1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
|
// modified by Luigi Auriemma to work also with damaged audio and allow customized parameters
/*
* Asterisk -- An open source telephony toolkit.
*
* Copyright (C) 1999 - 2005, Digium, Inc.
*
* Mark Spencer <markster@digium.com>
*
* Goertzel routines are borrowed from Steve Underwood's tremendous work on the
* DTMF detector.
*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2. See the LICENSE file
* at the top of the source tree.
*/
/*! \file
*
* \brief Convenience Signal Processing routines
*
* \author Mark Spencer <markster@digium.com>
* \author Steve Underwood <steveu@coppice.org>
*/
/* Some routines from tone_detect.c by Steven Underwood as published under the zapata library */
/*
tone_detect.c - General telephony tone detection, and specific
detection of DTMF.
Copyright (C) 2001 Steve Underwood <steveu@coppice.org>
Despite my general liking of the GPL, I place this code in the
public domain for the benefit of all mankind - even the slimy
ones who might try to proprietize my work and use it to my
detriment.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <math.h>
//#include <malloc.h>
#define DSP_DIGITMODE_DTMF 0 /*!< Detect DTMF digits */
#define DSP_DIGITMODE_MF 1 /*!< Detect MF digits */
#define DSP_DIGITMODE_NOQUELCH (1 << 8) /*!< Do not quelch DTMF from in-band */
#define DSP_DIGITMODE_RELAXDTMF (1 << 11) /*!< "Radio" mode (relaxed DTMF) */
#define MAX_DTMF_DIGITS 1024
/* Basic DTMF specs:
*
* Minimum tone on = 40ms
* Minimum tone off = 50ms
* Maximum digit rate = 10 per second
* Normal twist <= 8dB accepted
* Reverse twist <= 4dB accepted
* S/N >= 15dB will detect OK
* Attenuation <= 26dB will detect OK
* Frequency tolerance +- 1.5% will detect, +-3.5% will reject
*/
/* PARAMETERS */
static double DTMF_OPTIMIZED_VALUE = 102;
//#define DTMF_THRESHOLD 8.0e7
static double DTMF_THRESHOLD = 800000000.0; // aluigi work-around
static double DTMF_NORMAL_TWIST = 6.3; /* 8dB */
#if 0
#ifdef RADIO_RELAX
static double DTMF_REVERSE_TWIST1 = 6.5;
static double DTMF_REVERSE_TWIST2 = 2.5;
#else
static double DTMF_REVERSE_TWIST1 = 4.0;
static double DTMF_REVERSE_TWIST2 = 2.5;
#endif
#define DTMF_REVERSE_TWIST ((digitmode & DSP_DIGITMODE_RELAXDTMF) ? DTMF_REVERSE_TWIST1 : DTMF_REVERSE_TWIST2) /* 4dB normal */
static double DTMF_2ND_HARMONIC_ROW1 = 1.7;
static double DTMF_2ND_HARMONIC_ROW2 = 2.5;
#define DTMF_2ND_HARMONIC_ROW ((digitmode & DSP_DIGITMODE_RELAXDTMF) ? DTMF_2ND_HARMONIC_ROW1 : DTMF_2ND_HARMONIC_ROW2) /* 4dB normal */
static double DTMF_2ND_HARMONIC_COL = 63.1; /* 18dB */
static double DTMF_TO_TOTAL_ENERGY = 42.0;
#endif
static double DTMF_RELATIVE_PEAK_ROW = 6.3; /* 8dB */
static double DTMF_RELATIVE_PEAK_COL = 6.3; /* 8dB */
//#define BELL_MF_THRESHOLD 1.6e9
static double BELL_MF_THRESHOLD = 800000000.0; // aluigi work-around
static double BELL_MF_TWIST = 4.0; /* 6dB */
static double BELL_MF_RELATIVE_PEAK = 12.6; /* 11dB */
static int SAMPLE_RATE = 8000;
typedef struct {
int v2;
int v3;
int chunky;
int fac;
int samples;
} goertzel_state_t;
typedef struct {
int value;
int power;
} goertzel_result_t;
typedef struct
{
goertzel_state_t row_out[4];
goertzel_state_t col_out[4];
int lasthit;
int current_hit;
double energy;
int current_sample;
} dtmf_detect_state_t;
typedef struct
{
goertzel_state_t tone_out[6];
int current_hit;
int hits[5];
int current_sample;
} mf_detect_state_t;
typedef struct
{
char digits[MAX_DTMF_DIGITS + 1];
int current_digits;
int detected_digits;
int lost_digits;
union {
dtmf_detect_state_t dtmf;
mf_detect_state_t mf;
} td;
} digit_detect_state_t;
static double dtmf_row[] =
{
697.0, 770.0, 852.0, 941.0
};
static double dtmf_col[] =
{
1209.0, 1336.0, 1477.0, 1633.0
};
static double mf_tones[] =
{
700.0, 900.0, 1100.0, 1300.0, 1500.0, 1700.0
};
static char dtmf_positions[] = "123A" "456B" "789C" "*0#D";
static char bell_mf_positions[] = "1247C-358A--69*---0B----#";
static inline void goertzel_sample(goertzel_state_t *s, short sample)
{
int v1;
v1 = s->v2;
s->v2 = s->v3;
s->v3 = (s->fac * s->v2) >> 15;
s->v3 = s->v3 - v1 + (sample >> s->chunky);
if (abs(s->v3) > 32768) {
s->chunky++;
s->v3 = s->v3 >> 1;
s->v2 = s->v2 >> 1;
v1 = v1 >> 1;
}
}
static inline void goertzel_update(goertzel_state_t *s, short *samps, int count)
{
int i;
for (i=0;i<count;i++)
goertzel_sample(s, samps[i]);
}
static inline double goertzel_result(goertzel_state_t *s)
{
goertzel_result_t r;
r.value = (s->v3 * s->v3) + (s->v2 * s->v2);
r.value -= ((s->v2 * s->v3) >> 15) * s->fac;
r.power = s->chunky * 2;
return (double)r.value * (double)(1 << r.power);
}
static inline void goertzel_init(goertzel_state_t *s, double freq, int samples)
{
s->v2 = s->v3 = s->chunky = 0.0;
s->fac = (int)(32768.0 * 2.0 * cos(2.0 * M_PI * freq / SAMPLE_RATE));
s->samples = samples;
}
static inline void goertzel_reset(goertzel_state_t *s)
{
s->v2 = s->v3 = s->chunky = 0.0;
}
static void ast_dtmf_detect_init (dtmf_detect_state_t *s)
{
int i;
s->lasthit = 0;
s->current_hit = 0;
for (i = 0; i < 4; i++) {
goertzel_init (&s->row_out[i], dtmf_row[i], DTMF_OPTIMIZED_VALUE);
goertzel_init (&s->col_out[i], dtmf_col[i], DTMF_OPTIMIZED_VALUE);
s->energy = 0.0;
}
s->current_sample = 0;
}
static void ast_mf_detect_init (mf_detect_state_t *s)
{
int i;
s->hits[0] = s->hits[1] = s->hits[2] = s->hits[3] = s->hits[4] = 0;
for (i = 0; i < 6; i++) {
goertzel_init (&s->tone_out[i], mf_tones[i], 160);
}
s->current_sample = 0;
s->current_hit = 0;
}
static void ast_digit_detect_init(digit_detect_state_t *s, int mf)
{
s->current_digits = 0;
s->detected_digits = 0;
s->lost_digits = 0;
s->digits[0] = '\0';
if (mf)
ast_mf_detect_init(&s->td.mf);
else
ast_dtmf_detect_init(&s->td.dtmf);
}
static void store_digit(digit_detect_state_t *s, char digit)
{
s->detected_digits++;
if (s->current_digits < MAX_DTMF_DIGITS) {
s->digits[s->current_digits++] = digit;
s->digits[s->current_digits] = '\0';
} else {
//ast_log(LOG_WARNING, "Digit lost due to full buffer\n");
s->lost_digits++;
}
}
static int dtmf_detect(digit_detect_state_t *s, int16_t amp[], int samples,
int digitmode, int *writeback)
{
double row_energy[4];
double col_energy[4];
double famp;
int i;
int j;
int sample;
int best_row;
int best_col;
int hit;
int limit;
hit = 0;
for (sample = 0; sample < samples; sample = limit) {
/* DTMF_OPTIMIZED_VALUE is optimised to meet the DTMF specs. */
if ((samples - sample) >= (DTMF_OPTIMIZED_VALUE - s->td.dtmf.current_sample))
limit = sample + (DTMF_OPTIMIZED_VALUE - s->td.dtmf.current_sample);
else
limit = samples;
/* The following unrolled loop takes only 35% (rough estimate) of the
time of a rolled loop on the machine on which it was developed */
for (j = sample; j < limit; j++) {
famp = amp[j];
s->td.dtmf.energy += famp*famp;
/* With GCC 2.95, the following unrolled code seems to take about 35%
(rough estimate) as long as a neat little 0-3 loop */
goertzel_sample(s->td.dtmf.row_out, amp[j]);
goertzel_sample(s->td.dtmf.col_out, amp[j]);
goertzel_sample(s->td.dtmf.row_out + 1, amp[j]);
goertzel_sample(s->td.dtmf.col_out + 1, amp[j]);
goertzel_sample(s->td.dtmf.row_out + 2, amp[j]);
goertzel_sample(s->td.dtmf.col_out + 2, amp[j]);
goertzel_sample(s->td.dtmf.row_out + 3, amp[j]);
goertzel_sample(s->td.dtmf.col_out + 3, amp[j]);
}
s->td.dtmf.current_sample += (limit - sample);
if (s->td.dtmf.current_sample < DTMF_OPTIMIZED_VALUE) {
if (hit && !((digitmode & DSP_DIGITMODE_NOQUELCH))) {
/* If we had a hit last time, go ahead and clear this out since likely it
will be another hit */
for (i=sample;i<limit;i++)
amp[i] = 0;
*writeback = 1;
}
continue;
}
/* We are at the end of a DTMF detection block */
/* Find the peak row and the peak column */
row_energy[0] = goertzel_result (&s->td.dtmf.row_out[0]);
col_energy[0] = goertzel_result (&s->td.dtmf.col_out[0]);
for (best_row = best_col = 0, i = 1; i < 4; i++) {
row_energy[i] = goertzel_result (&s->td.dtmf.row_out[i]);
if (row_energy[i] > row_energy[best_row])
best_row = i;
col_energy[i] = goertzel_result (&s->td.dtmf.col_out[i]);
if (col_energy[i] > col_energy[best_col])
best_col = i;
}
hit = 0;
/* Basic signal level test and the twist test */
if (row_energy[best_row] >= DTMF_THRESHOLD &&
col_energy[best_col] >= DTMF_THRESHOLD &&
// col_energy[best_col] < row_energy[best_row] *DTMF_REVERSE_TWIST && // aluigi work-around
col_energy[best_col]*DTMF_NORMAL_TWIST > row_energy[best_row]) {
/* Relative peak test */
for (i = 0; i < 4; i++) {
if ((i != best_col &&
col_energy[i]*DTMF_RELATIVE_PEAK_COL > col_energy[best_col]) ||
(i != best_row
&& row_energy[i]*DTMF_RELATIVE_PEAK_ROW > row_energy[best_row])) {
break;
}
}
/* ... and fraction of total energy test */
if (i >= 4 /*&&
(row_energy[best_row] + col_energy[best_col]) > DTMF_TO_TOTAL_ENERGY*s->td.dtmf.energy*/) { // aluigi work-around
/* Got a hit */
hit = dtmf_positions[(best_row << 2) + best_col];
if (!(digitmode & DSP_DIGITMODE_NOQUELCH)) {
/* Zero out frame data if this is part DTMF */
for (i=sample;i<limit;i++)
amp[i] = 0;
*writeback = 1;
}
}
}
/* The logic in the next test is:
For digits we need two successive identical clean detects, with
something different preceeding it. This can work with
back to back differing digits. More importantly, it
can work with nasty phones that give a very wobbly start
to a digit */
if (hit != s->td.dtmf.current_hit) {
if (hit && s->td.dtmf.lasthit == hit) {
s->td.dtmf.current_hit = hit;
store_digit(s, hit);
} else if (s->td.dtmf.lasthit != s->td.dtmf.current_hit) {
s->td.dtmf.current_hit = 0;
}
}
s->td.dtmf.lasthit = hit;
/* Reinitialise the detector for the next block */
for (i = 0; i < 4; i++) {
goertzel_reset(&s->td.dtmf.row_out[i]);
goertzel_reset(&s->td.dtmf.col_out[i]);
}
s->td.dtmf.energy = 0.0;
s->td.dtmf.current_sample = 0;
}
return (s->td.dtmf.current_hit); /* return the debounced hit */
}
/* MF goertzel size */
#define MF_GSIZE 120
static int mf_detect(digit_detect_state_t *s, int16_t amp[],
int samples, int digitmode, int *writeback)
{
double energy[6];
int best;
int second_best;
//double famp;
int i;
int j;
int sample;
int hit;
int limit;
hit = 0;
for (sample = 0; sample < samples; sample = limit) {
/* 80 is optimised to meet the MF specs. */
if ((samples - sample) >= (MF_GSIZE - s->td.mf.current_sample))
limit = sample + (MF_GSIZE - s->td.mf.current_sample);
else
limit = samples;
/* The following unrolled loop takes only 35% (rough estimate) of the
time of a rolled loop on the machine on which it was developed */
for (j = sample; j < limit; j++) {
//famp = amp[j];
/* With GCC 2.95, the following unrolled code seems to take about 35%
(rough estimate) as long as a neat little 0-3 loop */
goertzel_sample(s->td.mf.tone_out, amp[j]);
goertzel_sample(s->td.mf.tone_out + 1, amp[j]);
goertzel_sample(s->td.mf.tone_out + 2, amp[j]);
goertzel_sample(s->td.mf.tone_out + 3, amp[j]);
goertzel_sample(s->td.mf.tone_out + 4, amp[j]);
goertzel_sample(s->td.mf.tone_out + 5, amp[j]);
}
s->td.mf.current_sample += (limit - sample);
if (s->td.mf.current_sample < MF_GSIZE) {
if (hit && !((digitmode & DSP_DIGITMODE_NOQUELCH))) {
/* If we had a hit last time, go ahead and clear this out since likely it
will be another hit */
for (i=sample;i<limit;i++)
amp[i] = 0;
*writeback = 1;
}
continue;
}
/* We're at the end of an MF detection block. */
/* Find the two highest energies. The spec says to look for
two tones and two tones only. Taking this literally -ie
only two tones pass the minimum threshold - doesn't work
well. The sinc function mess, due to rectangular windowing
ensure that! Find the two highest energies and ensure they
are considerably stronger than any of the others. */
energy[0] = goertzel_result(&s->td.mf.tone_out[0]);
energy[1] = goertzel_result(&s->td.mf.tone_out[1]);
if (energy[0] > energy[1]) {
best = 0;
second_best = 1;
} else {
best = 1;
second_best = 0;
}
/*endif*/
for (i=2;i<6;i++) {
energy[i] = goertzel_result(&s->td.mf.tone_out[i]);
if (energy[i] >= energy[best]) {
second_best = best;
best = i;
} else if (energy[i] >= energy[second_best]) {
second_best = i;
}
}
/* Basic signal level and twist tests */
hit = 0;
if (energy[best] >= BELL_MF_THRESHOLD && energy[second_best] >= BELL_MF_THRESHOLD
// && energy[best] < energy[second_best]*BELL_MF_TWIST // aluigi work-around
&& energy[best]*BELL_MF_TWIST > energy[second_best]) {
/* Relative peak test */
hit = -1;
for (i=0;i<6;i++) {
if (i != best && i != second_best) {
if (energy[i]*BELL_MF_RELATIVE_PEAK >= energy[second_best]) {
/* The best two are not clearly the best */
hit = 0;
break;
}
}
}
}
if (hit) {
/* Get the values into ascending order */
if (second_best < best) {
i = best;
best = second_best;
second_best = i;
}
best = best*5 + second_best - 1;
hit = bell_mf_positions[best];
/* Look for two successive similar results */
/* The logic in the next test is:
For KP we need 4 successive identical clean detects, with
two blocks of something different preceeding it. For anything
else we need two successive identical clean detects, with
two blocks of something different preceeding it. */
if (hit == s->td.mf.hits[4] && hit == s->td.mf.hits[3] &&
((hit != '*' && hit != s->td.mf.hits[2] && hit != s->td.mf.hits[1])||
(hit == '*' && hit == s->td.mf.hits[2] && hit != s->td.mf.hits[1] &&
hit != s->td.mf.hits[0]))) {
store_digit(s, hit);
}
}
if (hit != s->td.mf.hits[4] && hit != s->td.mf.hits[3]) {
/* Two successive block without a hit terminate current digit */
s->td.mf.current_hit = 0;
}
s->td.mf.hits[0] = s->td.mf.hits[1];
s->td.mf.hits[1] = s->td.mf.hits[2];
s->td.mf.hits[2] = s->td.mf.hits[3];
s->td.mf.hits[3] = s->td.mf.hits[4];
s->td.mf.hits[4] = hit;
/* Reinitialise the detector for the next block */
for (i = 0; i < 6; i++)
goertzel_reset(&s->td.mf.tone_out[i]);
s->td.mf.current_sample = 0;
}
return (s->td.mf.current_hit); /* return the debounced hit */
}
|