File: srfi-67.html

package info (click to toggle)
drscheme 1%3A352-6
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 71,608 kB
  • ctags: 55,284
  • sloc: ansic: 278,966; cpp: 63,318; sh: 32,265; lisp: 14,530; asm: 7,327; makefile: 4,846; pascal: 4,363; perl: 2,920; java: 1,632; yacc: 755; lex: 258; sed: 93; xml: 12
file content (2240 lines) | stat: -rw-r--r-- 105,414 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
<!doctype html public "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!--

Generated from srfi-67.tex by tex2page, v 2004-09-11
(running on MzScheme 299.200, unix), 
(c) Dorai Sitaram, 
http://www.ccs.neu.edu/~dorai/tex2page/tex2page-doc.html

-->
<head>
<title>
SRFI 67: Compare Procedures
</title>
<link rel="stylesheet" type="text/css" href="srfi-67-Z-S.css" title=default>
<meta name=robots content="index,follow">
</head>
<body>
<div align=right class=navigation><i>[Go to <a href="srfi-67.html#node_index_start">index</a></span>]</i></div><p></p>


<h1 class=title align=center><br><br>SRFI 67: Compare Procedures</h1>
<p></p>
<div align=center>

<br>
<table>
<tr align="center">
  <td>Sebastian Egner</td>
  <td>&nbsp;&nbsp;</td>
  <td>Jens Axel S&oslash;gaard</td>
</tr>
<tr>
  <td> <a href="mailto:sebastian.egner-at-philips.com">sebastian.egner-at-philips.com</a> </td>
  <td>&nbsp;&nbsp;</td>
  <td><a href="mailto:jensaxel-at-soegaard.net">jensaxel-at-soegaard.net</a> </td>
</tr>
</table>
<p>
Other formats are available at srfi.schemers.org:
<ul>
<li><a href="http://srfi.schemers.org/srfi-67/srfi-67.ps">The SRFI 67 Document (Postscript)</a></li>
<li><a href="http://srfi.schemers.org/srfi-67/srfi-67.pdf">The SRFI 67 Document (PDF)</a></li>
<li><a href="http://srfi.schemers.org/srfi-67/srfi-67.dvi">The SRFI 67 Document (TeX-DVI)</a></li>
</ul>
&nbsp;<br>
<p>December 3, 2005</p>
</div>
<p></p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
 </p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>

</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>

</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p></p>
<p>                    </p>
<a name="node_sec_Temp_1"></a>
<h1><a href="#node_toc_node_sec_Temp_1">Contents</a></h1>
<p><a name="node_toc_start"></a></p>
<p><b>
&nbsp; &nbsp; <a name="node_toc_node_sec_1"></a><a href="#node_sec_1">1&nbsp;&nbsp;Abstract and Rationale</a></b><br>
</p>
<p><b>
&nbsp; &nbsp; <a name="node_toc_node_sec_2"></a><a href="#node_sec_2">2&nbsp;&nbsp;Introduction</a></b><br>
</p>
<p><b>
&nbsp; &nbsp; <a name="node_toc_node_sec_3"></a><a href="#node_sec_3">3&nbsp;&nbsp;Terminology and Conventions</a></b><br>
</p>
<p><b>
&nbsp; &nbsp; <a name="node_toc_node_sec_4"></a><a href="#node_sec_4">4&nbsp;&nbsp;Specification</a></b><br>
&nbsp; &nbsp; &nbsp; &nbsp; <a name="node_toc_node_sec_4.1"></a><a href="#node_sec_4.1">4.1&nbsp;&nbsp;Comparing atoms</a><br>
&nbsp; &nbsp; &nbsp; &nbsp; <a name="node_toc_node_sec_4.2"></a><a href="#node_sec_4.2">4.2&nbsp;&nbsp;Comparing lists and vectors</a><br>
&nbsp; &nbsp; &nbsp; &nbsp; <a name="node_toc_node_sec_4.3"></a><a href="#node_sec_4.3">4.3&nbsp;&nbsp;Comparing pairs and improper lists</a><br>
&nbsp; &nbsp; &nbsp; &nbsp; <a name="node_toc_node_sec_4.4"></a><a href="#node_sec_4.4">4.4&nbsp;&nbsp;The default compare procedure</a><br>
&nbsp; &nbsp; &nbsp; &nbsp; <a name="node_toc_node_sec_4.5"></a><a href="#node_sec_4.5">4.5&nbsp;&nbsp;Constructing compare procedures</a><br>
&nbsp; &nbsp; &nbsp; &nbsp; <a name="node_toc_node_sec_4.6"></a><a href="#node_sec_4.6">4.6&nbsp;&nbsp;Using compare procedures</a><br>
</p>
<p><b>
&nbsp; &nbsp; <a name="node_toc_node_sec_5"></a><a href="#node_sec_5">5&nbsp;&nbsp;The theory of compare functions</a></b><br>
</p>
<p><b>
&nbsp; &nbsp; <a name="node_toc_node_sec_6"></a><a href="#node_sec_6">6&nbsp;&nbsp;Design Rationale</a></b><br>
</p>
<p><b>
&nbsp; &nbsp; <a name="node_toc_node_sec_7"></a><a href="#node_sec_7">7&nbsp;&nbsp;Related work</a></b><br>
</p>
<p><b>
&nbsp; &nbsp; <a name="node_toc_node_sec_8"></a><a href="#node_sec_8">8&nbsp;&nbsp;Reference implementation</a></b><br>
</p>
<p>
</p>
<p>
Copyright (c) 2005 Sebastian Egner and Jens Axel S&oslash;gaard.</p>
<p>
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:</p>
<p>
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.</p>
<p>
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

</p>
<p>
</p>
<p>
</p>
<a name="node_sec_1"></a>
<h1><a href="#node_toc_node_sec_1">1&nbsp;&nbsp;Abstract and Rationale</a></h1>
<p>This SRFI can be seen as an extension of the standard procedures
<tt>=</tt>, <tt>&lt;</tt>, <tt>char&lt;?</tt> etc. of 
R<sup>5</sup>RS  -- or even as a replacement.
The primary design aspect in this SRFI is the separation of
<em>representing</em> a total order and <em>using it.</em>
For representing the order, we have chosen for truly 3-way
comparisons. 
For using it we provide an extensive set of
operations, each of which accepts a procedure used for comparison.
Since these compare procedures are often optional,
comparing built-in types is as convenient as 
R<sup>5</sup>RS ,
sometimes more convenient: 
For example, testing if the integer index <em>i</em> lies in the
integer range {0, <tt>...</tt>, <em>n</em> <tt>-</tt> 1} can be written as
<tt>(&lt;=/&lt;? 0 i n)</tt>, implicitly invoking <tt>default-compare</tt>.</p>
<p>
As soon as new total orders are required,
the infrastructure provided by this SRFI is far more
convenient and often even more efficient than building
each total order from scratch.</p>
<p>
Moreover, in case Scheme users and implementors find this
mechanism useful and adopt it,
the benefit of having a uniform interface to total orders
to be used in data structures will manifest itself.
Most concretely, a new sorting procedure in the spirit of
this SRFI would have the interface
<tt>(my-sort [ <i>compare</i> ] <i>xs</i>)</tt>,
using <tt>default-compare</tt> if the optional <i>compare</i>
was not provided.
Then <tt>my-sort</tt> could be defined using the entire
infrastructure of this SRFI: 
Efficient 2- and 3-way branching,
testing for chains and pairwise inequality,
min/max, and general order statistics.</p>
<p>
</p>
<a name="node_sec_2"></a>
<h1><a href="#node_toc_node_sec_2">2&nbsp;&nbsp;Introduction</a></h1>
<p>This SRFI defines a mechanism for comparing Scheme values
with respect to a total order (aka linear order) [<a href="#node_bib_1">1</a>].
The mechanism provides operations for:
</p>
<ol>
<li><p>comparing objects of the built-in types,
</p>
<li><p>using a total order in situations that arise in programs,
</p>
<li><p>facilitating the definition of a new total order.
</p>
</ol><p>
In the following, these aspects will briefly be illustrated.</p>
<p>
Traditionally, a total order is represented in Scheme by an
order predicate, like <tt>&lt;</tt> or <tt>char&lt;?</tt>.
For the purpose of this SRFI, however, a total order is 
represented by a Scheme-procedure comparing its two arguments 
and returning either <tt>-1</tt>, <tt>0</tt>, or <tt>1</tt> depending
on whether the first argument is considered smaller, equal, 
or greater than the second argument respectively.
Examples of such compare procedures include
<tt>(lambda (x y) (sign (- x y)))</tt> for comparing real numbers,
but also <tt>(lambda (x y) 0)</tt> comparing anything.
For most built-in types specified in the 
Revised<sup>5</sup> Report on the Algorithmic Language Scheme
(
R<sup>5</sup>RS , [<a href="#node_bib_3">3</a>]) compare procedures are specified in
Sections&nbsp;<a href="#node_sec_4.1">4.1</a>, <a href="#node_sec_4.2">4.2</a>, and <a href="#node_sec_4.3">4.3</a> of this SRFI.
An axiomatic definition of ``compare procedure''
is given in Section&nbsp;<a href="#node_sec_5">5</a>.</p>
<p>
The primary reason for using 3-valued compare procedures
instead of (2-valued) order predicates is efficiency:
When comparison is computationally expensive,
it is wasteful if <em>two</em> predicates are evaluated
where a single 3-valued comparison would suffice.
This point is discussed in greater detail in Section&nbsp;<a href="#node_sec_6">6</a>.</p>
<p>
But dealing directly with 3-valued comparisons in
the application program is inconvenient and obscures intention:
For testing <tt>x</tt> &lt; <tt>y</tt> one would have 
to write <tt>(eqv? (compare x y) -1)</tt>.
For this reason, an operation <tt>&lt;?</tt> is supplied which allows
to phrase the same test as <tt>(&lt;? compare x y)</tt>.
This is an example of mapping the three possible outcomes of
a comparison into the two boolean values {<tt>#<em>f</em></tt>, <tt>#<em>t</em></tt>}.
Since <tt>&lt;?</tt> takes the total order as an explicit parameter,
a comfortably large arsenal of tests can be made available
for each and every total order (Section&nbsp;<a href="#node_sec_4.6">4.6</a>).
This deviates from the approach of 
R<sup>5</sup>RS , in which there are
only five operations ( = , &lt;, &gt;, <u>&lt;</u>, <u>&gt;</u>) -- and for each
total order (<tt>real</tt>/<tt>number</tt>, <tt>char</tt>, <tt>char-ci</tt>, <tt>string</tt>,
<tt>string-ci</tt>) a complete set of these five operation is provided.</p>
<p>
But still, using <tt>&lt;?</tt> would be inconvenient if the compare
procedure would have to be supplied explicitly every time.
For this reason, the parameter <tt>compare</tt> is often made
optional in this SRFI -- and the procedure <tt>default-compare</tt> is
used whenever no compare procedure is passed explicitly.
<tt>Default-compare</tt> (Section&nbsp;<a href="#node_sec_4.4">4.4</a>) defines
<em>some</em> resonable total order on the built-in types of 
R<sup>5</sup>RS .</p>
<p>
For the third aspect of this SRFI, defining compare procedures,
special control structures (macros) are 
provided (Section&nbsp;<a href="#node_sec_4.5">4.5</a>).
These control structures can be used in the definition of
a (potentially recursive) compare procedure.
This is best explained by an extended example.</p>
<p>
</p>
<a name="node_sec_Temp_2"></a>
<h4><a href="#node_toc_node_sec_Temp_2">Example</a></h4>
<p>Assume there is a type <tt>length</tt> representing physical length.
The type has an accessor procedure <tt>meters</tt> returning the length
in meters (a real number).
A compare procedure for lengths can then be defined in terms of
<tt>real-compare</tt> (Section&nbsp;<a href="#node_sec_4.1">4.1</a>) as:
</p>
<tt>&nbsp;&nbsp;(define&nbsp;(length-compare&nbsp;length1&nbsp;length2)<br>
&nbsp;&nbsp;&nbsp;&nbsp;(real-compare&nbsp;(meters&nbsp;length1)&nbsp;(meters&nbsp;length2)))<br>
</tt><p>
Now, <tt>(&lt;? length-compare x y)</tt> tests if 
length <tt>x</tt> is shorter than length <tt>y</tt>.
Also, <tt>(&lt;=/&lt;? length-compare a x b)</tt> tests 
if length <tt>x</tt> lies between length <tt>a</tt> (incl.) and 
length <tt>b</tt> (excl.)
The expression <tt>(min-compare length-compare x y z)</tt>
is a shortest of the lengths <tt>x</tt>, <tt>y</tt>, and <tt>z</tt>.
Likewise, <tt>(chain&lt;? length-compare x1 x2 x3 x4)</tt> test
if the lengths <tt>x1 x2 x3 x3</tt> are strictly increasing,
and so on (refer to Section&nbsp;<a href="#node_sec_4.6">4.6</a>).</p>
<p>
Furthermore, assume there is another type <tt>box</tt> representing a physical box.
The type has procedures <tt>width</tt>, <tt>height</tt>, and <tt>depth</tt>
accessing the dimension (each giving a <tt>length</tt>).
A compare procedure for boxes, comparing first by width then
by height and then by depth, can be defined using the control
structure <tt>refine-compare</tt> (Section&nbsp;<a href="#node_sec_4.5">4.5</a>) as:
</p>
<tt>&nbsp;&nbsp;(define&nbsp;(box-compare&nbsp;box1&nbsp;box2)<br>
&nbsp;&nbsp;&nbsp;&nbsp;(refine-compare&nbsp;<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(length-compare&nbsp;(width&nbsp;&nbsp;box1)&nbsp;(width&nbsp;&nbsp;box2))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(length-compare&nbsp;(height&nbsp;box1)&nbsp;(height&nbsp;box2))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(length-compare&nbsp;(depth&nbsp;&nbsp;box1)&nbsp;(depth&nbsp;&nbsp;box2))))<br>
</tt><p>
This time, <tt>(&lt;? box-compare b1 b2)</tt> tests if box <tt>b1</tt>
is smaller than box <tt>b2</tt> -- in the sense of the order defined. 
Of course, all the other tests, minimum, maximum etc. are available, too.</p>
<p>
As a final complication, assume that there is also a type <tt>bowl</tt>
with accessors <tt>radius</tt> (a <tt>length</tt>) and <tt>open?</tt> (a boolean).
Bowls are to be compared first by whether they are open or closed,
and then by radius.
However, bowls and boxes also need to be compared to each other,
ordered such that a bowl is considered ``smaller'' than a box.
(There are type-test predicates <tt>box?</tt> and <tt>bowl?</tt>).
Using the control structure <tt>select-compare</tt>
(Section&nbsp;<a href="#node_sec_4.5">4.5</a>) this can be expressed as:
</p>
<tt>(define&nbsp;(container-compare&nbsp;c1&nbsp;c2)<br>
&nbsp;&nbsp;(select-compare&nbsp;c1&nbsp;c2<br>
&nbsp;&nbsp;&nbsp;&nbsp;(bowl?&nbsp;(boolean-compare&nbsp;(open?&nbsp;&nbsp;c1)&nbsp;(open?&nbsp;&nbsp;c2))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(length-compare&nbsp;&nbsp;(radius&nbsp;c1)&nbsp;(radius&nbsp;c2)))<br>
&nbsp;&nbsp;&nbsp;&nbsp;(box?&nbsp;&nbsp;(box-compare&nbsp;c1&nbsp;c2))<br>
&nbsp;&nbsp;&nbsp;&nbsp;(else&nbsp;&quot;neither&nbsp;bowls&nbsp;nor&nbsp;boxes&quot;&nbsp;c1&nbsp;c2)))<br>
</tt><p>
This is an example of ``hierarchical extension'' of compare
procedures, as explained in Section&nbsp;<a href="#node_sec_5">5</a>.
Also note the implicit use of <tt>refine-compare</tt> in
the <tt>bowl?</tt>-case.</p>
<p>
The preceeding example illustrates the main functionality of this SRFI.
For other examples, refer to Section&nbsp;<a href="#node_sec_4.4">4.4</a>,
and to the file <tt>examples.scm</tt> included in the reference
implementation.</p>
<p>
</p>
<a name="node_sec_3"></a>
<h1><a href="#node_toc_node_sec_3">3&nbsp;&nbsp;Terminology and Conventions</a></h1>
<p>A <em>compare procedure</em> is a Scheme-procedure of two
arguments returning an exact integer in { <tt>-</tt> 1,0,1}
such that the valid input values are ordered according
to some total order.
A compare procedure, together with a set of Scheme values
to which it is applicable, represents a compare function
as defined in Section&nbsp;<a href="#node_sec_5">5</a>.</p>
<p>
A <em>comparison</em> is either an expression applying
a compare procedure to two values, or the result of such
an expression.</p>
<p>
Each operation (macro or procedure) processing the value of 
a comparison checks if the value is indeed an exact integer 
in the set { <tt>-</tt> 1,0,1}.
If this is not the case, an error is signalled.</p>
<p>
Compare procedures expecting certain types of argument
should raise an error in case the arguments are not
of this type.
For most compare procedures specified in this SRFI,
this behavior is required.
A compare procedure <i>compare</i> can be used for 
type-checking value <i>x</i> by evaluating
<tt>(<i>compare</i> <i>x</i> <i>x</i>)</tt>,
in case that is desired.
This is useful in procedures like <tt>chain&lt;?</tt> which
guarantee to check each argument unconditionally.</p>
<p>
</p>
<p>
</p>
<a name="node_sec_4"></a>
<h1><a href="#node_toc_node_sec_4">4&nbsp;&nbsp;Specification</a></h1>
<p></p>
<a name="node_sec_4.1"></a>
<h2><a href="#node_toc_node_sec_4.1">4.1&nbsp;&nbsp;Comparing atoms</a></h2>
<p></p>
<p>
In this section, compare procedures for most of the atomic
types of 
R<sup>5</sup>RS  are defined: 
Booleans, characters, strings, symbols, and numbers.</p>
<p>
As a general naming convention, a procedure named
</p>
<div align=center><table><tr><td>

<em>type</em><tt>-compare-</tt><em>order</em>
</td></tr></table></div>
<p>
compares two object of the type <em>type</em> with
respect to a total order for which <em>order</em> is
a mnemonic hint (e.g. <tt>-ci</tt> for case-insensitive).
Of course, <tt>-</tt><em>order</em> may be absent if there is
just one order or the order is obvious.
It is an error if a compare procedure accepting objects of a
certain type is called with one or two arguments not of that type.</p>
<p>
</p>
<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_2"></a>boolean-compare<i> <i>bool<sub>1</sub></i> <i>bool<sub>2</sub></i></i>)</tt>&nbsp;</div>
Compares two booleans, ordered by <tt>#f</tt> &lt; <tt>#t</tt>.
<blockquote><em>Note:&nbsp;&nbsp;</em>
A non-<tt>#f</tt> value is <em>not</em> interpreted as a ``true value,''
but rather an error will be signalled.
</blockquote><br>
<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_4"></a>char-compare<i>    <i>char<sub>1</sub></i> <i>char<sub>2</sub></i></i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_6"></a>char-compare-ci<i> <i>char<sub>1</sub></i> <i>char<sub>2</sub></i></i>)</tt>&nbsp;</div>
Compare characters as <tt>char&lt;=?</tt> and <tt>char-ci&lt;=?</tt> respectively.
The suffix <tt>-ci</tt> means ``case insensitive.''
<br>
<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_8"></a>string-compare<i>    <i>string<sub>1</sub></i> <i>string<sub>2</sub></i></i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_10"></a>string-compare-ci<i> <i>string<sub>1</sub></i> <i>string<sub>2</sub></i></i>)</tt>&nbsp;</div>
Compare strings as <tt>string&lt;=</tt> and <tt>string-ci&lt;=?</tt>.
The suffix <tt>-ci</tt> means ``case insensitive.''
<blockquote><em>Note:&nbsp;&nbsp;</em>
<tt>Compare-string</tt> could be defined as<p>
</p>
<tt>&nbsp;&nbsp;(define&nbsp;(string-compare&nbsp;string1&nbsp;string2)<br>
&nbsp;&nbsp;&nbsp;&nbsp;(vector-compare-as-list&nbsp;char-compare&nbsp;<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;string1&nbsp;string2<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;string-length&nbsp;string-ref))<br>
</tt>
</blockquote><br>
<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_12"></a>symbol-compare<i> <i>symbol<sub>1</sub></i> <i>symbol<sub>2</sub></i></i>)</tt>&nbsp;</div>
Compares symbols as <tt>string&lt;=</tt> on the names returned by <tt>symbol-&gt;string</tt>.<br>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_14"></a>integer-compare<i>  <i>x</i> <i>y</i></i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_16"></a>rational-compare<i> <i>x</i> <i>y</i></i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_18"></a>real-compare<i>     <i>x</i> <i>y</i></i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_20"></a>complex-compare<i>  <i>x</i> <i>y</i></i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_22"></a>number-compare<i>   <i>x</i> <i>y</i></i>)</tt>&nbsp;</div>
Compare two numbers.
It is an error if an argument is not of the type specified
by the name of the procedure.<p>
Complex numbers are ordered lexicographically on pairs (<em>r</em><em>e</em>, <em>i</em><em>m</em>).
For objects representing real numbers sign(<em>x</em>  <tt>-</tt>  <em>y</em>) is computed.
The ordering for values satisfying <tt>real?</tt> or <tt>complex?</tt>
but not representing a real or complex number should be consistent with
procedures <tt>=</tt> and <tt>&lt;</tt> of 
R<sup>5</sup>RS ,
and apart from that it is unspecified.</p>
<p>
Numerical compare procedures are compatible with the 
R<sup>5</sup>RS 
numerical tower in the following sense:
If <em>S</em> is a subtype of the numerical type <em>T</em>
and <em>x</em>, <em>y</em> can be represented both in <em>S</em> and in <em>T</em>,
then <tt>compare-</tt><em>S</em> and <tt>compare-</tt><em>T</em> compute the same result.
</p>
<blockquote><em>Note:&nbsp;&nbsp;</em>
Floating point formats usually include several symbolic values not
simply representing rational numbers.
For example, the IEEE 754 standard defines -0, -Inf, +Inf,
and NaN (&quot;not a number&quot;) for continuing a calculation in the presence
of error conditions.
The behavior of the numerical comparison operation is unspecified
in case an argument is one of the special symbols.
</blockquote><em>Warning:</em> 
The propagation of inexactness can lead to surprises.
In a Scheme system propagating inexactness in
complex numbers (such as PLT, version 208):<p>
</p>
<tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(complex-compare&nbsp;(make-rectangular&nbsp;(/&nbsp;1&nbsp;3)&nbsp;&nbsp;1.)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(make-rectangular&nbsp;(/&nbsp;1&nbsp;3)&nbsp;-1))&nbsp;<br>
&nbsp;&nbsp;===&gt;&nbsp;-1<br>
</tt>At first glance, one might expect the first complex number to be
larger, because the numbers are equal on their real parts and the
first imaginary part (<tt>1.</tt>) is larger than the second (<tt>-1</tt>).
Closer inspection reveals that the decimal dot causes the first
real part to be made inexact upon construction of the complex number,
and since <tt>(exact-&gt;inexact (/ 1 3))</tt> is less than <tt>(/ 1 3)</tt>
in the underlying floating point format used,
the real parts decide the comparison of the complex numbers.

<br>
 
<a name="node_sec_4.2"></a>
<h2><a href="#node_toc_node_sec_4.2">4.2&nbsp;&nbsp;Comparing lists and vectors</a></h2>
<p></p>
<p>
In this section compare procedures are defined for Scheme
lists and vectors -- and for objects that can be accessed
like lists or like vectors.</p>
<p>
An object <em>x</em> can be <em>accessed like a vector</em> if
there are procedures <tt>size</tt> and <tt>ref</tt> such that
<tt>(size <em>x</em>)</tt> is a non-negative integer <em>n</em> 
indicating the number of elements, and <tt>(ref <em>x</em> <em>i</em>)</tt>
is the <em>i</em>-th element of <em>x</em> for <em>i</em> <img src="srfi-67-Z-G-D-4.png" border="0" alt="[srfi-67-Z-G-D-4.png]"> {0, <tt>...</tt>, <em>n</em> <tt>-</tt> 1}.
The default vector access procedures are <tt>vector-length</tt>
and <tt>vector-ref</tt>.</p>
<p>
An object <em>x</em> can be <em>accessed like a (proper) list</em>
if there are procedures <tt>empty?</tt>, <tt>head</tt>, and <tt>tail</tt>
such that <tt>(empty? <em>x</em>)</tt> is a boolean indicating that
there are no elements in <em>x</em>, <tt>(head <em>x</em>)</tt> is the
first element of <em>x</em>, and <tt>(tail <em>x</em>)</tt> is an object
representing the residual elements of <em>x</em>.
The default list access procedures are <tt>null?</tt>,
<tt>car</tt>, and <tt>cdr</tt>.</p>
<p>
Independent of the way the elements are accessed,
the natural ordering of vectors and lists differs:
Sequences are <em>compared as vectors</em> if
shorter sequences are smaller than longer sequences,
and sequences of the same size are compared lexicographically.
Sequences are <em>compared as lists</em> if the empty
sequence is smallest, and two non-empty sequences are
compared by their first elements, and only if the first
elements are equal the residual sequences are compared, 
recursively.
</p>
<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_24"></a>vector-compare<i> [ <i>compare</i> ] <i>x</i> <i>y</i> [ <i>size</i> <i>ref</i> ]</i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_26"></a>vector-compare-as-list<i> [ <i>compare</i> ] <i>x</i> <i>y</i> [ <i>size</i> <i>ref</i> ]</i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_28"></a>list-compare<i> [ <i>compare</i> ] <i>x</i> <i>y</i> [ <i>empty?</i> <i>head</i> <i>tail</i> ]</i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_30"></a>list-compare-as-vector<i> [ <i>compare</i> ] <i>x</i> <i>y</i> [ <i>empty?</i> <i>head</i> <i>tail</i> ]</i>)</tt>&nbsp;</div>

Compare two sequences <i>x</i> and <i>y</i>,
using <i>compare</i> for comparing elements.
The result is an exact integer in { <tt>-</tt> 1, 0, 1}.
If <i>compare</i> is not supplied, <tt>default-compare</tt> is used.<p>
The procedure named <em>access</em><tt>-compare-as-</tt><em>order</em>
accesses the objects like <em>access</em> and compares them with
respect to the order given by <em>order</em>.
The names <em>type</em><tt>-compare</tt> are abbreviations for
<em>type</em><tt>-compare-as-</tt><em>type</em>.</p>
<p>
Examples:</p>
<p>
</p>
<tt>&nbsp;&nbsp;(list-compare&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'(2)&nbsp;'(1&nbsp;2))&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;1<br>
&nbsp;&nbsp;(list-compare-as-vector&nbsp;'(2)&nbsp;'(1&nbsp;2))&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;-1<br>
&nbsp;&nbsp;(vector-compare&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'#(2)&nbsp;'#(1&nbsp;2))&nbsp;&nbsp;===&gt;&nbsp;-1<br>
&nbsp;&nbsp;(vector-compare-as-list&nbsp;'#(2)&nbsp;'#(1&nbsp;2))&nbsp;&nbsp;===&gt;&nbsp;&nbsp;1<br>
</tt>
<br>
<p>
</p>
<a name="node_sec_4.3"></a>
<h2><a href="#node_toc_node_sec_4.3">4.3&nbsp;&nbsp;Comparing pairs and improper lists</a></h2>
<p></p>
<p>
In this section, compare procedures for Scheme
pairs and (possibly) improper lists are defined.</p>
<p>
</p>
<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_32"></a>pair-compare-car<i> <i>compare</i></i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_34"></a>pair-compare-cdr<i> <i>compare</i></i>)</tt>&nbsp;</div>
Construct a compare procedure on pairs which only uses
the car (only the cdr, respectively), and ignores the other.
One could define<p>
</p>
<tt>&nbsp;&nbsp;(define&nbsp;(pair-compare-car&nbsp;compare)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(lambda&nbsp;(x&nbsp;y)&nbsp;(compare&nbsp;(car&nbsp;x)&nbsp;(car&nbsp;y))))<br>
</tt>
<blockquote><em>Rationale:&nbsp;&nbsp;</em>
<tt>Pair-compare-car</tt> can be used to turn a search data 
structure (e.g. a heap) into a dictionary:
Store <tt>(key . value)</tt> pairs and compare them using the
compare procedure <tt>(pair-compare-car compare-key)</tt>.
</blockquote><br>
<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_36"></a>pair-compare<i> <i>compare-car</i> <i>compare-cdr</i> <i>pair<sub>1</sub></i> <i>pair<sub>2</sub></i></i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_38"></a>pair-compare<i> [ <i>compare</i> ] <i>obj<sub>1</sub></i> <i>obj<sub>2</sub></i></i>)</tt>&nbsp;</div>
Compares two pairs, or (possibly improper) lists.<p>
The 4-ary form compares two pairs <i>pair<sub>1</sub></i> <i>pair<sub>2</sub></i>
by comparing their cars using <i>compare-car</i>, 
and if the cars are equal the cdrs are compared
using <i>compare-cdr</i>.</p>
<p>
The 3-ary form compares two objects by type using the ordering
of types
</p>
<div align=center><table><tr><td>

<i>null</i> &lt; <i>pair</i> &lt; <i>neither-null-nor-pair</i>.
</td></tr></table></div>
<p>
Two objects of type <i>neither-null-nor-pair</i> are compared
using <i>compare</i>. 
Two pairs are compared by using <i>compare</i> on the cars,
and if the cars are equal by recursing on the cdrs.</p>
<p>
The 2-ary form uses <tt>default-compare</tt> for <i>compare</i>.</p>
<p>
</p>
<tt>&nbsp;&nbsp;&nbsp;(pair-compare&nbsp;'()&nbsp;'foo)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;-1<br>
&nbsp;&nbsp;&nbsp;(pair-compare&nbsp;'()&nbsp;'(1&nbsp;.&nbsp;2)))&nbsp;===&gt;&nbsp;&nbsp;-1<br>
&nbsp;&nbsp;&nbsp;(pair-compare&nbsp;'(1&nbsp;.&nbsp;2)&nbsp;'foo)&nbsp;===&gt;&nbsp;&nbsp;-1<br>
&nbsp;&nbsp;&nbsp;(pair-compare&nbsp;3&nbsp;4)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;===&gt;&nbsp;&nbsp;-1<br>
</tt>
<br>
<p>
</p>
<a name="node_sec_4.4"></a>
<h2><a href="#node_toc_node_sec_4.4">4.4&nbsp;&nbsp;The default compare procedure</a></h2>
<p></p>
<p>
It is convenient to have a compare procedure readily available
for comparing most built-in types.</p>
<p>
</p>
<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_40"></a>default-compare<i> <i>obj<sub>1</sub></i> <i>obj<sub>2</sub></i></i>)</tt>&nbsp;</div>
compares its arguments by type using the ordering
<div align=center><table><tr><td>

<i>null</i>    &lt; 
<i>pair</i>    &lt; 
<i>boolean</i> &lt; 
<i>char</i>    &lt; 
<i>string</i>  &lt; 
<i>symbol</i>  &lt; 
<i>number</i>  &lt; 
<i>vector</i>  &lt; 
<i>other</i>
</td></tr></table></div>
<p>
Two objects of the same type <em>type</em> are 
compared as <em>type</em><tt>-compare</tt> would,
if there is such a procedure.
The type <i>null</i> consists of the empty list <tt>'()</tt>.
The effect of comparing two <i>other</i> objects or
of comparing cyclic structures (made from lists or vectors)
is unspecified. (Implementations are encouraged to add
comparisons for other built-in types, e.g. records,
regexps, etc.)
</p>
<blockquote><em>Rationale:&nbsp;&nbsp;</em>
<tt>Default-compare</tt> refines <tt>pair-compare</tt> by splitting
<i>neither-null-nor-pair</i>.
</blockquote><blockquote><em>Note:&nbsp;&nbsp;</em>
<tt>Default-compare</tt> could be defined as follows
(mind the order of the cases!):<p>
</p>
<tt>&nbsp;&nbsp;&nbsp;(define&nbsp;(default-compare&nbsp;x&nbsp;y)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(select-compare&nbsp;x&nbsp;y<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(null?&nbsp;&nbsp;&nbsp;&nbsp;0)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(pair?&nbsp;&nbsp;&nbsp;&nbsp;(default-compare&nbsp;(car&nbsp;x)&nbsp;(car&nbsp;y))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(default-compare&nbsp;(cdr&nbsp;x)&nbsp;(cdr&nbsp;y)))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(boolean?&nbsp;(boolean-compare&nbsp;x&nbsp;y))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(char?&nbsp;&nbsp;&nbsp;&nbsp;(char-compare&nbsp;&nbsp;&nbsp;&nbsp;x&nbsp;y))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(string?&nbsp;&nbsp;(string-compare&nbsp;&nbsp;x&nbsp;y))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(symbol?&nbsp;&nbsp;(symbol-compare&nbsp;&nbsp;x&nbsp;y))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(number?&nbsp;&nbsp;(number-compare&nbsp;&nbsp;x&nbsp;y))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(vector?&nbsp;&nbsp;(vector-compare&nbsp;default-compare&nbsp;x&nbsp;y))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(else&nbsp;(error&nbsp;&quot;unrecognized&nbsp;types&quot;&nbsp;x&nbsp;y))))<br>
</tt></blockquote><br>
<a name="node_sec_4.5"></a>
<h2><a href="#node_toc_node_sec_4.5">4.5&nbsp;&nbsp;Constructing compare procedures</a></h2>
<p></p>
<p>
An important goal of this SRFI is to provide a mechanism for defining
new compare procedures as conveniently as possible.  The syntactic
extensions defined in this section are the primary utilities for doing
so.</p>
<p>
</p>
<div align=left><u>syntax:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_42"></a>refine-compare &lt;c<sub>1</sub>&gt; <tt>...</tt>)</tt>&nbsp;</div>

<em>Syntax: </em>The &lt;c<sub><em>i</em></sub>&gt; are expressions.<p>
<em>Semantics: </em>The arguments &lt;c<sub>1</sub>&gt; <tt>...</tt>are evaluated from left to
right until a non-zero value is found (which then is the value)
or until there are no more arguments to evaluate (in which case
the value is 0).
It is allowed that there are no arguments at all.</p>
<p>
</p>
<blockquote><em>Note:&nbsp;&nbsp;</em>
This macro is the preferred way to define a compare procedure
as a refinement (refer to Section&nbsp;<a href="#node_sec_5">5</a>). Example:<p>
</p>
<tt>(define&nbsp;(compare-rectangle&nbsp;r&nbsp;s)<br>
&nbsp;&nbsp;(refine-compare&nbsp;<br>
&nbsp;&nbsp;&nbsp;&nbsp;(compare-length&nbsp;(width&nbsp;&nbsp;r)&nbsp;(width&nbsp;&nbsp;s))<br>
&nbsp;&nbsp;&nbsp;&nbsp;(compare-length&nbsp;(height&nbsp;r)&nbsp;(height&nbsp;s))))<br>
</tt></blockquote><br>
<div align=left><u>syntax:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_44"></a>select-compare &lt;x<sub>1</sub>&gt; &lt;x<sub>2</sub>&gt;
&lt;clause<sub>1</sub>&gt; <tt>...</tt>)</tt>&nbsp;</div>

<em>Syntax: </em>Each &lt;clause&gt;, with the possible exception of the last, is of the form
<tt>(&lt;type?&gt;&nbsp;&lt;c<sub>1</sub>&gt;&nbsp;<tt>...</tt>)</tt>
where &lt;type?&gt; is an expression evaluating to a predicate procedure, 
and &lt;c<sub><em>i</em></sub>&gt; are expressions evaluating to an exact integer in { <tt>-</tt> 1,0,1}. 
The last &lt;clause&gt; may be an ``else clause'',
which has the form 
<tt>(else&nbsp;&lt;c<sub>1</sub>&gt;&nbsp;<tt>...</tt>).</tt><p>
<em>Semantics: </em><tt>Select-compare</tt> is a conditional for defining 
hierarchical extensions and refinements of compare
procedures (refer to Section&nbsp;<a href="#node_sec_5">5</a>).
It compares the values of &lt;x<sub>1</sub>&gt; and &lt;x<sub>2</sub>&gt; by
trying the type tests in order, and applies an implict
<tt>refine-compare</tt> on the consequences upon a match.</p>
<p>
In more detail, evaluation proceeds as follows:
First &lt;x<sub>1</sub>&gt; and &lt;x<sub>2</sub>&gt; are evaluated in
unspecified order, resulting in values <em>x</em><sub>1</sub> and <em>x</em><sub>2</sub>, respectively.
Then the clauses are evaluated one by one, from left to right.</p>
<p>
For clause (&lt;type?&gt; &lt;c<sub>1</sub>&gt; <tt>...</tt>),
first &lt;type?&gt; is evaluated resulting in a 
predicate procedure <i>type?</i> and then the
expressions (<i>type?</i> <em>x</em><sub>1</sub>) and (<i>type?</i> <em>x</em><sub>2</sub>)
are evaluated and interpreted as booleans.
If both booleans are true then the overall value is
<tt>(refine-compare &lt;c<sub>1</sub>&gt; <tt>...</tt>)</tt>.
If only the first is true the result is -1,
if only the second is true the result is 1,
and if neither is true the next clause is considered.
An <tt>else</tt> clause is treated as if both tests
where true.
If there are no clauses left, the result is 0.</p>
<p>
<tt>Select-compare</tt> evaluates &lt;x<sub>1</sub>&gt; and &lt;x<sub>2</sub>&gt; 
exactly once, even in the absence of any clauses. 
Moreover, each &lt;type?&gt; is evaluated at most once and the 
resulting procedure <i>type?</i> is called at most twice.</p>
<p>
</p>
<blockquote><em>Note:&nbsp;&nbsp;</em>
An example of <tt>select-compare</tt> is the definition
of <tt>default-compare</tt> given above.
</blockquote><br>
<div align=left><u>syntax:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_46"></a>cond-compare &lt;clause<sub>1</sub>&gt; <tt>...</tt>)</tt>&nbsp;</div>
 <em>Syntax: </em>Each &lt;clause&gt;, with the possible exception of the last, is of the form
<tt>((&lt;t<sub>1</sub>&gt;&nbsp;&lt;t<sub>2</sub>&gt;)&nbsp;&lt;c<sub>1</sub>&gt;&nbsp;<tt>...</tt>)</tt>
where &lt;t<sub>1</sub>&gt; and &lt;t<sub>2</sub>&gt; are expressions evaluating to booleans, 
and &lt;c<sub><em>i</em></sub>&gt; are expressions evaluating to an exact integer in { <tt>-</tt> 1,0,1}. 
The last &lt;clause&gt; may be an ``else clause'',
which has the form 
<tt>(else&nbsp;&lt;c<sub>1</sub>&gt;&nbsp;<tt>...</tt>).</tt><p>
<em>Semantics: </em><tt>Cond-compare</tt> is another conditional for defining hierarchical
extensions and refinements of compare procedures 
(refer to Section&nbsp;<a href="#node_sec_5">5</a>).</p>
<p>
Evaluation proceeds as follows:
The clauses are evaluated one by one, from left to right.
For clause ((&lt;t<sub>1</sub>&gt; &lt;t<sub>2</sub>&gt;) &lt;c<sub>1</sub>&gt; <tt>...</tt>),
first &lt;t<sub>1</sub>&gt; and &lt;t<sub>2</sub>&gt; are evaluated and the
results are interpreted as boolean values.
If both booleans are true then the overall value is
<tt>(refine-compare &lt;c<sub>1</sub>&gt; <tt>...</tt>)</tt>.
If only the first is true the result is -1,
if only the second is true the result is 1,
and if neither is true the next clause is considered.
An <tt>else</tt> clause is treated as if both booleans where true.
If there are no clauses left (or there are no clauses
to begin with), the result is 0.</p>
<p>
<tt>Cond-compare</tt> evaluates each expression at most once.</p>
<p>
</p>
<blockquote><em>Rationale:&nbsp;&nbsp;</em>
<tt>Cond-compare</tt> and <tt>select-compare</tt> only differ
in the way the type tests are specified.
Both ways are equivalent, and each way is sometimes
more convenient than the other.
</blockquote><br>
<a name="node_sec_4.6"></a>
<h2><a href="#node_toc_node_sec_4.6">4.6&nbsp;&nbsp;Using compare procedures</a></h2>
<p></p>
<p>
The facilities defined in this section provide a mechanism for
using a compare procedure (passed as a parameter) in the 
different situations arising in applications.</p>
<p>
</p>
<div align=left><u>syntax:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_48"></a>if3 &lt;c&gt; &lt;less&gt; &lt;equal&gt; &lt;greater&gt;)</tt>&nbsp;</div>
 <em>Syntax: </em>&lt;c&gt;, &lt;less&gt;, &lt;equal&gt;, and &lt;greater&gt;
are expressions.  <p>
<em>Semantics: </em><tt>If3</tt> is the 3-way conditional for comparisons.
First &lt;c&gt; is evaluated, resulting in value <em>c</em>.
The value <em>c</em> must be an exact integer in { <tt>-</tt> 1, 0, 1},
otherwise an error is signalled.
If <em>c</em>  =   <tt>-</tt> 1 then the value of the <tt>if3</tt>-expression 
is obtained by evaluating &lt;less&gt;.
If <em>c</em>  =  0 then &lt;equal&gt; is evaluated.
If <em>c</em>  =  1 then &lt;greater&gt; is evaluated.</p>
<p>
</p>
<blockquote><em>Note:&nbsp;&nbsp;</em>
As an example, the following procedure inserts <tt>x</tt>
into the sorted list <tt>s</tt>, possibly replacing the
first equivalent element.<p>
</p>
<tt>(define&nbsp;(insert&nbsp;compare&nbsp;x&nbsp;s)<br>
&nbsp;&nbsp;(if&nbsp;(null?&nbsp;s)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(list&nbsp;x)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(if3&nbsp;(compare&nbsp;x&nbsp;(car&nbsp;s))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(cons&nbsp;x&nbsp;s)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(cons&nbsp;x&nbsp;(cdr&nbsp;s))&nbsp;;&nbsp;replace<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(cons&nbsp;(car&nbsp;s)&nbsp;(insert&nbsp;compare&nbsp;x&nbsp;(cdr&nbsp;s))))))<br>
</tt></blockquote><blockquote><em>Rationale:&nbsp;&nbsp;</em>
<tt>If3</tt> is the preferred way of branching on the result of 
a comparison in case all three branches are different.
</blockquote><br>
<div align=left><u>syntax:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_50"></a>if=?     &lt;c&gt; &lt;consequent&gt; [ &lt;alternate&gt; ])</tt>&nbsp;</div>
<div align=left><u>syntax:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_52"></a>if&lt;?     &lt;c&gt; &lt;consequent&gt; [ &lt;alternate&gt; ])</tt>&nbsp;</div>
<div align=left><u>syntax:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_54"></a>if&gt;?     &lt;c&gt; &lt;consequent&gt; [ &lt;alternate&gt; ])</tt>&nbsp;</div>
<div align=left><u>syntax:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_56"></a>if&lt;=?    &lt;c&gt; &lt;consequent&gt; [ &lt;alternate&gt; ])</tt>&nbsp;</div>
<div align=left><u>syntax:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_58"></a>if&gt;=?    &lt;c&gt; &lt;consequent&gt; [ &lt;alternate&gt; ])</tt>&nbsp;</div>
<div align=left><u>syntax:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_60"></a>if-not=? &lt;c&gt; &lt;consequent&gt; [ &lt;alternate&gt; ])</tt>&nbsp;</div>
<em>Syntax: </em>&lt;c&gt;, &lt;consequent&gt;, and &lt;alternate&gt; are expressions.
If &lt;alternate&gt; is not provided, <tt>(if #f #f)</tt> is used.<p>
<em>Semantics: </em>These six macros are 2-way conditionals for comparisons.
First &lt;c&gt; is evaluated, resulting in value <em>c</em>.
The value <em>c</em> must be an exact integer in { <tt>-</tt> 1, 0, 1},
otherwise an error is signalled.
Then, depending on the value of <em>c</em> and the name of the macro,
either &lt;consequence&gt; or &lt;alternate&gt; is evaluated,
and the resulting value is the value of the conditional expression.</p>
<p>
The branch is chosen according to the following table:
</p>
<div align=center><table><tr><td>
<table border=1><tr><td valign=top ></td><td valign=top >&lt;consequent&gt; </td><td valign=top >&lt;alternate&gt; </td></tr>
<tr><td valign=top ><tt>if=?</tt>     </td><td valign=top ><em>c</em>  =  0           </td><td valign=top ><em>c</em> <img src="srfi-67-Z-G-D-4.png" border="0" alt="[srfi-67-Z-G-D-4.png]"> { <tt>-</tt> 1, 1} </td></tr>
<tr><td valign=top ><tt>if&lt;?</tt>     </td><td valign=top ><em>c</em>  =   <tt>-</tt> 1          </td><td valign=top ><em>c</em> <img src="srfi-67-Z-G-D-4.png" border="0" alt="[srfi-67-Z-G-D-4.png]"> {0, 1}  </td></tr>
<tr><td valign=top ><tt>if&gt;?</tt>     </td><td valign=top ><em>c</em>  =  1           </td><td valign=top ><em>c</em> <img src="srfi-67-Z-G-D-4.png" border="0" alt="[srfi-67-Z-G-D-4.png]"> { <tt>-</tt> 1, 0} </td></tr>
<tr><td valign=top ><tt>if&lt;=?</tt>    </td><td valign=top ><em>c</em> <img src="srfi-67-Z-G-D-4.png" border="0" alt="[srfi-67-Z-G-D-4.png]"> { <tt>-</tt> 1, 0} </td><td valign=top ><em>c</em>  =  1           </td></tr>
<tr><td valign=top ><tt>if&gt;=?</tt>    </td><td valign=top ><em>c</em> <img src="srfi-67-Z-G-D-4.png" border="0" alt="[srfi-67-Z-G-D-4.png]"> {0, 1}  </td><td valign=top ><em>c</em>  =   <tt>-</tt> 1          </td></tr>
<tr><td valign=top ><tt>if-not=?</tt> </td><td valign=top ><em>c</em> <img src="srfi-67-Z-G-D-4.png" border="0" alt="[srfi-67-Z-G-D-4.png]"> { <tt>-</tt> 1, 1} </td><td valign=top ><em>c</em>  =  0
</td></tr></table></td></tr></table></div>
<p>
</p>
<blockquote><em>Note:&nbsp;&nbsp;</em>
The macros <tt>if&lt;=?</tt> etc. are the preferred way of 2-way branching based
on the result of a comparison.
</blockquote><br>
<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_62"></a>=?<i>    [ <i>compare</i> ] [ <i>x</i> <i>y</i> ]</i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_64"></a>&lt;?<i>    [ <i>compare</i> ] [ <i>x</i> <i>y</i> ]</i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_66"></a>&gt;?<i>    [ <i>compare</i> ] [ <i>x</i> <i>y</i> ]</i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_68"></a>&lt;=?<i>    [ <i>compare</i> ] [ <i>x</i> <i>y</i> ]</i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_70"></a>&gt;=?<i>    [ <i>compare</i> ] [ <i>x</i> <i>y</i> ]</i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_72"></a>not=?<i>    [ <i>compare</i> ] [ <i>x</i> <i>y</i> ]</i>)</tt>&nbsp;</div>
If the values <i>x</i> and <i>y</i> are given, test if <i>x</i> and <i>y</i> are in the 
relation specified by the name of the procedure <i>rel?</i>, with respect to 
compare procedure <i>compare</i>; otherwise construct a predicate procedure.<p>
</p>
<p>
In the forms <tt>(<i>rel?</i> [ <i>compare</i> ] <i>x</i> <i>y</i>)</tt>,
the result is a boolean (either <tt>#t</tt> or <tt>#f</tt>)
depending on <tt>(<i>compare</i> <i>x</i> <i>y</i>)</tt> and
the test <i>rel?</i> as specified for <tt>if&lt;?</tt> etc.
If <i>compare</i> is not supplied, <tt>default-compare</tt> is used.</p>
<p>
In the form <tt>(<i>rel?</i> [ <i>compare</i> ])</tt>,
the predicate procedure 
(lambda (x y) (<i>rel?</i> <i>compare</i> x y)) is constructed.
Again, if <i>compare</i> is not supplied, <tt>default-compare</tt> is used.</p>
<p>
A few examples for illustration
</p>
<tt>&nbsp;&nbsp;(&gt;?&nbsp;&quot;laugh&quot;&nbsp;&quot;LOUD&quot;)&nbsp;===&gt;&nbsp;#t<br>
&nbsp;&nbsp;(&lt;?&nbsp;string-compare-ci&nbsp;&quot;laugh&quot;&nbsp;&quot;LOUD&quot;)&nbsp;===&gt;&nbsp;#t<br>
&nbsp;&nbsp;(define&nbsp;char&lt;=?&nbsp;(&lt;=?&nbsp;char-compare))<br>
&nbsp;&nbsp;(sort-by-less&nbsp;'(1&nbsp;a&nbsp;&quot;b&quot;)&nbsp;(&lt;?))&nbsp;===&gt;&nbsp;'(&quot;b&quot;&nbsp;a&nbsp;1)<br>
&nbsp;&nbsp;(sort-by-less&nbsp;'(1&nbsp;a&nbsp;&quot;b&quot;)&nbsp;(&gt;?))&nbsp;===&gt;&nbsp;'(1&nbsp;a&nbsp;&quot;b&quot;)<br>
</tt><p>
</p>
<em>Warning:</em> 
A common mistake is writing <tt>(&lt;=? x y z)</tt> 
where <tt>(&lt;=/&lt;=? x y z)</tt> is meant; 
this will most likely manifest itself at the time
the expression <tt>(x y z)</tt> is evaluated.
<br>
<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_74"></a>&lt;/&lt;?<i>   [ <i>compare</i> ] [ <i>x</i> <i>y</i> <i>z</i> ]</i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_76"></a>&lt;/&lt;=?<i>   [ <i>compare</i> ] [ <i>x</i> <i>y</i> <i>z</i> ]</i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_78"></a>&lt;=/&lt;?<i>   [ <i>compare</i> ] [ <i>x</i> <i>y</i> <i>z</i> ]</i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_80"></a>&lt;=/&lt;=?<i>   [ <i>compare</i> ] [ <i>x</i> <i>y</i> <i>z</i> ]</i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_82"></a>&gt;/&gt;?<i>   [ <i>compare</i> ] [ <i>x</i> <i>y</i> <i>z</i> ]</i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_84"></a>&gt;/&gt;=?<i>   [ <i>compare</i> ] [ <i>x</i> <i>y</i> <i>z</i> ]</i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_86"></a>&gt;=/&gt;?<i>   [ <i>compare</i> ] [ <i>x</i> <i>y</i> <i>z</i> ]</i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_88"></a>&gt;=/&gt;=?<i>   [ <i>compare</i> ] [ <i>x</i> <i>y</i> <i>z</i> ]</i>)</tt>&nbsp;</div>
Test if <i>x</i>, <i>y</i>, and <i>z</i> form a chain with the two relations
specified by the name of the procedure <i>rel1/rel2?</i>,
with respect to the compare procedure <i>compare</i>.<p>
If <i>compare</i> is not provided, <tt>default-compare</tt> is used.
If <i>x</i> <i>y</i> <i>z</i> are not provided, a predicate
procedure of three arguments is constructed.
The order in which the values are compared is unspecified,
but each value is compared at least once.</p>
<p>
</p>
<blockquote><em>Note:&nbsp;&nbsp;</em>
<tt>(&lt;=/&lt;? real-compare 0 <i>x</i> 1)</tt> tests if <i>x</i> is a real number
in the half open interval [0,1).</blockquote><br>
<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_90"></a>chain=?<i>  <i>compare</i> <i>x<sub>1</sub></i> <tt>...</tt></i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_92"></a>chain&lt;?<i>  <i>compare</i> <i>x<sub>1</sub></i> <tt>...</tt></i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_94"></a>chain&gt;?<i>  <i>compare</i> <i>x<sub>1</sub></i> <tt>...</tt></i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_96"></a>chain&lt;=?<i>  <i>compare</i> <i>x<sub>1</sub></i> <tt>...</tt></i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_98"></a>chain&gt;=?<i>  <i>compare</i> <i>x<sub>1</sub></i> <tt>...</tt></i>)</tt>&nbsp;</div>
Test if the values <i>x<sub>1</sub></i> <tt>...</tt>(zero or more values) form
a chain with respect to the relation specified by the name of
the procedure, and with respect to the compare procedure <i>compare</i>.
The result is a boolean (either <tt>#t</tt> or <tt>#f</tt>.)
The order in which the values are compared is unspecified,
but each value is compared at least once (even if there is just
one.)<p>
A sequence of values <em>x</em><sub>1</sub>, <tt>...</tt>, <em>x</em><sub><em>n</em></sub> forms a chain with respect
to the relation <i>rel?</i> if <tt>(<i>rel?</i> <i>compare</i> <em>x</em><sub><em>i</em></sub> <em>x</em><sub><em>j</em></sub>)</tt>
for all 1 <u>&lt;</u> <em>i</em> &lt; <em>j</em> <u>&lt;</u> <em>n</em>.
In particular, this is the case for <em>n</em> <img src="srfi-67-Z-G-D-4.png" border="0" alt="[srfi-67-Z-G-D-4.png]"> {0,1}.</p>
<p>
Since the relations  = , &lt;, &gt;, <u>&lt;</u>, and <u>&gt;</u> are transitive,
it is sufficient to test <tt>(<i>rel?</i> <i>compare</i> <em>x</em><sub><em>i</em></sub> <em>x</em><sub><em>i</em>+1</sub>)</tt>
for 1 <u>&lt;</u> <em>i</em> &lt; <em>n</em>.</p>
<p>
</p>
<blockquote><em>Note:&nbsp;&nbsp;</em>
The reason every <em>x</em><sub><em>i</em></sub> participates in at least one comparison
is type-checking:
After testing if the values form a chain, these value may be assumed
to be of the type comparable by <i>compare</i> -- and this holds
irrespectively of the number of values, or whether they form a chain.
</blockquote><br>
<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_100"></a>pairwise-not=?<i> <i>compare</i> <i>x<sub>1</sub></i> <tt>...</tt></i>)</tt>&nbsp;</div>
Tests if the values <i>x<sub>1</sub></i> <tt>...</tt>(zero or more values) are
pairwise unequal with respect to the compare procedure <i>compare</i>.
The result is a boolean (either <tt>#t</tt> or <tt>#f</tt>).
The order in which the values are compared is unspecified,
but each value is compared at least once (even if there is just one).<p>
The values <em>x</em><sub>1</sub>, <tt>...</tt>, <em>x</em><sub><em>n</em></sub> are pairwise unequal if 
<tt>(not=? <i>compare</i> <em>x</em><sub><em>i</em></sub> <em>x</em><sub><em>j</em></sub>)</tt> for all <em>i</em> <img src="srfi-67-Z-G-D-8.png" border="0" alt="[srfi-67-Z-G-D-8.png]"> <em>j</em>.
In particular, this is the case for <em>n</em> <img src="srfi-67-Z-G-D-4.png" border="0" alt="[srfi-67-Z-G-D-4.png]"> {0,1}.</p>
<p>
Since <i>compare</i> defines a total ordering on the values,
the property can be checked in time <em>O</em>(<em>n</em> log <em>n</em>), and
implementations are required to do this. (For example by
first sorting and then comparing adjacent elements).
</p>
<br>
<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_102"></a>min-compare<i> <i>compare</i> <i>x<sub>1</sub></i> <i>x<sub>2</sub></i> <tt>...</tt></i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_104"></a>max-compare<i> <i>compare</i> <i>x<sub>1</sub></i> <i>x<sub>2</sub></i> <tt>...</tt></i>)</tt>&nbsp;</div>
A minimum or maximum of the values <i>x<sub>1</sub></i> <i>x<sub>2</sub></i> <tt>...</tt>(one or more values) with respect to the compare procedure <i>compare</i>.<p>
The result is the first value that is minimal (maximal, respectively).
The order in which the values are compared is unspecified,
but each value is compared at least once (even if there is
just one value).
</p>
<br>
<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_106"></a>kth-largest<i> <i>compare</i> <i>k</i> <i>x<sub>0</sub></i> <i>x<sub>1</sub></i> <tt>...</tt></i>)</tt>&nbsp;</div>
The <em>k</em>-th largest element of values 
<i>x<sub>0</sub></i> <i>x<sub>1</sub></i> <tt>...</tt>(one or more values)
with respect to the compare procedure <i>compare</i>.<p>
More precisely,
<tt>(kth-largest <i>compare</i> <i>k</i> <i>x<sub>0</sub></i> <tt>...</tt> <i>x<sub><em>n</em><tt>-</tt>1</sub></i>)</tt>
returns the <tt>(modulo <i>k</i> <em>n</em>)</tt>-th element of the unique sequence
obtained by stably sorting (<em>x</em><sub>0</sub> <tt>&middot;&middot;&middot;</tt> <em>x</em><sub><em>n</em><tt>-</tt>1</sub>).
(Recall that a sorting algorithm is <em>stable</em> if it does not
permute items with equal key, i.e. equivalent w.r.t. <i>compare</i>).</p>
<p>
The argument <i>k</i> is an exact integer, and <em>n</em> <u>&gt;</u> 1.
The order in which the values <em>x</em><sub><em>i</em></sub> are compared is unspecified,
but each value is compared at least once (even if there is
just one value).</p>
<p>
</p>
<blockquote><em>Note:&nbsp;&nbsp;</em>
The 0-th largest element is the minimum,
the ( <tt>-</tt> 1)-st largest element is the maximum.
The median is the (<em>n</em> <tt>-</tt> 1)/2-th largest element if <em>n</em> is odd,
and the average of the (<em>n</em>/2 <tt>-</tt> 1)-st and <em>n</em>/2-th largest elements
if <em>n</em> is even.
</blockquote><br>
<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_108"></a>compare-by&lt;<i>    <i>lt-pred</i> [ <i>x</i> <i>y</i> ]</i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_110"></a>compare-by&gt;<i>    <i>gt-pred</i> [ <i>x</i> <i>y</i> ]</i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_112"></a>compare-by&lt;=<i>   <i>le-pred</i> [ <i>x</i> <i>y</i> ]</i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_114"></a>compare-by&gt;=<i>   <i>ge-pred</i> [ <i>x</i> <i>y</i> ]</i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_116"></a>compare-by=/&lt;<i>  <i>eq-pred</i> <i>lt-pred</i> [ <i>x</i> <i>y</i> ]</i>)</tt>&nbsp;</div>

<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_118"></a>compare-by=/&gt;<i>  <i>eq-pred</i> <i>gt-pred</i> [ <i>x</i> <i>y</i> ]</i>)</tt>&nbsp;</div>

If optional arguments <i>x</i> and <i>y</i> are present then these 
are compared with respect to the total order defined by the
predicate(s) given; the result is in { <tt>-</tt> 1,0,1}.
If <i>x</i> and <i>y</i> are not present then a procedure comparing
its two arguments using the predicate(s) given is constructed and
returned.<p>
The predicate procedures mean the following: 
<tt>(<i>lt-pred</i> <i>x</i> <i>y</i>)</tt> tests if <em>x</em> &lt; <em>y</em>, 
<i>le-pred</i> tests for <u>&lt;</u>, 
<i>gt-pred</i> for &gt;,
<i>ge-pred</i> for <u>&gt;</u>,
and <i>eq-pred</i> tests if <em>x</em> and <em>y</em> are equivalent.
The result returned by a predicate procedure is interpreted
as a Scheme truth value (i.e. <tt>#f</tt> is false and non-<tt>#f</tt>
is true).</p>
<p>
The purpose of the procedures <tt>compare-by</tt><em>predicate(s)</em>
is to define a compare procedure from an order predicate,
and possibly an additional equivalence predicate.
If an equivalence predicate <i>eq-pred</i> is given, it is called
<em>before</em> the order predicate because the equivalence may be
coarser than the total ordering, and it may also be cheaper.</p>
<p>
</p>
<blockquote><em>Note:&nbsp;&nbsp;</em>
<tt>Char-compare</tt> could be defined in terms of <tt>char&lt;=?</tt> as<p>
</p>
<tt>&nbsp;&nbsp;&nbsp;(define&nbsp;char-compare&nbsp;(compare-by&lt;=&nbsp;char&lt;=?))<br>
</tt>
</blockquote><br>
<div align=left><u>procedure:</u>&nbsp;&nbsp;<tt>(<a name="node_idx_120"></a>debug-compare<i> <i>compare</i></i>)</tt>&nbsp;</div>
Constructs a compare procedure equivalent to <i>compare</i>
but with debugging code wrapped around the calls to <i>compare</i>.
The debugging code signals an error if it detects a violation
of the axioms of a compare function.
For this it is assumed that <i>compare</i> has no side-effects.<p>
More specifically, <tt>(debug-compare <i>compare</i>)</tt> evaluates
to a compare procedure <i>compare<sub>1</sub></i> which checks reflexivity,
antisymmetry, and transitivity of <i>compare</i> based on the
arguments on which <i>compare<sub>1</sub></i> is called:</p>
<p>
The procedure <i>compare<sub>1</sub></i> checks reflexivity on any value
passed to <i>compare</i>,
antisymmetry on any pair of values on which <i>compare</i> is called,
and transitivity on triples where two of the arguments are from
the current call to <i>compare<sub>1</sub></i> and the third is a pseudo-random
selection from the two arguments of the previous call to <i>compare<sub>1</sub></i>.</p>
<p>
</p>
<blockquote><em>Rationale:&nbsp;&nbsp;</em>
The test coverage is partial and determined pseudo-randomly,
but the execution time of <i>compare<sub>1</sub></i> is only a constant factor larger
than the execution time of <i>compare</i>.
</blockquote><br>
<p>
</p>
<a name="node_sec_5"></a>
<h1><a href="#node_toc_node_sec_5">5&nbsp;&nbsp;The theory of compare functions</a></h1>
<p></p>
<p>
</p>
<p>
</p>
<p>
<b>NOTE:</b> This section of the SRFI-document can be read at 
<a href="http://srfi.schemers.org/srfi-67/">srfi.schemers.org/srfi-67/</a>.
It was removed from the
HelpDesk version due to the math.</p>
<p>
The section contains a theoretical justification
for the concept ``compare function''.
First an axiomatic definition of compare functions is given.
Then it is proved that compare functions are just an 
unconventional way of defining total orders on equivalence
classes of elements -- and mathematically that
is all there is to say about compare functions.</p>
<p>
At this point, a mathematician may wonder why we
introduce compare functions in the first place.
The answer is: Because they are convenient and efficient
for writing programs involving total orders.</p>
<p>

</p>
<p></p>
<p></p>
<a name="node_sec_6"></a>
<h1><a href="#node_toc_node_sec_6">6&nbsp;&nbsp;Design Rationale</a></h1>
<p></p>
<p>
</p>
<p>
In this section we present our reasoning behind the design
decisions made for this SRFI.
We would like to be explicit on this because we believe
that design is not about the outcome of decisions but
about the alternatives considered.
The section is organized as a Q&amp;A list.</p>
<p>
</p>
<a name="node_sec_Temp_3"></a>
<h2><a href="#node_toc_node_sec_Temp_3">Order predicates (2-way) or 3-way comparisons?</a></h2>
<p>It is mathematical tradition to specify a total order
in terms of a ``less or equal'' (<u>&lt;</u>) relation.
This usually carries over to programming languages in the
form of a <tt>&lt;=</tt> predicate procedure.</p>
<p>
However, there are inherently <em>three</em> possible relations 
between two elements <em>x</em> and <em>y</em> with respect to a total order:
<em>x</em> &lt; <em>y</em>, <em>x</em>  =  <em>y</em>, and <em>x</em> &gt; <em>y</em>.
(With respect to a partial order there is a fourth:
<em>x</em> and <em>y</em> are uncomparable.)
This implies that any mechanism based on 2-valued 
operations (be it <u>&lt;</u>, or ( = , &lt;), or other)
has cases in which <em>two</em> expressions must be
evaluated in order to determine the relation between
two elements.</p>
<p>
In practice, this is a problem if a comparison
is computationally expensive.
Examples of this are implicitly defined orders in which the
order of elements depends on their relative position in some enumeration.
(Think of comparing graphs by isomorphism type.)
In this case, each order predicate is as expensive as a
compare procedure -- implying that a proper 3-way branch
could be twice as fast as cascaded 2-way branches.
Hence, there is a potentially considerable loss in performance,
and it is purely due to the interface for comparisons.</p>
<p>
The primary disadvantage of bare 3-way comparisons
is that they are less convenient, both in use and 
in their definition.
Luckily, this problem can be solved quite satisfactorily using
the syntactic (macro) and procedural abstractions of Scheme
(refer to Sections&nbsp;<a href="#node_sec_4.5">4.5</a> and <a href="#node_sec_4.6">4.6</a>).</p>
<p>
</p>
<a name="node_sec_Temp_4"></a>
<h2><a href="#node_toc_node_sec_Temp_4">How to represent the three cases?</a></h2>
<p>We have considered the following alternatives for representing
the three possible results of a comparison:
</p>
<ol>
<li><p>the exact integers -1, 0, and 1 (used in this SRFI),
</p>
<li><p>the sign of an exact immediate integer,
</p>
<li><p>the sign of any Scheme number satisfying <tt>real?</tt>,
</p>
<li><p>three different symbols (e.g. <tt>'&lt;</tt>, <tt>'=</tt>, and <tt>'&gt;</tt>),
</p>
<li><p>an enumeration type consisting of three elements, and
</p>
<li><p>a built-in type with self-evaluating special constants
(e.g. <tt>#&lt;</tt>, <tt>#=</tt>, and <tt>#&gt;</tt>).
</p>
</ol><p>
The representation acts as an internal interface between 
programs comparing objects and programs using these comparisons.</p>
<p>
The advantage of using only three values is that the 
representation of each case is uniquely defined.
In particular, this enables the use of <tt>case</tt>
instead of <tt>if</tt>, and it ensures portability.
Portability of numbers is problematic in 
R<sup>5</sup>RS  due to 
underspecification and inexactness.</p>
<p>
The advantage of using a non-unique (numerical) representation
is that the result of a computation can sometimes immediately be
used in a branch, much like the ``non-<tt>#f</tt> means true''-convention.
However, with the operations in Section&nbsp;<a href="#node_sec_4.6">4.6</a>
this advantage hardly matters.
Moreover, the ``non-<tt>#f</tt> means true''-convention is
a major cause of unexpected program behavior itself.</p>
<p>
The advantage of using { <tt>-</tt> 1, 0, 1} over using three 
symbols is that the integers support additional operations,
for example they can directly be used in index computations.
A particularly useful operation is <tt>(* sign (compare x y))</tt>
which inverts the order relation depending on <tt>sign</tt>
(either  <tt>-</tt> 1 or 1).
In addition, the integers are unique -- once it is known that
comparisons result in integers it is obvious which integers.
A minor consideration is that Scheme systems usually
treat small integers as unboxed values, and that integers
are self-evaluating literals.</p>
<p>
The advantage of using three symbols is that they can be
chosen to be more descriptive.
For example, it is more instructive to see 
<tt>(symbol-compare 'foo 'bar)</tt>
result in <tt>'greater</tt> than in <tt>1</tt>.
Unfortunately, there is no obvious choice of name for the
three symbols.
Amoung the choices that make sense are
<tt>'less</tt> <tt>'equal</tt> <tt>'greater</tt>,
or <tt>'lt</tt> <tt>'eq</tt> <tt>'gt</tt>,
or <tt>'&lt;</tt> <tt>'=</tt> <tt>'&gt;</tt>.
A disadvantage of using symbols for the three cases is
that Scheme symbols are ordered, too, and this ordering
may differ from the desired ordered for the three cases.</p>
<p>
Some Scheme implementations provide a mechanism for
defining enumeration types. 
For example <tt>define-enumerated-type</tt>
of Scheme&nbsp;48 can be used to define a type
<tt>comparison</tt> consisting of three objects, 
say <tt>lt</tt>, <tt>eq</tt>, <tt>gt</tt>.
The enumeration can also (directly) be defined on top of 
SRFI&nbsp;9 (Defining Record Types) [<a href="#node_bib_10">10</a>]
by defining three new record types, each of which
having a single instance.
We regard this approach as preferable over three symbols
because comparison results have their own type,
and a sufficiently advanced compiler could use this
information to eliminate redundant type-checks.</p>
<p>
One step further in this direction is the following
design alternative we have considered:
Due to the fundamental nature of the type 
<tt>comparison</tt> for programming,
it would be worthwhile integrating it into the
core language of Scheme.
This could take the following form:
There are three self-evaluating constants,
e.g. written <tt>#&lt;</tt> <tt>#=</tt> <tt>#&gt;</tt>,
and these are the only instances of the type
<tt>comparison</tt>.
The type supports two operations:
<tt>comparison?</tt> and <tt>comparison-compare</tt>.
Furthermore, <tt>eq?</tt>, <tt>eqv?</tt>,
and <tt>equal?</tt> need to understand the
comparison values.
In other words, <tt>comparison</tt> is designed
after <tt>boolean</tt>.
It is unclear, however, which problem this tight integration
of comparisons into the language is solving.</p>
<p>
Given this situation, we have chosen for { <tt>-</tt> 1,0,1},
while providing facilities for using this conveniently -- in 
particular it is hardly ever necessary to deal with
the integers directly.</p>
<p>
</p>
<a name="node_sec_Temp_5"></a>
<h2><a href="#node_toc_node_sec_Temp_5">How to order complex numbers?</a></h2>
<p>Mathematically, no total order of the complex numbers exists
which is compatible with the algebraic or topological structure.
Nevertheless, it is useful for programming purposes to have
<em>some</em> total order of complex numbers readily available.</p>
<p>
Several total orders on the complex numbers are at least 
compatible with the natural ordering of real numbers.
The least surprising of these is lexicographic on (<em>r</em><em>e</em>, <em>i</em><em>m</em>).</p>
<p>
</p>
<p>
</p>
<a name="node_sec_Temp_6"></a>
<h2><a href="#node_toc_node_sec_Temp_6">How to order special floating point symbols?</a></h2>
<p>Floating point formats often do not only represent rational
numbers but extend this set by special symbols, for example
+Inf, -Inf, NaN (``Not a number''), and -0.
How should these symbols be ordered with respect to the
ordinary numerical values and with respect to each other?
(Refer to the discussion archive starting with
<a href="http://srfi.schemers.org/srfi-67/mail-archive/msg00010.html">msg00010</a>.)</p>
<p>
Let us briefly recall the purpose of the special symbols.
The general rationale for introducing special symbols into
a floating point format is for numerical calculations to 
continue in the presence of data-dependent errors, 
while still retaining some meaningful information
about the result.
The symbols +Inf and -Inf indicate that the calculation
has produced a value exceeding the representable range.
The special symbol -0, indicates that a calculation has
produced a value of unrepresentable small magnitude,
but retains the information that the underflow approached
zero from the negative side (otherwise it would be +0).
This sign information is useful in the presence of branch-cuts.
Finally, NaN indicates that the information about the
value has been lost entirely (example: -Inf + Inf)
NaN avoids raising an exception and allows carrying on
with other parts of the calculation.
It should be noted that several NaNs can exist.
For example in the IEEE 754 standard many bit patterns
represent NaN (whatever the interpretation).</p>
<p>
As +Inf and -Inf are designed to represent extremal numbers,
their ordering with respect to real numbers is obvious.
For signed zeros, the ordering is also obvious.
However, the notion of two zeros (or even three: -0, 0, and +0)
is incompatible with the arithmetic structure of the real numbers.
Hence, in most situations all zeros should be treated as equal,
even though this can destroy information about results.
But the alternative design may also make sense in certain
situations where the full information carried in a floating
point object is to be retained.</p>
<p>
For NaN (or even several NaNs) the situation is even
more ambiguous because there is not even a natural order
relation of NaN with the other possible floating point values.
One design alternative is to raise an error if NaN is to
participate in a comparison; the reasoning being ``if the
control flow depends on a NaN you are in trouble anyway''.
An alternative is to define some order by force; the
reasoning being ``if an object satisfies <tt>real?</tt>
then it can be compared with <tt>real-compare</tt>.''
Neither approach is obviously better than the other.</p>
<p>
Given this situation, we have decided to leave the effect of
using a special floating point value in <tt>real-compare</tt>
unspecified, in line with the approach of 
R<sup>5</sup>RS .
This approach might change once Scheme itself is more
explicit about floating point representations and
numerical computation.</p>
<p>
</p>
<a name="node_sec_Temp_7"></a>
<h2><a href="#node_toc_node_sec_Temp_7">How to define <tt>default-compare</tt>?</a></h2>
<p>The purpose of <tt>default-compare</tt> is providing <em>some</em>
well-defined way of comparing two arbitrary Scheme values.
This can be used in all situations in which the user is 
unwilling to define a compare procedure explicitly,
for example because the actual details of the total order
do not really matter.</p>
<p>
As an example, consider the task of dealing
with sets of sets of integers. 
In this case, one could simply use sorted lists without
repetition for representing lists and <tt>default-compare</tt>
already provides a total order.</p>
<p>
However, there are limits as to how <tt>default-compare</tt> can be defined.  
For example, <tt>default-compare</tt> cannot easily be based on a hash 
code derived from the pointer representing an object due to the close
dependency with the garbage collection mechanism.
Also, we believe it to be more useful to applications if
<tt>default-compare</tt> is based on type and structure.</p>
<p>
Unfortunately, this imposes limits on what can be compared
using <tt>default-compare</tt> because it is very desireable to
have a portable reference implementation.
In particular, portable ways of dealing with circular structures
are overly costly.</p>
<p>
Naturally, the question arises how the types should be ordered.
For this question it is useful to understand that 
<tt>boolean-compare</tt> and <tt>pair-compare</tt> both already
define a total order for all values (at least in priciple).
Hence, <tt>default-compare</tt> could refine one of them,
but unfortunately not both at the same time (unless
<tt>#f</tt> and <tt>'()</tt> are minimum and maximum of the order, 
respectively).
Since <tt>pair-compare</tt> is more frequently used than
<tt>boolean-compare</tt> we base <tt>default-compare</tt>
on <tt>pair-compare</tt>.
The other portably comparable types are ordered by
increasing complexity, which clearly is an arbitrary choice.</p>
<p>
</p>
<a name="node_sec_Temp_8"></a>
<h2><a href="#node_toc_node_sec_Temp_8">What is the ``lexicographic order''?</a></h2>
<p>The <em>lexicographic order</em> is a general way of defining
an ordering for sequences from an ordering of elements:</p>
<p>
In the lexicographic order, the empty sequence is the smallest
sequence of all, and two non-empty sequences are first compared
by their first element and only if these are equal the residual
sequences are compared, recursively.</p>
<p>
The lexicographic order has its name from its use in a lexicon:
For example, <em>fun</em> &lt; <em>funloving</em> &lt; <em>jolly</em>.</p>
<p>
</p>
<a name="node_sec_Temp_9"></a>
<h2><a href="#node_toc_node_sec_Temp_9">What is the ``natural order'' of lists and vectors?</a></h2>
<p>By ``natural order'' of an abstract data type we mean a total order
that is defined to match the basic operations operations supported
by the data type.</p>
<p>
The basic access operations with constant execution time 
for Scheme lists are <tt>null?</tt>, <tt>car</tt>, and <tt>cdr</tt>.
These are exactly the operations needed for comparing two
sequences lexicographically.</p>
<p>
The constant time access operations for Scheme vectors
are <tt>vector-length</tt> (size) and <tt>vector-ref</tt> (ref).
Using these operations, the fundamental ordering of vectors
is first comparing by size,
and only if the sizes are equal,
by comparing the elements lexicographically.</p>
<p>
</p>
<a name="node_sec_Temp_10"></a>
<h2><a href="#node_toc_node_sec_Temp_10">Why are vectors not ordered lexicographically?</a></h2>
<p>In this SRFI, lists and strings are ordered
lexicographically (`LEX') by default, e.g.&nbsp;<tt>&quot;12&quot;</tt> &lt; <tt>&quot;2&quot;</tt>.
The default order of vectors is first by length and then
lexicographically (`LENGTH-LEX'), e.g.&nbsp;<tt>#(2)</tt> &lt; <tt>#(1 2)</tt>.
Alternatively, vectors could be ordered purely lexicographically, too.
In the extreme, lists, strings, and vectors could even be
ordered lexicographically as sequences without distinguishing
the concrete representation,
implying <tt>&quot;12&quot;</tt> 
 =  <tt>(#\1 #\2)</tt> 
 =  <tt>#(#\1 #\2)</tt>.</p>
<p>
The choice affects <tt>vector-compare</tt>, <tt>default-compare</tt>,
and the way orders are interpreted conceptually.
Moreover, this SRFI introduces the terminology ``ordered as lists'' 
and ``ordered as vectors'' to refer to the two fundamental
ways of lifting an order to sequences (LEX and LENGTH-LEX).
The choice also has implications for any other SRFI 
introducing container data types (e.g. 66 and 74), 
in case the author wishes to specify default compare
procedures compatible with this SRFI.</p>
<p>
Summarizing the discussion, there seem to be three major arguments:
</p>
<ol>
<li><p>Conceptually vectors and lists are representations of sequences, 
and if there is only one ordering for them it should be LEX.
</p>
<li><p>LENGTH-LEX is more fundamental and efficient for types
supporting a constant-time `size' operation.
</p>
<li><p>Conceptually strings are ``vectors of characters'' and 
strings are conventionally ordered LEX by default, 
so vectors should be ordered LEX as well in order to 
minimize the potential for confusion.
</p>
</ol><p>
(Please refer to the discussion archive for details, in particular
<a href="http://srfi.schemers.org/srfi-67/mail-archive/msg00054.html">msg00054</a>.)</p>
<p>
We consider 2. the most important due to its mathematical nature,
followed by 1. because it simplifies the design.
While this controversial, we think that it is preferable
to introduce different orders for different data types,
and not derive every order from a single one for sequences.
Finally, we consider 3. a weak argument because the default
ordering of strings is motivated primarily historically for
ordering written words of (small alphabet) natural languages.</p>
<p>
Concerning other vector-like data types, such as those 
introduced by SRFI 66 and 74, we recommend to define a
default ordering which appears most natural for the type.
These can conveniently be named <tt><i>type</i>-as-<i>ordering</i></tt>.
In cases where the order is of minor importance,
we recommend to be compatible with this SRFI.</p>
<p>
</p>
<a name="node_sec_Temp_11"></a>
<h2><a href="#node_toc_node_sec_Temp_11">Why so few higher-order constructions?</a></h2>
<p>An alternative for the control structures (macros) <tt>refine-compare</tt>,
<tt>select-compare</tt>, and <tt>cond-compare</tt> is a set of
higher-order procedures for constructing compare procedures.</p>
<p>
We have chosen for control structures instead of higher-order
procedures for simplicity.
This becomes particularly evident when a recursive compare procedure,
e.g. <tt>default-compare</tt>, is to be defined.
Using <tt>select-compare</tt> it is possible to define <tt>default-compare</tt> simply
as a procedure calling itself in some branches (refer to the example in
Section&nbsp;<a href="#node_sec_4.4">4.4</a>).
In the higher-order approach, the procedure under construction must also
be able to call itself, with arguments that are application specific.
Expressing this with a flexible higher-order procedure is much more indirect. </p>
<p>
</p>
<a name="node_sec_Temp_12"></a>
<h2><a href="#node_toc_node_sec_Temp_12">Why the operations <tt>&lt;?</tt>, <tt>&lt;=?</tt> etc.?</a></h2>
<p>Programs need both 2-way branching and 3-way branching.
For 3-way branching, the conditional <tt>if3</tt>
is provided.</p>
<p>
For 2-way branching, the set { <tt>-</tt> 1,0,1} of results of
a comparison is mapped onto the set {<tt>#f</tt>, <tt>#t</tt>}.
There are eight functions from a 3-set into a 2-set;
all six non-constant functions are provided as <tt>=?</tt>,
<tt>&lt;?</tt>, etc.</p>
<p>
The five monotonic functions can be generalized to 
chains of values.
In order to make the compare procedure parameter optional
in the ordinary comparisons, separate operations 
(<tt>chain&lt;?</tt>, <tt>chain&lt;=?</tt> etc.) are defined for chains.
For the sixth operation (<tt>not=?</tt>) the generalization
to pairwise unequality is defined as <tt>pairwise-not=?</tt>.
This operation can be implemented efficiently because the
compare procedure also defines a total order.</p>
<p>
As chains of length three are still frequently tested in
programs (think of a range check ``0 <u>&lt;</u> <em>i</em> &lt; <em>n</em>''),
and often two different relations are combined, 
there are special operations for chains of length three
(<tt>&lt;/&lt;?</tt>, <tt>&lt;/&lt;=?</tt>, etc.)</p>
<p>
For convenience, the compare procedure argument is
made optional as often as possible. 
Unfortunately, this opens up a possibility for mistake:
Writing <tt>(&lt;=? x y z)</tt> where <tt>(&lt;=/&lt;=? x y z)</tt> is meant.
Fortunately, the mistake will likely manifest itself at the
time <tt>(x y z)</tt> is evaluated.</p>
<p>
</p>
<a name="node_sec_Temp_13"></a>
<h2><a href="#node_toc_node_sec_Temp_13">Why are <tt>&lt;?</tt> etc. procedures, not macros?</a></h2>
<p>The procedures <tt>&lt;?</tt>, <tt>&lt;/&lt;?</tt>, <tt>chain&lt;?</tt> etc.
could also have been specified as macros.
This would have the advantage that they could make full use
of ``short evaluation'': A chain of comparisons stops as
soon as one of the comparisons has failed; all remaining
argument expressions and comparisons need not be evaluated.
This is potentially more efficient.</p>
<p>
The advantage of procedures, on the other hand, is that
in Scheme they are ``first class citizens,'' meaning that
they can be passed as arguments and returned from higher-order
procedures.</p>
<p>
Taking this approach one step further, one can even require
the compare procedures to check the types of all arguments,
even if the result of the comparison is already known.
This is what Section&nbsp;6.2.5 of 
R<sup>5</sup>RS  calls ``transitive``
behavior of the predicates <tt>=</tt>, <tt>&lt;</tt>, etc.
For example, <tt>(&lt; 0 x y)</tt> first tests if <tt>x</tt> is positive,
and only if this is the case <tt>(&lt; x y)</tt> is tested.
But even if <tt>x</tt> is not positive it is checked that 
<tt>y</tt> is indeed a <tt>real</tt> -- otherwise an error is raised.
In ``short evaluation,'' on the contrary, if <tt>x</tt> is not
positive, <tt>y</tt> can be an arbitrary Scheme value.</p>
<p>
Clearly, ``transitive'' tests have an overhead, namely that
they need to execute potentially redundant type checks.
Even worse, as types are only known to the compare procedure
the only way to check the type of a value is to compare it,
maybe with itself (which should result in 0 by definition
of a compare procedure).</p>
<p>
The advantage of ``transitive'' comparisons is the automatic
insertion of a type assertion.
For example, after <tt>(chain&lt;? integer-compare x y z)</tt> 
has been evaluated, no matter the result, 
it is known that <tt>x</tt>, <tt>y</tt>, and <tt>z</tt> are integers.
We consider this advantage sufficiently important to pay the price.</p>
<p>
</p>
<a name="node_sec_Temp_14"></a>
<h2><a href="#node_toc_node_sec_Temp_14">Why <tt>compare-by&lt;</tt> etc.?</a></h2>
<p>It is often easier to define an order predicate,
and possibly a separate equivalence relation,
than it is to define a compare procedure.
For this case, <tt>compare&lt;</tt> etc. provide a convenient
and robust way of constructing the associated compare
procedure.</p>
<p>
As has been learned from writing the reference implementation,
despite the fact that each of these procedures is just a few
lines of trivial code, they miraculously attract bugs.</p>
<p>
</p>
<a name="node_sec_Temp_15"></a>
<h2><a href="#node_toc_node_sec_Temp_15">How do I define a compare function from just an equivalence?</a></h2>
<p>You better don't.</p>
<p>
A compare function defines a total order on equivalence classes,
and vice versa (refer to Section&nbsp;<a href="#node_sec_5">5</a>).
Hence, a compare procedure <tt>compare</tt> can be used to
test equivalence: <tt>(=? compare <em>x</em> <em>y</em>)</tt>.</p>
<p>
In reverse, one could be tempted to define a ``compare function''
<em>c</em> from just an equivalence relation ~ as <em>c</em>(<em>x</em>, <em>y</em>)  =  0
if <em>x</em> ~ <em>y</em> and <em>c</em>(<em>x</em>, <em>y</em>)  =  1 otherwise.
However, <em>c</em> is not antisymmetric (unless all objects are equivalent,
i.e. <em>c</em>(<em>x</em>,<em>y</em>)  =  0 for all <em>x</em>, <em>y</em>) and hence it is not a compare function.
In fact, there is no way at all of avoiding a total order on the equivalence classes.</p>
<p>
This is also reflected in the fact that there are efficient
(log-time) search data structures based on a total order,
but we know of no efficient (sublinear worst-case) data
structures based solely on an equivalence relation.
The following program takes time and space <em>O</em>(<em>h</em>),
where <em>h</em> is the number of equivalence classes in use:</p>
<p>
</p>
<tt>(define&nbsp;(equal-&gt;compare&nbsp;equal)<br>
&nbsp;&nbsp;(let&nbsp;((reps&nbsp;'())&nbsp;(length-reps&nbsp;0))<br>
&nbsp;&nbsp;&nbsp;&nbsp;(define&nbsp;(index&nbsp;x)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(let&nbsp;loop&nbsp;((i&nbsp;(-&nbsp;length-reps&nbsp;1))&nbsp;(rs&nbsp;reps))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(if&nbsp;(null?&nbsp;rs)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(let&nbsp;((i&nbsp;length-reps))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(set!&nbsp;reps&nbsp;(cons&nbsp;x&nbsp;reps))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(set!&nbsp;length-reps&nbsp;(+&nbsp;length-reps&nbsp;1))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;i)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(if&nbsp;(equal&nbsp;x&nbsp;(car&nbsp;rs))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;i<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(loop&nbsp;(-&nbsp;i&nbsp;1)&nbsp;(cdr&nbsp;rs))))))<br>
&nbsp;&nbsp;&nbsp;&nbsp;(lambda&nbsp;(x&nbsp;y)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(integer-compare&nbsp;(index&nbsp;x)&nbsp;(index&nbsp;y)))))<br>
</tt><p>
If <tt>equal</tt> is an equivalence predicate (i.e. it is reflexive,
symmetric, and transitive) then <tt>(equal-&gt;compare equal)</tt>
is a compare procedure for the objects comparable by <tt>equal</tt>.
The total order defined is unspecified (as it depends on call sequence).</p>
<p>
Note that the equivalence predicate <tt>equal</tt> could be defined
by using a <em>union-find data structure</em>.
But keep in mind that the equivalence relation represented by <tt>equal</tt>
must not change while <tt>(equal-&gt;compare equal)</tt> is in use-so the
union-find data structure must be unite classes. </p>
<p>
</p>
<a name="node_sec_Temp_16"></a>
<h2><a href="#node_toc_node_sec_Temp_16">How do I switch from 
R<sup>5</sup>RS  to this SRFI?</a></h2>
<p>As it happens, the specification of this SRFI is fully
compatible with the 25 order predicates found in 
R<sup>5</sup>RS .
The easiest way of switching is by defining the 
R<sup>5</sup>RS 
operations in terms of this SRFI.
Refer to the file <a href="http://srfi.schemers.org/srfi-67/implementation/r5rs-to-srfi.scm">r5rs-to-srfi.scm</a>
for the corresponding Scheme-code.</p>
<p>
Alternatively, each expression involving a reference to an

R<sup>5</sup>RS  order predicate can be transformed into an equivalent 
expression using the facilities of this SRFI.
Be reminded though that this requires an understanding of
the <em>context</em> of the expression in question,
in particular variable bindings, macro definitions,
and the use of <tt>eval</tt>.</p>
<p>
However, if the meaning of an expression may be altered,
it is often possible to increase type safety or simplicity.
Consider for example the following potential replacements
of <tt>(and (&lt;= 0 i) (&lt; i n))</tt>:
</p>
<tt>&nbsp;&nbsp;(and&nbsp;(&lt;=?&nbsp;real-compare&nbsp;0&nbsp;i)&nbsp;(&lt;?&nbsp;real-compare&nbsp;i&nbsp;n))<br>
&nbsp;&nbsp;(&lt;=/&lt;?&nbsp;real-compare&nbsp;0&nbsp;i&nbsp;n)&nbsp;&nbsp;&nbsp;&nbsp;;&nbsp;always&nbsp;compares&nbsp;<tt>n</tt><br>
&nbsp;&nbsp;(&lt;=/&lt;?&nbsp;integer-compare&nbsp;0&nbsp;i&nbsp;n)&nbsp;;&nbsp;only&nbsp;integer&nbsp;<tt>i</tt>,&nbsp;<tt>n</tt><br>
&nbsp;&nbsp;(&lt;=/&lt;?&nbsp;0&nbsp;i&nbsp;n)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;;&nbsp;uses&nbsp;<tt>default-compare</tt><br>
</tt><p>
Only the first alternative is equivalent to the original
expression, but the other alternatives might be useful, too,
depending on the goal.</p>
<p>
</p>
<a name="node_sec_Temp_17"></a>
<h2><a href="#node_toc_node_sec_Temp_17">Why be so tight with types?</a></h2>
<p>Most procedures and macros in this SRFI are required to 
signal an error if an argument is not according to the
type specified, in particular comparison values must be
exact integer in { <tt>-</tt> 1,0,1} at all times.
Alternatively, we could have specified that procedures and
macros accept values as general as makes sense.</p>
<p>
We believe that being tight on types at this fundamental
level of a language pays off quickly.
In particular, this will simplify debugging.
Moreover, static analysis of a program will recognize
more variables of a known type, which allows for more
unboxed values and tighter compiled code.
(Clearly, at the time of this writing this is speculative.)</p>
<p>
</p>
<a name="node_sec_Temp_18"></a>
<h2><a href="#node_toc_node_sec_Temp_18">Is there a performance penalty for this SRFI?</a></h2>
<p>Yes and no.</p>
<p>
The focus of the reference implementation is correctness and 
portability; performance will very likely suffer due to the
overhead of internal procedure calls and type-checking.</p>
<p>
But as the word ``SRFI'' suggests, this document is a ``request
for implementation,'' meaning we would love to see this SRFI
being implemented efficiently by the implementation experts of
particular Scheme systems.
In practice, this means that most of the operations defined
here, if not all, are supported natively.</p>
<p>
In this case, there is no performance penalty for using the
mechanisms of this SRFI -- using this SRFI might even be faster
due to explicit 3-way branching and better typing.</p>
<p>
</p>
<a name="node_sec_Temp_19"></a>
<h2><a href="#node_toc_node_sec_Temp_19">Why are there optional leading arguments?</a></h2>
<p>Some operations have an optional first argument.
This is in contrast to common practice in Scheme to
put optional arguments after mandatory arguments.</p>
<p>
The leading optional argument is always the argument
<i>compare</i>, representing the total order to be used.
If it is missing <tt>default-compare</tt> is used.</p>
<p>
In the cases where we have chosen to make <i>compare</i>
optional it is for the sake of brevity, e.g. in <tt>(&lt;? x y)</tt>
instead of enforcing <tt>(&lt;? default-compare x y)</tt>.
Although an option introduces potential for confusion
(e.g. <tt>(&lt;? x y z)</tt> vs. <tt>(&lt;/&lt;? x y z)</tt>),
we consider it an important feature for interactive use
and convenient programming
(e.g. in <tt>(do ((i 0 (+ i 1))) ((=? i n)))</tt>).</p>
<p>
Given our decision for optional <i>compare</i>,
the question arises how to pass the option.
In the absence of other widely accepted mechanisms for options,
we can only vary the length of the argument list.
For historical reasons -- before <tt>case-lambda</tt> of SRFI 16 -- 
optional arguments are passed at the end of the argument list
for simplified parsing.
On the other hand, <tt>(&lt;? compare x y)</tt> is more consistent
with the rest of the SRFI than <tt>(&lt;? x y compare)</tt>.</p>
<p>
Unfortunately, any particular choice here is a compromise,
and it is also controversial.
(Please refer to the discussion archive for details, in particular 
<a href="http://srfi.schemers.org/srfi-67/mail-archive/msg00051.html">msg00051</a>.)
We have chosen for notational convenience in the common 
case (optional <i>compare</i>) and for 
consistency within this SRFI (leading optional argument).</p>
<p>
</p>
<a name="node_sec_Temp_20"></a>
<h2><a href="#node_toc_node_sec_Temp_20">Why <tt>chain&lt;?</tt> etc. and not a predicate parameter?</a></h2>
<p>This SRFI specifies the five chain predicates <tt>chain=?</tt>, 
<tt>chain&lt;?</tt>, <tt>chain&gt;?</tt>, <tt>chain&lt;=?</tt>, and <tt>chain&gt;=?</tt>.
An alterative is to define a single chain predicate that 
has the ordering as a parameter.
(Refer to the discussion archive starting with
<a href="http://srfi.schemers.org/srfi-67/mail-archive/msg00012.html">msg00012</a>.)</p>
<p>
The reason we have chosen for five chain predicates is that
we use compare procedures to represent orders, not predicate
procedures.
There are five possible order relations predicates for which
a chain test makes sense. (The sixth, <tt>not=?</tt>, is not 
not transitive and hence requires pairwise testing.)
The five chain tests are clearly defined and can be
implemented efficiently, their main overhead being the
call to the compare procedure.</p>
<p>
</p>
<a name="node_sec_Temp_21"></a>
<h2><a href="#node_toc_node_sec_Temp_21">Why not more higher-order procedures?</a></h2>
<p>In this SRFI <tt>min-compare</tt> accepts a compare procedure as
a first mandatory argument, applying the minimum operation to
the list of all other arguments.
An alternative is to have <tt>min-compare</tt> accept only
the compare procedure (possibly optional) and returing a
procedure computing the minimum of all its arguments
(with respect to the compare procedure.)
In a similar fashion other operations can specified as
higher-order procedures.</p>
<p>
We have avoided higher-order procedures in this SRFI
for simplicity and efficiency.
As said repeatedly, compare procedures are the main
vehicle to transport total orders from the code site
definine an order to the code site using an order.
Moreover, most operations made available through this 
SRFI appear rather infrequently in programs, so either
way there is little to be gained.
Finally, dealing with higher-order procedures often
involves writing more parentheses and the more simple-minded
Scheme systems will create many short-lived closures.</p>
<p>
</p>
<a name="node_sec_Temp_22"></a>
<h2><a href="#node_toc_node_sec_Temp_22">Why do <tt>&lt;?</tt> etc. have so many options?</a></h2>
<p>The procedures <tt>=?</tt>, <tt>&lt;?</tt> etc. accept an optional
compare procedure but also two optional arguments to compare.
This could be made simpler by not specifying some of
the cases, or by specifying different procedures for the
different functions.</p>
<p>
The operations <tt>&lt;?</tt> etc. are the primary mechanism
for using compare procedures.
As such they should be versatile and concise.</p>
<p>
Our original design had two mandatory arguments for
objects to compare and an optional argument for the
compare procedure, i.e. it provides a parametric
comparison <tt>(&lt;? compare x y)</tt> of two objects.
Amir Livne Bar-On then raised the issue of
having better support for a higher-order style of
programming, i.e. <tt>((&lt;? compare) x y)</tt>.
(Refer to <a href="http://srfi.schemers.org/srfi-67/mail-archive/msg00012.html">msg00012</a>.)</p>
<p>
However, in Scheme the higher-order style is 
less convenient than it is in curried programming 
languages like Haskell or ML.
In practice this manifests itself as follows:
The most basic and frequent case of comparing
atomic objects with respect to the default ordering would
read <tt>((&lt;=?) x y)</tt>, 
which is just two parentheses short of optimal.</p>
<p>
Fortunately, Dave Mason proposed a syntax for resolving
the apparent alternative parametric test vs. higher order style.
(Refer to
<a href="http://srfi.schemers.org/srfi-67/mail-archive/msg00014.html">msg00014</a>.)
By combining both functionalities into a single procedure,
the user can choose the style at any moment.
</p>
<a name="node_sec_7"></a>
<h1><a href="#node_toc_node_sec_7">7&nbsp;&nbsp;Related work</a></h1>
<p>The use of compare procedures is not new; 
defining control structures (<tt>if3</tt>, <tt>select-compare</tt> etc.)
for dealing with them efficiently, however, seems to be new
(at least we have not seen it before).</p>
<p>
Total ordering in 
R<sup>5</sup>RS  is represented by typed order
predicates, such as <tt>&lt;=</tt>, <tt>char&lt;=?</tt> etc.
Although a ``less or equal''-predicate is sufficient to define
a total order, 
R<sup>5</sup>RS  defines a complete set of compare
predicates (that is  = , &lt;, &gt;, <u>&lt;</u>, and <u>&lt;</u>) for
the sake of convenience and readability.
There are 25 procedures related to total orders in 
R<sup>5</sup>RS .
These are named 
(<tt>=</tt>|<tt>&lt;</tt>|<tt>&gt;</tt>|<tt>&lt;=</tt>|<tt>&gt;=</tt>) and 
(<tt>char</tt>|<tt>string</tt>)[<tt>-ci</tt>](<tt>=</tt>|<tt>&lt;</tt>|<tt>&gt;</tt>|<tt>&lt;=</tt>|<tt>&gt;=</tt>)<tt>?</tt>.</p>
<p>
The traditional approach in Scheme to equivalence (``Are two 
values treated as equal?'') is the fixed set of predicates
<tt>eq?</tt>, <tt>eqv?</tt>, and <tt>equal?</tt>.
Historically, this approach was motivated by the desire to
compare only pointers and avoid structural recursion.
This SRFI provides the generalization to arbitrary equivalence
relations, provided the equivalence classes are totally ordered.</p>
<p>
The Ruby programming language [<a href="#node_bib_4">4</a>] provides a method 
<tt>&lt;=&gt;</tt> which is a compare procedure in the sense of this SRFI.
By (re-)defining this method a total order can be defined 
for the instances of a class, when compared against other objects. 
All 2-way comparisons are based on <tt>&lt;=&gt;</tt>,
but in Ruby essentially every method can be overloaded.</p>
<p>
In the Haskell&nbsp;98 programming language [<a href="#node_bib_6">6</a>] order
predicates and compare functions coexist.
The type <tt>Ordering</tt> [<a href="#node_bib_6">6</a>,&nbsp;Sect&nbsp;6.1.8] is an 
enumeration of the three symbolic constants 
<tt>LT</tt>, <tt>EQ</tt>, <tt>GT</tt>.
The type class <tt>Ord</tt> [<a href="#node_bib_6">6</a>,&nbsp;Sect&nbsp;6.3.2] asserts
the presence of a total order for a type, provided
the type class <tt>Eq</tt> [<a href="#node_bib_6">6</a>,&nbsp;Sect&nbsp;6.3.1] also
asserts the presence of an equivalence.
Since the default definition of the method <tt>compare</tt>
is in terms of the methods <tt>==</tt> and <tt>&lt;=</tt>,
and vice versa, it can be chosen easily how to provide
the total order without affecting its pattern of use.
</p>
<p>
The C function <tt>strcmp</tt> [<a href="#node_bib_7">7</a>] of the ``string.h''-library acts as a compare procedure
in the sense of this SRFI,
although it is specified to return an integer of
which only the sign matters.
Python [<a href="#node_bib_5">5</a>] has a built-in function <tt>cmp</tt>
which is a compare procedure in the sense of this SRFI.</p>
<p>
In SRFI-32 (Sort libraries) [<a href="#node_bib_13">13</a>] the total orders
used for sorting are represented by a ``less than'' procedure.
The discussion archive [<a href="#node_bib_13">13</a>] contains a short
discussion thread on the use of 3-value comparisons under
the aspect whether they can be used to improve the sorting
algorithm itself.</p>
<p>
In the <tt>Galore.plt</tt> library of data structures for PLT Scheme,
total orders are represented by the signature definition
<tt>(define-signature 
order^ (elm= elm&lt; elm&lt;=))</tt>.</p>
<p>
</p>
<p>
</p>
<a name="node_sec_8"></a>
<h1><a href="#node_toc_node_sec_8">8&nbsp;&nbsp;Reference implementation</a></h1>
<p>The reference implementation is contained in the
file
<a href="http://srfi.schemers.org/srfi-67/implementation/compare.scm">compare.scm</a>;
it is implemented in 
R<sup>5</sup>RS 
(including hygienic macros) together with 
SRFI-16 (<tt>case-lambda</tt>) [<a href="#node_bib_9">9</a>]
SRFI-23 (<tt>error</tt>) [<a href="#node_bib_11">11</a>]
SRFI-27 (<tt>random-integer</tt>) [<a href="#node_bib_12">12</a>].</p>
<p>
Test code and examples are collected in 
<a href="http://srfi.schemers.org/srfi-67/implementation/examples.scm">examples.scm</a>;
it requires SRFI-42 (<tt>comprehensions</tt>) [<a href="#node_bib_14">14</a>].
The reference implementation and the testing code have
been developed and are known to run under
PLT/DrScheme 208p1 [<a href="#node_bib_15">15</a>],
Scheme 48 1.1 [<a href="#node_bib_16">16</a>], and
Chicken 1.70 [<a href="#node_bib_17">17</a>].</p>
<p>
Code defining the order predicates of 
R<sup>5</sup>RS  in terms
of this SRFI is in the file 
<a href="http://srfi.schemers.org/srfi-67/implementation/r5rs-to-srfi.scm">r5rs-to-srfi.scm</a>.
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p></p>
<p></p>
<a name="node_sec_Temp_23"></a>
<h1><a href="#node_toc_node_sec_Temp_23">References</a></h1>
<p></p>
<table>
<tr><td align=right valign=top><a name="node_bib_1"></a>[1]&nbsp;&nbsp;</td><td valign=top>
E.&nbsp;Weisstein:
<em>Totally&nbsp;Ordered&nbsp;Set</em>,<br>
Mathworld at Wolfram Research.<br>
<a href="http://mathworld.wolfram.com/TotallyOrderedSet.html">TotallyOrderedSet.html</a>
</td></tr>
<tr><td align=right valign=top><a name="node_bib_2"></a>[2]&nbsp;&nbsp;</td><td valign=top>
E.&nbsp;Weisstein:
<em>Equivalence&nbsp;Relation</em>,<br>
Mathworld at Wolfram Research.<br>
mathworld.wolfram.com/EquivalenceRelation.html
</td></tr>
<tr><td align=right valign=top><a name="node_bib_3"></a>[3]&nbsp;&nbsp;</td><td valign=top>
R.&nbsp;Kelsey, W.&nbsp;Clinger, J.&nbsp;Rees (eds.):
<em>Revised<sup>5</sup> Report on the Algorithmic Language Scheme</em>,<br>
Higher-Order and Symbolic Computation, Vol. 11, No. 1, August, 1998.<br>
<a href="http://www.schemers.org/Documents/Standards/R5RS/">www.schemers.org/Documents/Standards/R5RS/</a>
</td></tr>
<tr><td align=right valign=top><a name="node_bib_4"></a>[4]&nbsp;&nbsp;</td><td valign=top>
Y.&nbsp;Matsumoto: 
<em>Programming Ruby.
The Pragmatic Programmer's Guide.</em><br>
<a href="http://www.ruby-doc.org/docs/ProgrammingRuby/">www.ruby-doc.org/docs/ProgrammingRuby/</a>
</td></tr>
<tr><td align=right valign=top><a name="node_bib_5"></a>[5]&nbsp;&nbsp;</td><td valign=top>
G.&nbsp;van Rossum, F.&nbsp;L.&nbsp;Drake, Jr., (ed.):
<em>Python Library Reference</em>.
Release 2.4 of 30 November 2004.
Section 2.1 ``built-in functions''.
Python Software Foundation.<br>
<a href="http://docs.python.org/lib/lib.html">http://docs.python.org/lib/lib.html</a>
</td></tr>
<tr><td align=right valign=top><a name="node_bib_6"></a>[6]&nbsp;&nbsp;</td><td valign=top>
S. Peyton Jones (ed.):
<em>Haskell 98 Language and Libraries</em>
The Revised Report, December 2002.<br>
<a href="http://www.haskell.org/definition/">http://www.haskell.org/definition/</a>
</td></tr>
<tr><td align=right valign=top><a name="node_bib_7"></a>[7]&nbsp;&nbsp;</td><td valign=top> 
ANSI-C <em>ISO/IEC 9899:1999</em>, published 1 December.<br>
<a href="http://www.open-std.org/jtc1/sc22/wg14/www/standards">http://www.open-std.org/jtc1/sc22/wg14/www/standards</a>
</td></tr>
<tr><td align=right valign=top><a name="node_bib_8"></a>[8]&nbsp;&nbsp;</td><td valign=top>
J.&nbsp;A.&nbsp;S&oslash;gaard: 
<em>Data Structures Galore for PLT Scheme</em>.<br>
<a href="http://planet.plt-scheme.org:80/207.1/docs/soegaard/galore.plt/1/1/doc.txt">http://planet.plt-scheme.org:80/207.1/docs/soegaard/galore.plt/1/1/doc.txt</a>
</td></tr>
<tr><td align=right valign=top><a name="node_bib_9"></a>[9]&nbsp;&nbsp;</td><td valign=top>
L.&nbsp;T.&nbsp;Hansen:
<em>SRFI 16 Syntax for procedures of variable arity.</em><br>
<a href="http://srfi.schemers.org/srfi-16/">http://srfi.schemers.org/srfi-16/</a>
</td></tr>
<tr><td align=right valign=top><a name="node_bib_10"></a>[10]&nbsp;&nbsp;</td><td valign=top>
R. Kelsey:
<em>SRFI 9 Defining record types.</em><br>
<a href="http://srfi.schemers.org/srfi-9/">http://srfi.schemers.org/srfi-9/</a>
</td></tr>
<tr><td align=right valign=top><a name="node_bib_11"></a>[11]&nbsp;&nbsp;</td><td valign=top>
S.&nbsp;Houben: 
<em>SRFI 23 Error reporting mechanism.</em><br>
<a href="http://srfi.schemers.org/srfi-23/">http://srfi.schemers.org/srfi-23/</a>
</td></tr>
<tr><td align=right valign=top><a name="node_bib_12"></a>[12]&nbsp;&nbsp;</td><td valign=top>
S.&nbsp;Egner:
<em>SRFI 27 Sources of random bits.</em><br>
<a href="http://srfi.schemers.org/srfi-27/">http://srfi.schemers.org/srfi-27/</a>
</td></tr>
<tr><td align=right valign=top><a name="node_bib_13"></a>[13]&nbsp;&nbsp;</td><td valign=top>
O.&nbsp;Shivers: 
<em>SRFI 32 Sort libraries</em>.
Section ``Ordering, comparison functions &amp; stability''
and mail-archive msg000{23,24,33}.html.
SRFI has been withdrawn July 17, 2003.<br>
<a href="http://srfi.schemers.org/srfi-32/">http://srfi.schemers.org/srfi-32/</a>
</td></tr>
<tr><td align=right valign=top><a name="node_bib_14"></a>[14]&nbsp;&nbsp;</td><td valign=top>
S.&nbsp;Egner:
<em>SRFI 42 Eager comprehensions.</em><br>
<a href="http://srfi.schemers.org/srfi-42/">http://srfi.schemers.org/srfi-42/</a>
</td></tr>
<tr><td align=right valign=top><a name="node_bib_15"></a>[15]&nbsp;&nbsp;</td><td valign=top>
<em>PLT Scheme.</em><br>
<a href="http://www.plt-scheme.org/">http://www.plt-scheme.org/</a>
</td></tr>
<tr><td align=right valign=top><a name="node_bib_16"></a>[16]&nbsp;&nbsp;</td><td valign=top>
R.&nbsp;Kelsey, J.&nbsp;Rees:
<em>Scheme48, version 1.1.</em><br>
<a href="http://s48.org/">http://s48.org/</a>
</td></tr>
<tr><td align=right valign=top><a name="node_bib_17"></a>[17]&nbsp;&nbsp;</td><td valign=top>
<em>Chicken, version 1.70.</em><br>
<a href="http://www.call-with-current-continuation.org/">www.call-with-current-continuation.org</a>.
</table><p></p>


<h1 class=chapter>
<div class=chapterheading>&nbsp;</div><br>
<a href="srfi-67.html#node_toc_node_chap_Temp_24">Alphabetic Index</a></h1>
<p></p>
<p>
</p>
<p>
</p>
<p>
</p>

<a name="node_index_start"></a><p>
<br>
<a href="srfi-67.html#node_idx_76">&lt;/&lt;=?</a><br>
<a href="srfi-67.html#node_idx_74">&lt;/&lt;?</a><br>
<a href="srfi-67.html#node_idx_80">&lt;=/&lt;=?</a><br>
<a href="srfi-67.html#node_idx_78">&lt;=/&lt;?</a><br>
<a href="srfi-67.html#node_idx_68">&lt;=?</a><br>
<a href="srfi-67.html#node_idx_64">&lt;?</a><br>
<a href="srfi-67.html#node_idx_62">=?</a><br>
<a href="srfi-67.html#node_idx_84">&gt;/&gt;=?</a><br>
<a href="srfi-67.html#node_idx_82">&gt;/&gt;?</a><br>
<a href="srfi-67.html#node_idx_88">&gt;=/&gt;=?</a><br>
<a href="srfi-67.html#node_idx_86">&gt;=/&gt;?</a><br>
<a href="srfi-67.html#node_idx_70">&gt;=?</a><br>
<a href="srfi-67.html#node_idx_66">&gt;?</a></p>
<p>
<br>
</p>
<p></p>
<p></p>
<p>
<br>
<a href="srfi-67.html#node_idx_2">boolean-compare</a></p>
<p>
<br>
</p>
<p></p>
<p></p>
<p>
<br>
<a href="srfi-67.html#node_idx_96">chain&lt;=?</a><br>
<a href="srfi-67.html#node_idx_92">chain&lt;?</a><br>
<a href="srfi-67.html#node_idx_90">chain=?</a><br>
<a href="srfi-67.html#node_idx_98">chain&gt;=?</a><br>
<a href="srfi-67.html#node_idx_94">chain&gt;?</a><br>
<a href="srfi-67.html#node_idx_4">char-compare</a><br>
<a href="srfi-67.html#node_idx_6">char-compare-ci</a><br>
<a href="srfi-67.html#node_idx_108">compare-by&lt;</a><br>
<a href="srfi-67.html#node_idx_112">compare-by&lt;=</a><br>
<a href="srfi-67.html#node_idx_116">compare-by=/&lt;</a><br>
<a href="srfi-67.html#node_idx_118">compare-by=/&gt;</a><br>
<a href="srfi-67.html#node_idx_110">compare-by&gt;</a><br>
<a href="srfi-67.html#node_idx_114">compare-by&gt;=</a><br>
<a href="srfi-67.html#node_idx_20">complex-compare</a><br>
<a href="srfi-67.html#node_idx_46">cond-compare</a></p>
<p>
<br>
</p>
<p></p>
<p></p>
<p>
<br>
<a href="srfi-67.html#node_idx_120">debug-compare</a><br>
<a href="srfi-67.html#node_idx_40">default-compare</a></p>
<p>
<br>
</p>
<p></p>
<p></p>
<p>
<br>
<a href="srfi-67.html#node_idx_60">if-not=?</a><br>
<a href="srfi-67.html#node_idx_48">if3</a><br>
<a href="srfi-67.html#node_idx_56">if&lt;=?</a><br>
<a href="srfi-67.html#node_idx_52">if&lt;?</a><br>
<a href="srfi-67.html#node_idx_50">if=?</a><br>
<a href="srfi-67.html#node_idx_58">if&gt;=?</a><br>
<a href="srfi-67.html#node_idx_54">if&gt;?</a><br>
<a href="srfi-67.html#node_idx_14">integer-compare</a></p>
<p>
<br>
</p>
<p></p>
<p></p>
<p>
<br>
<a href="srfi-67.html#node_idx_106">kth-largest</a></p>
<p>
<br>
</p>
<p></p>
<p></p>
<p>
<br>
<a href="srfi-67.html#node_idx_28">list-compare</a><br>
<a href="srfi-67.html#node_idx_30">list-compare-as-vector</a></p>
<p>
<br>
</p>
<p></p>
<p></p>
<p>
<br>
<a href="srfi-67.html#node_idx_104">max-compare</a><br>
<a href="srfi-67.html#node_idx_102">min-compare</a></p>
<p>
<br>
</p>
<p></p>
<p></p>
<p>
<br>
<a href="srfi-67.html#node_idx_72">not=?</a><br>
<a href="srfi-67.html#node_idx_22">number-compare</a></p>
<p>
<br>
</p>
<p></p>
<p></p>
<p>
<br>
<a href="srfi-67.html#node_idx_36">pair-compare</a>, <a href="srfi-67.html#node_idx_38">[2]</a><br>
<a href="srfi-67.html#node_idx_32">pair-compare-car</a><br>
<a href="srfi-67.html#node_idx_34">pair-compare-cdr</a><br>
<a href="srfi-67.html#node_idx_100">pairwise-not=?</a></p>
<p>
<br>
</p>
<p></p>
<p></p>
<p>
<br>
<a href="srfi-67.html#node_idx_16">rational-compare</a><br>
<a href="srfi-67.html#node_idx_18">real-compare</a><br>
<a href="srfi-67.html#node_idx_42">refine-compare</a></p>
<p>
<br>
</p>
<p></p>
<p></p>
<p>
<br>
<a href="srfi-67.html#node_idx_44">select-compare</a><br>
<a href="srfi-67.html#node_idx_8">string-compare</a><br>
<a href="srfi-67.html#node_idx_10">string-compare-ci</a><br>
<a href="srfi-67.html#node_idx_12">symbol-compare</a></p>
<p>
<br>
</p>
<p></p>
<p></p>
<p>
<br>
<a href="srfi-67.html#node_idx_24">vector-compare</a><br>
<a href="srfi-67.html#node_idx_26">vector-compare-as-list</a></p>
<p>
</p>

<p>
</p>
<p>
</p>




</body>
</html>