (lambda (x) x)
(lambda (y) y)) => <em>unspecified</em>
</PRE>
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>array-rank</B> <I>obj</I>
</DT><DD><A name="IDX1110"></A>
<P>
Returns the number of dimensions of <VAR>obj</VAR>. If <VAR>obj</VAR> is not an array, 0 is
returned.
</P></DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>array-dimensions</B> <I>array</I>
</DT><DD><A name="IDX1111"></A>
<P>
Returns a list of dimensions.
</P><PRE>(array-dimensions (make-array '#() 3 5))
=> (3 5)
</PRE>
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>make-array</B> <I>prototype k1 ...</I>
</DT><DD><A name="IDX1112"></A>
<P>
Creates and returns an array of type <VAR>prototype</VAR> with dimensions <VAR>k1</VAR>, ...
and filled with elements from <VAR>prototype</VAR>. <VAR>prototype</VAR> must be an array, vector, or
string. The implementation-dependent type of the returned array
will be the same as the type of <VAR>prototype</VAR>; except if that would be a vector
or string with rank not equal to one, in which case some variety of
array will be returned.
</P><P>
If the <VAR>prototype</VAR> has no elements, then the initial contents of the returned
array are unspecified. Otherwise, the returned array will be filled
with the element at the origin of <VAR>prototype</VAR>.
</P></DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>make-shared-array</B> <I>array mapper k1 ...</I>
</DT><DD><A name="IDX1114"></A>
<P>
<CODE>make-shared-array</CODE> can be used to create shared subarrays of other
arrays. The <VAR>mapper</VAR> is a function that translates coordinates in
the new array into coordinates in the old array. A <VAR>mapper</VAR> must be
linear, and its range must stay within the bounds of the old array, but
it can be otherwise arbitrary. A simple example:
</P><PRE>(define fred (make-array '#(#f) 8 8))
(define freds-diagonal
(make-shared-array fred (lambda (i) (list i i)) 8))
(array-set! freds-diagonal 'foo 3)
(array-ref fred 3 3)
=> FOO
(define freds-center
(make-shared-array fred (lambda (i j) (list (+ 3 i) (+ 3 j)))
2 2))
(array-ref freds-center 0 0)
=> FOO
</PRE>
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>list->array</B> <I>rank proto list</I>
</DT><DD><A name="IDX1115"></A>
<P>
<VAR>list</VAR> must be a rank-nested list consisting of all the elements, in
row-major order, of the array to be created.
</P><P>
<CODE>list->array</CODE> returns an array of rank <VAR>rank</VAR> and type <VAR>proto</VAR> consisting of all the
elements, in row-major order, of <VAR>list</VAR>. When <VAR>rank</VAR> is 0, <VAR>list</VAR> is the lone
array element; not necessarily a list.
</P><PRE>(list->array 2 '#() '((1 2) (3 4)))
=> #2A((1 2) (3 4))
(list->array 0 '#() 3)
=> #0A 3
</PRE>
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>array->list</B> <I>array</I>
</DT><DD><A name="IDX1116"></A>
<P>
Returns a rank-nested list consisting of all the elements, in
row-major order, of <VAR>array</VAR>. In the case of a rank-0 array, <CODE>array->list</CODE> returns
the single element.
</P><PRE>(array->list #2A((ho ho ho) (ho oh oh)))
=> ((ho ho ho) (ho oh oh))
(array->list #0A ho)
=> ho
</PRE>
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>vector->array</B> <I>vect proto dim1 ...</I>
</DT><DD><A name="IDX1117"></A>
<P>
<VAR>vect</VAR> must be a vector of length equal to the product of exact
nonnegative integers <VAR>dim1</VAR>, ....
</P><P>
<CODE>vector->array</CODE> returns an array of type <VAR>proto</VAR> consisting of all the elements, in
row-major order, of <VAR>vect</VAR>. In the case of a rank-0 array, <VAR>vect</VAR> has a
single element.
</P><PRE>(vector->array #(1 2 3 4) #() 2 2)
=> #2A((1 2) (3 4))
(vector->array '#(3) '#())
=> #0A 3
</PRE>
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>array->vector</B> <I>array</I>
</DT><DD><A name="IDX1118"></A>
<P>
Returns a new vector consisting of all the elements of <VAR>array</VAR> in
row-major order.
</P><PRE>(array->vector #2A ((1 2)( 3 4)))
=> #(1 2 3 4)
(array->vector #0A ho)
=> #(ho)
</PRE>
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>array-in-bounds?</B> <I>array index1 ...</I>
</DT><DD><A name="IDX1119"></A>
<P>
Returns <CODE>#t</CODE> if its arguments would be acceptable to
<CODE>array-ref</CODE>.
</P></DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>array-ref</B> <I>array k1 ...</I>
</DT><DD><A name="IDX1120"></A>
<P>
Returns the (<VAR>k1</VAR>, ...) element of <VAR>array</VAR>.
</P></DD></DL>
<P>
</P><DL>
<DT><U>Procedure:</U> <B>array-set!</B> <I>array obj k1 ...</I>
</DT><DD><A name="IDX1121"></A>
<P>
Stores <VAR>obj</VAR> in the (<VAR>k1</VAR>, ...) element of <VAR>array</VAR>. The value returned
by <CODE>array-set!</CODE> is unspecified.
</P></DD></DL>
<P>
These functions return a prototypical uniform-array enclosing the
optional argument (which must be of the correct type). If the
uniform-array type is supported by the implementation, then it is
returned; defaulting to the next larger precision type; resorting
finally to vector.
</P><P>
</P><DL>
<DT><U>Function:</U> <B>a:floc128b</B> <I>z</I>
</DT><DD><A name="IDX1122"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:floc128b</b>
</DT><DD><A name="IDX1123"></A>
Returns an inexact 128.bit flonum complex uniform-array prototype.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:floc64b</B> <I>z</I>
</DT><DD><A name="IDX1124"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:floc64b</b>
</DT><DD><A name="IDX1125"></A>
Returns an inexact 64.bit flonum complex uniform-array prototype.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:floc32b</B> <I>z</I>
</DT><DD><A name="IDX1126"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:floc32b</b>
</DT><DD><A name="IDX1127"></A>
Returns an inexact 32.bit flonum complex uniform-array prototype.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:floc16b</B> <I>z</I>
</DT><DD><A name="IDX1128"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:floc16b</b>
</DT><DD><A name="IDX1129"></A>
Returns an inexact 16.bit flonum complex uniform-array prototype.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:flor128b</B> <I>z</I>
</DT><DD><A name="IDX1130"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:flor128b</b>
</DT><DD><A name="IDX1131"></A>
Returns an inexact 128.bit flonum real uniform-array prototype.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:flor64b</B> <I>z</I>
</DT><DD><A name="IDX1132"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:flor64b</b>
</DT><DD><A name="IDX1133"></A>
Returns an inexact 64.bit flonum real uniform-array prototype.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:flor32b</B> <I>z</I>
</DT><DD><A name="IDX1134"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:flor32b</b>
</DT><DD><A name="IDX1135"></A>
Returns an inexact 32.bit flonum real uniform-array prototype.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:flor16b</B> <I>z</I>
</DT><DD><A name="IDX1136"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:flor16b</b>
</DT><DD><A name="IDX1137"></A>
Returns an inexact 16.bit flonum real uniform-array prototype.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:flor128b</B> <I>z</I>
</DT><DD><A name="IDX1138"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:flor128b</b>
</DT><DD><A name="IDX1139"></A>
Returns an exact 128.bit decimal flonum rational uniform-array prototype.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:flor64b</B> <I>z</I>
</DT><DD><A name="IDX1140"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:flor64b</b>
</DT><DD><A name="IDX1141"></A>
Returns an exact 64.bit decimal flonum rational uniform-array prototype.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:flor32b</B> <I>z</I>
</DT><DD><A name="IDX1142"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:flor32b</b>
</DT><DD><A name="IDX1143"></A>
Returns an exact 32.bit decimal flonum rational uniform-array prototype.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:fixz64b</B> <I>n</I>
</DT><DD><A name="IDX1144"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:fixz64b</b>
</DT><DD><A name="IDX1145"></A>
Returns an exact binary fixnum uniform-array prototype with at least
64 bits of precision.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:fixz32b</B> <I>n</I>
</DT><DD><A name="IDX1146"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:fixz32b</b>
</DT><DD><A name="IDX1147"></A>
Returns an exact binary fixnum uniform-array prototype with at least
32 bits of precision.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:fixz16b</B> <I>n</I>
</DT><DD><A name="IDX1148"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:fixz16b</b>
</DT><DD><A name="IDX1149"></A>
Returns an exact binary fixnum uniform-array prototype with at least
16 bits of precision.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:fixz8b</B> <I>n</I>
</DT><DD><A name="IDX1150"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:fixz8b</b>
</DT><DD><A name="IDX1151"></A>
Returns an exact binary fixnum uniform-array prototype with at least
8 bits of precision.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:fixn64b</B> <I>k</I>
</DT><DD><A name="IDX1152"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:fixn64b</b>
</DT><DD><A name="IDX1153"></A>
Returns an exact non-negative binary fixnum uniform-array prototype with at
least 64 bits of precision.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:fixn32b</B> <I>k</I>
</DT><DD><A name="IDX1154"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:fixn32b</b>
</DT><DD><A name="IDX1155"></A>
Returns an exact non-negative binary fixnum uniform-array prototype with at
least 32 bits of precision.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:fixn16b</B> <I>k</I>
</DT><DD><A name="IDX1156"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:fixn16b</b>
</DT><DD><A name="IDX1157"></A>
Returns an exact non-negative binary fixnum uniform-array prototype with at
least 16 bits of precision.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:fixn8b</B> <I>k</I>
</DT><DD><A name="IDX1158"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:fixn8b</b>
</DT><DD><A name="IDX1159"></A>
Returns an exact non-negative binary fixnum uniform-array prototype with at
least 8 bits of precision.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:bool</B> <I>bool</I>
</DT><DD><A name="IDX1160"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:bool</b>
</DT><DD><A name="IDX1161"></A>
Returns a boolean uniform-array prototype.
</DD></DL>
<H1>Implementation</H1>
<A HREF="http://savannah.gnu.org/cgi-bin/viewcvs/*checkout*/slib/slib/array.scm?rev=HEAD&content-type=text/vnd.viewcvs-markup">slib/array.scm</A>
implements array procedures for R4RS or R5RS compliant Scheme
implementations with <DFN>records</DFN> as implemented by
<A HREF="http://savannah.gnu.org/cgi-bin/viewcvs/slib/slib/record.scm?rev=HEAD&content-type=text/vnd.viewcvs-markup">slib/record.scm</A>
or <A HREF="http://srfi.schemers.org/srfi-9/srfi-9.html">SRFI-9</A>.
"<CODE>array.scm</CODE>" redefines <CODE>equal?</CODE> to handle
arrays.
<P>
</P><PRE>;;;;"array.scm" Arrays for Scheme
; Copyright (C) 2001, 2003 Aubrey Jaffer
;
;Permission to copy this software, to modify it, to redistribute it,
;to distribute modified versions, and to use it for any purpose is
;granted, subject to the following restrictions and understandings.
;
;1. Any copy made of this software must include this copyright notice
;in full.
;
;2. I have made no warranty or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
;3. In conjunction with products arising from the use of this
;material, there shall be no use of my name in any advertising,
;promotional, or sales literature without prior written consent in
;each case.
;;@code{(require 'array)} or @code{(require 'srfi-63)}
;;@ftindex array
(require 'record)
(define array:rtd
(make-record-type "array"
'(dimensions
scales ;list of dimension scales
offset ;exact integer
store ;data
)))
(define array:dimensions
(let ((dimensions (record-accessor array:rtd 'dimensions)))
(lambda (array)
(cond ((vector? array) (list (vector-length array)))
((string? array) (list (string-length array)))
(else (dimensions array))))))
(define array:scales
(let ((scales (record-accessor array:rtd 'scales)))
(lambda (obj)
(cond ((string? obj) '(1))
((vector? obj) '(1))
(else (scales obj))))))
(define array:store
(let ((store (record-accessor array:rtd 'store)))
(lambda (obj)
(cond ((string? obj) obj)
((vector? obj) obj)
(else (store obj))))))
(define array:offset
(let ((offset (record-accessor array:rtd 'offset)))
(lambda (obj)
(cond ((string? obj) 0)
((vector? obj) 0)
(else (offset obj))))))
(define array:construct
(record-constructor array:rtd '(dimensions scales offset store)))
;;@args obj
;;Returns @code{#t} if the @1 is an array, and @code{#f} if not.
(define array?
(let ((array:array? (record-predicate array:rtd)))
(lambda (obj) (or (string? obj) (vector? obj) (array:array? obj)))))
;;@noindent
;;@emph{Note:} Arrays are not disjoint from other Scheme types.
;;Vectors and possibly strings also satisfy @code{array?}.
;;A disjoint array predicate can be written:
;;
;;@example
;;(define (strict-array? obj)
;; (and (array? obj) (not (string? obj)) (not (vector? obj))))
;;@end example
;;@body
;;Returns @code{#t} if @1 and @2 have the same rank and dimensions and the
;;corresponding elements of @1 and @2 are @code{equal?}.
;;@body
;;@0 recursively compares the contents of pairs, vectors, strings, and
;;@emph{arrays}, applying @code{eqv?} on other objects such as numbers
;;and symbols. A rule of thumb is that objects are generally @0 if
;;they print the same. @0 may fail to terminate if its arguments are
;;circular data structures.
;;
;;@example
;;(equal? 'a 'a) @result{} #t
;;(equal? '(a) '(a)) @result{} #t
;;(equal? '(a (b) c)
;; '(a (b) c)) @result{} #t
;;(equal? "abc" "abc") @result{} #t
;;(equal? 2 2) @result{} #t
;;(equal? (make-vector 5 'a)
;; (make-vector 5 'a)) @result{} #t
;;(equal? (make-array (A:fixN32b 4) 5 3)
;; (make-array (A:fixN32b 4) 5 3)) @result{} #t
;;(equal? (make-array '#(foo) 3 3)
;; (make-array '#(foo) 3 3)) @result{} #t
;;(equal? (lambda (x) x)
;; (lambda (y) y)) @result{} @emph{unspecified}
;;@end example
(define (equal? obj1 obj2)
(cond ((eqv? obj1 obj2) #t)
((or (pair? obj1) (pair? obj2))
(and (pair? obj1) (pair? obj2)
(equal? (car obj1) (car obj2))
(equal? (cdr obj1) (cdr obj2))))
((or (string? obj1) (string? obj2))
(and (string? obj1) (string? obj2)
(string=? obj1 obj2)))
((or (vector? obj1) (vector? obj2))
(and (vector? obj1) (vector? obj2)
(equal? (vector-length obj1) (vector-length obj2))
(do ((idx (+ -1 (vector-length obj1)) (+ -1 idx)))
((or (negative? idx)
(not (equal? (vector-ref obj1 idx)
(vector-ref obj2 idx))))
(negative? idx)))))
((or (array? obj1) (array? obj2))
(and (array? obj1) (array? obj2)
(equal? (array:dimensions obj1) (array:dimensions obj2))
(equal? (array:store obj1) (array:store obj2))))
(else #f)))
;;@body
;;Returns the number of dimensions of @1. If @1 is not an array, 0 is
;;returned.
(define (array-rank obj)
(if (array? obj) (length (array:dimensions obj)) 0))
;;@args array
;;Returns a list of dimensions.
;;
;;@example
;;(array-dimensions (make-array '#() 3 5))
;; @result{} (3 5)
;;@end example
(define array-dimensions array:dimensions)
;;@args prototype k1 @dots{}
;;
;;Creates and returns an array of type @1 with dimensions @2, @dots{}
;;and filled with elements from @1. @1 must be an array, vector, or
;;string. The implementation-dependent type of the returned array
;;will be the same as the type of @1; except if that would be a vector
;;or string with rank not equal to one, in which case some variety of
;;array will be returned.
;;
;;If the @1 has no elements, then the initial contents of the returned
;;array are unspecified. Otherwise, the returned array will be filled
;;with the element at the origin of @1.
(define (make-array prototype . dimensions)
(define tcnt (apply * dimensions))
(let ((store
(if (string? prototype)
(case (string-length prototype)
((0) (make-string tcnt))
(else (make-string tcnt
(string-ref prototype 0))))
(let ((pdims (array:dimensions prototype)))
(case (apply * pdims)
((0) (make-vector tcnt))
(else (make-vector tcnt
(apply array-ref prototype
(map (lambda (x) 0) pdims)))))))))
(define (loop dims scales)
(if (null? dims)
(array:construct dimensions (cdr scales) 0 store)
(loop (cdr dims) (cons (* (car dims) (car scales)) scales))))
(loop (reverse dimensions) '(1))))
;;@args prototype k1 @dots{}
;;@0 is an alias for @code{make-array}.
(define create-array make-array)
;;@args array mapper k1 @dots{}
;;@0 can be used to create shared subarrays of other
;;arrays. The @var{mapper} is a function that translates coordinates in
;;the new array into coordinates in the old array. A @var{mapper} must be
;;linear, and its range must stay within the bounds of the old array, but
;;it can be otherwise arbitrary. A simple example:
;;
;;@example
;;(define fred (make-array '#(#f) 8 8))
;;(define freds-diagonal
;; (make-shared-array fred (lambda (i) (list i i)) 8))
;;(array-set! freds-diagonal 'foo 3)
;;(array-ref fred 3 3)
;; @result{} FOO
;;(define freds-center
;; (make-shared-array fred (lambda (i j) (list (+ 3 i) (+ 3 j)))
;; 2 2))
;;(array-ref freds-center 0 0)
;; @result{} FOO
;;@end example
(define (make-shared-array array mapper . dimensions)
(define odl (array:scales array))
(define rank (length dimensions))
(define shape
(map (lambda (dim) (if (list? dim) dim (list 0 (+ -1 dim)))) dimensions))
(do ((idx (+ -1 rank) (+ -1 idx))
(uvt (append (cdr (vector->list (make-vector rank 0))) '(1))
(append (cdr uvt) '(0)))
(uvts '() (cons uvt uvts)))
((negative? idx)
(let ((ker0 (apply + (map * odl (apply mapper uvt)))))
(array:construct
(map (lambda (dim) (+ 1 (- (cadr dim) (car dim)))) shape)
(map (lambda (uvt) (- (apply + (map * odl (apply mapper uvt))) ker0))
uvts)
(apply +
(array:offset array)
(map * odl (apply mapper (map car shape))))
(array:store array))))))
;;@args rank proto list
;;@3 must be a rank-nested list consisting of all the elements, in
;;row-major order, of the array to be created.
;;
;;@0 returns an array of rank @1 and type @2 consisting of all the
;;elements, in row-major order, of @3. When @1 is 0, @3 is the lone
;;array element; not necessarily a list.
;;
;;@example
;;(list->array 2 '#() '((1 2) (3 4)))
;; @result{} #2A((1 2) (3 4))
;;(list->array 0 '#() 3)
;; @result{} #0A 3
;;@end example
(define (list->array rank proto lst)
(define dimensions
(do ((shp '() (cons (length row) shp))
(row lst (car lst))
(rnk (+ -1 rank) (+ -1 rnk)))
((negative? rnk) (reverse shp))))
(let ((nra (apply make-array proto dimensions)))
(define (l2ra dims idxs row)
(cond ((null? dims)
(apply array-set! nra row (reverse idxs)))
((if (not (eqv? (car dims) (length row)))
(slib:error 'list->array
'non-rectangular 'array dims dimensions))
(do ((idx 0 (+ 1 idx))
(row row (cdr row)))
((>= idx (car dims)))
(l2ra (cdr dims) (cons idx idxs) (car row))))))
(l2ra dimensions '() lst)
nra))
;;@args array
;;Returns a rank-nested list consisting of all the elements, in
;;row-major order, of @1. In the case of a rank-0 array, @0 returns
;;the single element.
;;
;;@example
;;(array->list #2A((ho ho ho) (ho oh oh)))
;; @result{} ((ho ho ho) (ho oh oh))
;;(array->list #0A ho)
;; @result{} ho
;;@end example
(define (array->list ra)
(define (ra2l dims idxs)
(if (null? dims)
(apply array-ref ra (reverse idxs))
(do ((lst '() (cons (ra2l (cdr dims) (cons idx idxs)) lst))
(idx (+ -1 (car dims)) (+ -1 idx)))
((negative? idx) lst))))
(ra2l (array-dimensions ra) '()))
;;@args vect proto dim1 @dots{}
;;@1 must be a vector of length equal to the product of exact
;;nonnegative integers @3, @dots{}.
;;
;;@0 returns an array of type @2 consisting of all the elements, in
;;row-major order, of @1. In the case of a rank-0 array, @1 has a
;;single element.
;;
;;@example
;;(vector->array #(1 2 3 4) #() 2 2)
;; @result{} #2A((1 2) (3 4))
;;(vector->array '#(3) '#())
;; @result{} #0A 3
;;@end example
(define (vector->array vect prototype . dimensions)
(define vdx (vector-length vect))
(if (not (eqv? vdx (apply * dimensions)))
(slib:error 'vector->array vdx '<> (cons '* dimensions)))
(let ((ra (apply make-array prototype dimensions)))
(define (v2ra dims idxs)
(cond ((null? dims)
(set! vdx (+ -1 vdx))
(apply array-set! ra (vector-ref vect vdx) (reverse idxs)))
(else
(do ((idx (+ -1 (car dims)) (+ -1 idx)))
((negative? idx) vect)
(v2ra (cdr dims) (cons idx idxs))))))
(v2ra dimensions '())
ra))
;;@args array
;;Returns a new vector consisting of all the elements of @1 in
;;row-major order.
;;
;;@example
;;(array->vector #2A ((1 2)( 3 4)))
;; @result{} #(1 2 3 4)
;;(array->vector #0A ho)
;; @result{} #(ho)
;;@end example
(define (array->vector ra)
(define dims (array-dimensions ra))
(let* ((vdx (apply * dims))
(vect (make-vector vdx)))
(define (ra2v dims idxs)
(if (null? dims)
(let ((val (apply array-ref ra (reverse idxs))))
(set! vdx (+ -1 vdx))
(vector-set! vect vdx val)
vect)
(do ((idx (+ -1 (car dims)) (+ -1 idx)))
((negative? idx) vect)
(ra2v (cdr dims) (cons idx idxs)))))
(ra2v dims '())))
(define (array:in-bounds? array indices)
(do ((bnds (array:dimensions array) (cdr bnds))
(idxs indices (cdr idxs)))
((or (null? bnds)
(null? idxs)
(not (integer? (car idxs)))
(not (< -1 (car idxs) (car bnds))))
(and (null? bnds) (null? idxs)))))
;;@args array index1 @dots{}
;;Returns @code{#t} if its arguments would be acceptable to
;;@code{array-ref}.
(define (array-in-bounds? array . indices)
(array:in-bounds? array indices))
;;@args array k1 @dots{}
;;Returns the (@2, @dots{}) element of @1.
(define (array-ref array . indices)
(define store (array:store array))
(or (array:in-bounds? array indices)
(slib:error 'array-ref 'bad-indices indices))
((if (string? store) string-ref vector-ref)
store (apply + (array:offset array) (map * (array:scales array) indices))))
;;@args array obj k1 @dots{}
;;Stores @2 in the (@3, @dots{}) element of @1. The value returned
;;by @0 is unspecified.
(define (array-set! array obj . indices)
(define store (array:store array))
(or (array:in-bounds? array indices)
(slib:error 'array-set! 'bad-indices indices))
((if (string? store) string-set! vector-set!)
store (apply + (array:offset array) (map * (array:scales array) indices))
obj))
;;@noindent
;;These functions return a prototypical uniform-array enclosing the
;;optional argument (which must be of the correct type). If the
;;uniform-array type is supported by the implementation, then it is
;;returned; defaulting to the next larger precision type; resorting
;;finally to vector.
(define (make-prototype-checker name pred? creator)
(lambda args
(case (length args)
((1) (if (pred? (car args))
(creator (car args))
(slib:error name 'incompatible 'type (car args))))
((0) (creator))
(else (slib:error name 'wrong 'number 'of 'args args)))))
(define (integer-bytes?? n)
(lambda (obj)
(and (integer? obj)
(exact? obj)
(or (negative? n) (not (negative? obj)))
(do ((num obj (quotient num 256))
(n (+ -1 (abs n)) (+ -1 n)))
((or (zero? num) (negative? n))
(zero? num))))))
;;@args z
;;@args
;;Returns an inexact 128.bit flonum complex uniform-array prototype.
(define A:floC128b (make-prototype-checker 'A:floC128b complex? vector))
;;@args z
;;@args
;;Returns an inexact 64.bit flonum complex uniform-array prototype.
(define A:floC64b (make-prototype-checker 'A:floC64b complex? vector))
;;@args z
;;@args
;;Returns an inexact 32.bit flonum complex uniform-array prototype.
(define A:floC32b (make-prototype-checker 'A:floC32b complex? vector))
;;@args z
;;@args
;;Returns an inexact 16.bit flonum complex uniform-array prototype.
(define A:floC16b (make-prototype-checker 'A:floC16b complex? vector))
;;@args z
;;@args
;;Returns an inexact 128.bit flonum real uniform-array prototype.
(define A:floR128b (make-prototype-checker 'A:floR128b real? vector))
;;@args z
;;@args
;;Returns an inexact 64.bit flonum real uniform-array prototype.
(define A:floR64b (make-prototype-checker 'A:floR64b real? vector))
;;@args z
;;@args
;;Returns an inexact 32.bit flonum real uniform-array prototype.
(define A:floR32b (make-prototype-checker 'A:floR32b real? vector))
;;@args z
;;@args
;;Returns an inexact 16.bit flonum real uniform-array prototype.
(define A:floR16b (make-prototype-checker 'A:floR16b real? vector))
;;@args z
;;@args
;;Returns an exact 128.bit decimal flonum rational uniform-array prototype.
(define A:floR128b (make-prototype-checker 'A:floR128b real? vector))
;;@args z
;;@args
;;Returns an exact 64.bit decimal flonum rational uniform-array prototype.
(define A:floR64b (make-prototype-checker 'A:floR64b real? vector))
;;@args z
;;@args
;;Returns an exact 32.bit decimal flonum rational uniform-array prototype.
(define A:floR32b (make-prototype-checker 'A:floR32b real? vector))
;;@args n
;;@args
;;Returns an exact binary fixnum uniform-array prototype with at least
;;64 bits of precision.
(define A:fixZ64b (make-prototype-checker 'A:fixZ64b (integer-bytes?? -8) vector))
;;@args n
;;@args
;;Returns an exact binary fixnum uniform-array prototype with at least
;;32 bits of precision.
(define A:fixZ32b (make-prototype-checker 'A:fixZ32b (integer-bytes?? -4) vector))
;;@args n
;;@args
;;Returns an exact binary fixnum uniform-array prototype with at least
;;16 bits of precision.
(define A:fixZ16b (make-prototype-checker 'A:fixZ16b (integer-bytes?? -2) vector))
;;@args n
;;@args
;;Returns an exact binary fixnum uniform-array prototype with at least
;;8 bits of precision.
(define A:fixZ8b (make-prototype-checker 'A:fixZ8b (integer-bytes?? -1) vector))
;;@args k
;;@args
;;Returns an exact non-negative binary fixnum uniform-array prototype with at
;;least 64 bits of precision.
(define A:fixN64b (make-prototype-checker 'A:fixN64b (integer-bytes?? 8) vector))
;;@args k
;;@args
;;Returns an exact non-negative binary fixnum uniform-array prototype with at
;;least 32 bits of precision.
(define A:fixN32b (make-prototype-checker 'A:fixN32b (integer-bytes?? 4) vector))
;;@args k
;;@args
;;Returns an exact non-negative binary fixnum uniform-array prototype with at
;;least 16 bits of precision.
(define A:fixN16b (make-prototype-checker 'A:fixN16b (integer-bytes?? 2) vector))
;;@args k
;;@args
;;Returns an exact non-negative binary fixnum uniform-array prototype with at
;;least 8 bits of precision.
(define A:fixN8b (make-prototype-checker 'A:fixN8b (integer-bytes?? 1) vector))
;;@args bool
;;@args
;;Returns a boolean uniform-array prototype.
(define A:bool (make-prototype-checker 'A:bool boolean? vector))
</PRE>
<H1>Copyright</H1>
<p>Copyright (C) 2005 Aubrey Jaffer</p>
<P>
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
</P><P>
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
</P><P>
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
</P><P>
</P><HR>
<ADDRESS>Editor: <A HREF="mailto:srfi-editors@srfi.schemers.org">David Van Horn</A></ADDRESS>
<!-- Created: Tue Sep 29 19:20:08 EDT 1998 -->
<!-- hhmts start -->
Last modified: Thu Jan 27 09:30:33 EST 2005
<!-- hhmts end -->
</BODY>
</HTML>
|