1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.1p1 release (March 2nd, 1998)
originally by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>The Fixed Points Window</TITLE>
<META NAME="description" CONTENT="The Fixed Points Window">
<META NAME="keywords" CONTENT="userman">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="userman.css">
<LINK REL="next" HREF="node29.html">
<LINK REL="previous" HREF="node27.html">
<LINK REL="up" HREF="node5.html">
<LINK REL="next" HREF="node29.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html882"
HREF="node29.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="/usr/lib/latex2html/icons.gif/next_motif.gif"></A>
<A NAME="tex2html879"
HREF="node5.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="/usr/lib/latex2html/icons.gif/up_motif.gif"></A>
<A NAME="tex2html873"
HREF="node27.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="/usr/lib/latex2html/icons.gif/previous_motif.gif"></A>
<A NAME="tex2html881"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="/usr/lib/latex2html/icons.gif/contents_motif.gif"></A>
<BR>
<B> Next:</B> <A NAME="tex2html883"
HREF="node29.html">The Periodic Orbits Window</A>
<B> Up:</B> <A NAME="tex2html880"
HREF="node5.html">Attributes of Interface Windows</A>
<B> Previous:</B> <A NAME="tex2html874"
HREF="node27.html">The Multiple Orbits Window</A>
<BR>
<BR>
<!--End of Navigation Panel-->
<H1><A NAME="SECTION004230000000000000000"> </A><A NAME="1356"> </A><A NAME="1357"> </A>
<BR>
The Fixed Points Window
</H1>
<BR>
<DIV ALIGN="CENTER"><A NAME="Fixed_Points"> </A><A NAME="1385"> </A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure 2.24:</STRONG>
The Fixed Points window.</CAPTION>
<TR><TD>46#46</TD></TR>
</TABLE>
</DIV>
<BR>
<P>
<DL>
<DD><P>
<DT><STRONG>Window title:</STRONG>
<DD>DsTool: Fixed Points
<DT><STRONG>Function:</STRONG>
<DD>The Fixed Points window allows the
user to find equilibria and to compute one dimensional
stable and unstable manifolds.
<DT><STRONG>Description:</STRONG>
<DD>The Fixed Points window is opened by selecting the
Fixed Points option from the Panels menu button located in the Command
window. The window contains parameters for controlling the computation
of stable and unstable manifolds.
<P>
Color coding<A NAME="1363"> </A><A NAME="1364"> </A>
is performed according to the stability type of
objects: saddle points are marked as green crosses, sinks are
blue triangles, and sources are red squares. Furthermore,
unstable manifolds<A NAME="1365"> </A> are plotted in red and stable manifolds
are plotted in blue.
<DT><STRONG>Panel items:</STRONG>
<DD>
<UL>
<LI>Fixed point algorithm stack setting:
Allows the user to choose an algorithm to use for root-finding.<A NAME="1368"> </A> The
current options are the Secant method<A NAME="1369"> </A> and Newton's method<A NAME="1370"> </A>.
The default is Newton's method.
<LI>Seed algorithm stack setting:
Allows the user to choose the method of providing an initial guess (``seed'')
to the root-finding algorithm.
The choices are:
<DL>
<DT><STRONG>Monte Carlo:</STRONG>
<DD><A NAME="1372"> </A>
The seed is a pseudo-random point chosen from the volume in phase
space defined by the coordinate values in the Defaults
window. This is the default setting.
<DT><STRONG>Selected Point:</STRONG>
<DD>The seed is the currently selected point.
The currently selected point is displayed in the
Selected Point window<A NAME="1373"> </A>.
</DL>
<LI>Monte Carlo points numeric field:
Displays the number of guesses taken by the Monte Carlo routine. If the
Seed algorithm setting is Selected Point, then this field is not
relevant. The default value is 10.
<LI>Period numeric field:
Displays the integer length of periodic orbits to search for.
This field is only shown if the current dynamical system is a mapping.
Note that points with lower periods which
divide the specified period may also be located. The default value is 1.
Setting this field to a positive number should be used to
search for periodic points (for mappings), instead of using the Periodic Orbits window.
<LI>Found read-only text field:
Displays the number of periodic orbits or equilibrium points found by DsTool's fixed point
algorithms. This may be different than the total number of
fixed points stored in memory, since fixed points may be loaded into memory from a data file.
For a mapping, this field displays the number of <EM>orbits</EM> found, not the
total number of points found.
<LI>Fixed point algorithm parameters message:
Identifies the text items which follow as parameters associated with the finding of
fixed points.
<LI>maximum iterations numeric field:
Displays the maximum number of iterations allowed while trying to converge to a periodic point.
The default value is 30.
<LI>convergence criterion read-write text field:<A NAME="1376"> </A>
Displays the criterion used to determine when Newton's method has converged.
An iterative sequence is said to converge to a periodic point
(resp. equilibrium) if the norm of
<!-- MATH: $f(x_i)-x_i$ -->
<I>f</I>(<I>x</I><SUB><I>i</I></SUB>)-<I>x</I><SUB><I>i</I></SUB> (resp. <I>f</I>(<I>x</I><SUB><I>i</I></SUB>))
is less than the value of this field. Here <I>f</I> is some iterate
of the mapping (resp. <I>f</I> defines the vector field).
The default value is 10<SUP>-8</SUP>.
<LI>minimum step read-write text field:
Displays the minimum step to take in Newton's method.
Periodic points (resp. equilibria) are found via
an iterative process. If the difference between successive points
is less than the value in this field, then no further steps will
be taken and the final iterative point will not be regarded as a periodic point.
The default value is 10<SUP>-8</SUP>.
<LI>duplicate criterion read-write text field:
Displays the distance used to determine when two points should be considered the same.
Two periodic points (resp. equilibria) are considered to be identical if the norm
of their difference is less than the entry in this field.
The default value is 10<SUP>-6</SUP>.
<LI>finite difference step read-write text field:
Displays the stepsize to use when using finite differencing in
the DsTool fixed point calculations. The default value is 10<SUP>-6</SUP>.
<LI>One-D manifold algorithm parameters message:
Identifies the text items which follow as parameters associated with the calculation
of one dimensional stable and unstable manifolds.
<LI>stable manifold steps numeric field:
Displays the number of time steps to take in computing the manifold.
The length of the stable manifold displayed depends on the strength of the eigenvalues and the
number of time steps taken along the manifolds.
The default value is 200. This number should
be increased for manifolds associated with small eigenvalues.
<LI>(stable manifold) points numeric field:
Displays the number of interpolating points between steps.
Given a stable manifold and its pre-image, the manifold may be better visualized by interpolating
additional points along the manifold. The default value is 1, but for
manifolds which oscillate wildly (, the transverse intersection
of homoclinic orbits) this number can be chosen much larger.
<LI>unstable manifold steps numeric field:
Displays the number of time steps to take in computing the manifold.
The length of the unstable manifold displayed depends on the strength of the eigenvalues and the
number of time steps taken along the manifolds.
The default value is 200. This number should
be increased for manifolds associated with large eigenvalues.
<LI>(unstable manifold) points numeric field:
Displays the number of interpolating points between steps.
Given an unstable manifold and its pre-image, the manifold may be better visualized by interpolating
additional points along the manifold. The default value is 1, but for
manifolds which oscillate wildly (, the transverse intersection
of homoclinic orbits) this number can be chosen much larger.
<LI>Initial stepsize read-write text field:
Displays the distance from the periodic point (resp. equilibrium)
along the eigenvector to choose the
initial point of the stable or unstable manifold calculation.
The default value
is 10<SUP>-6</SUP>. This number should be decreased for highly nonlinear systems,
, when the linearization at a periodic point (resp. equilibria) is only
a good approximation to the (nonlinear) mapping (resp. vector field) within
a tiny neighborhood of the periodic point (resp. equilibria).
<LI>Find fixed points command button:
Initiates the search for equilibria, using the current window settings.
<LI>Compute 1-d manifolds command button:
Initiates the calculation and display of one dimensional
stable and unstable manifolds.
<LI>Clear points command button:
Erases the periodic points in memory and resets the Found text
field to 0.
<LI>Clear manifolds command button:
Erases the manifolds computed by the Fixed Points window.
<LI>Dismiss command button:
Closes the Fixed Points window.
</UL></DL>
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html882"
HREF="node29.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="/usr/lib/latex2html/icons.gif/next_motif.gif"></A>
<A NAME="tex2html879"
HREF="node5.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="/usr/lib/latex2html/icons.gif/up_motif.gif"></A>
<A NAME="tex2html873"
HREF="node27.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="/usr/lib/latex2html/icons.gif/previous_motif.gif"></A>
<A NAME="tex2html881"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="/usr/lib/latex2html/icons.gif/contents_motif.gif"></A>
<BR>
<B> Next:</B> <A NAME="tex2html883"
HREF="node29.html">The Periodic Orbits Window</A>
<B> Up:</B> <A NAME="tex2html880"
HREF="node5.html">Attributes of Interface Windows</A>
<B> Previous:</B> <A NAME="tex2html874"
HREF="node27.html">The Multiple Orbits Window</A>
<!--End of Navigation Panel-->
<ADDRESS>
<I>John Lapeyre</I>
<BR><I>1998-09-04</I>
</ADDRESS>
</BODY>
</HTML>
|