1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
|
/*
* Number-to-string and string-to-number conversions.
*
* Slow path number-to-string and string-to-number conversion is based on
* a Dragon4 variant, with fast paths for small integers. Big integer
* arithmetic is needed for guaranteeing that the conversion is correct
* and uses a minimum number of digits. The big number arithmetic has a
* fixed maximum size and does not require dynamic allocations.
*
* See: doc/number-conversion.rst.
*/
#include "duk_internal.h"
#define DUK__IEEE_DOUBLE_EXP_BIAS 1023
#define DUK__IEEE_DOUBLE_EXP_MIN (-1022) /* biased exp == 0 -> denormal, exp -1022 */
#define DUK__DIGITCHAR(x) duk_lc_digits[(x)]
/*
* Tables generated with util/gennumdigits.py.
*
* duk__str2num_digits_for_radix indicates, for each radix, how many input
* digits should be considered significant for string-to-number conversion.
* The input is also padded to this many digits to give the Dragon4
* conversion enough (apparent) precision to work with.
*
* duk__str2num_exp_limits indicates, for each radix, the radix-specific
* minimum/maximum exponent values (for a Dragon4 integer mantissa)
* below and above which the number is guaranteed to underflow to zero
* or overflow to Infinity. This allows parsing to keep bigint values
* bounded.
*/
DUK_LOCAL const duk_uint8_t duk__str2num_digits_for_radix[] = {
69, 44, 35, 30, 27, 25, 23, 22, 20, 20, /* 2 to 11 */
20, 19, 19, 18, 18, 17, 17, 17, 16, 16, /* 12 to 21 */
16, 16, 16, 15, 15, 15, 15, 15, 15, 14, /* 22 to 31 */
14, 14, 14, 14, 14 /* 31 to 36 */
};
typedef struct {
duk_int16_t upper;
duk_int16_t lower;
} duk__exp_limits;
DUK_LOCAL const duk__exp_limits duk__str2num_exp_limits[] = {
{ 957, -1147 }, { 605, -725 }, { 479, -575 }, { 414, -496 }, { 372, -446 }, { 342, -411 }, { 321, -384 },
{ 304, -364 }, { 291, -346 }, { 279, -334 }, { 268, -323 }, { 260, -312 }, { 252, -304 }, { 247, -296 },
{ 240, -289 }, { 236, -283 }, { 231, -278 }, { 227, -273 }, { 223, -267 }, { 220, -263 }, { 216, -260 },
{ 213, -256 }, { 210, -253 }, { 208, -249 }, { 205, -246 }, { 203, -244 }, { 201, -241 }, { 198, -239 },
{ 196, -237 }, { 195, -234 }, { 193, -232 }, { 191, -230 }, { 190, -228 }, { 188, -226 }, { 187, -225 },
};
/*
* Limited functionality bigint implementation.
*
* Restricted to non-negative numbers with less than 32 * DUK__BI_MAX_PARTS bits,
* with the caller responsible for ensuring this is never exceeded. No memory
* allocation (except stack) is needed for bigint computation. Operations
* have been tailored for number conversion needs.
*
* Argument order is "assignment order", i.e. target first, then arguments:
* x <- y * z --> duk__bi_mul(x, y, z);
*/
/* This upper value has been experimentally determined; debug build will check
* bigint size with assertions.
*/
#define DUK__BI_MAX_PARTS 37 /* 37x32 = 1184 bits */
#if defined(DUK_USE_DEBUG_LEVEL) && (DUK_USE_DEBUG_LEVEL >= 2)
#define DUK__BI_PRINT(name, x) duk__bi_print((name), (x))
#else
#define DUK__BI_PRINT(name, x)
#endif
/* Current size is about 152 bytes. */
typedef struct {
duk_small_int_t n;
duk_uint32_t v[DUK__BI_MAX_PARTS]; /* low to high */
} duk__bigint;
#if defined(DUK_USE_DEBUG_LEVEL) && (DUK_USE_DEBUG_LEVEL >= 2)
DUK_LOCAL void duk__bi_print(const char *name, duk__bigint *x) {
/* Overestimate required size; debug code so not critical to be tight. */
char buf[DUK__BI_MAX_PARTS * 9 + 64];
char *p = buf;
duk_small_int_t i;
/* No NUL term checks in this debug code. */
p += DUK_SPRINTF(p, "%p n=%ld", (void *) x, (long) x->n);
if (x->n == 0) {
p += DUK_SPRINTF(p, " 0");
}
for (i = x->n - 1; i >= 0; i--) {
p += DUK_SPRINTF(p, " %08lx", (unsigned long) x->v[i]);
}
DUK_DDD(DUK_DDDPRINT("%s: %s", (const char *) name, (const char *) buf));
}
#endif
#if defined(DUK_USE_ASSERTIONS)
DUK_LOCAL duk_small_int_t duk__bi_is_valid(duk__bigint *x) {
return (duk_small_int_t) (((x->n >= 0) && (x->n <= DUK__BI_MAX_PARTS)) /* is valid size */ &&
((x->n == 0) || (x->v[x->n - 1] != 0)) /* is normalized */);
}
#endif
DUK_LOCAL void duk__bi_normalize(duk__bigint *x) {
duk_small_int_t i;
for (i = x->n - 1; i >= 0; i--) {
if (x->v[i] != 0) {
break;
}
}
/* Note: if 'x' is zero, x->n becomes 0 here */
x->n = i + 1;
DUK_ASSERT(duk__bi_is_valid(x));
}
/* x <- y */
DUK_LOCAL void duk__bi_copy(duk__bigint *x, duk__bigint *y) {
duk_small_int_t n;
n = y->n;
x->n = n;
/* No need to special case n == 0. */
duk_memcpy((void *) x->v, (const void *) y->v, (size_t) (sizeof(duk_uint32_t) * (size_t) n));
}
DUK_LOCAL void duk__bi_set_small(duk__bigint *x, duk_uint32_t v) {
if (v == 0U) {
x->n = 0;
} else {
x->n = 1;
x->v[0] = v;
}
DUK_ASSERT(duk__bi_is_valid(x));
}
/* Return value: <0 <=> x < y
* 0 <=> x == y
* >0 <=> x > y
*/
DUK_LOCAL int duk__bi_compare(duk__bigint *x, duk__bigint *y) {
duk_small_int_t i, nx, ny;
duk_uint32_t tx, ty;
DUK_ASSERT(duk__bi_is_valid(x));
DUK_ASSERT(duk__bi_is_valid(y));
nx = x->n;
ny = y->n;
if (nx > ny) {
goto ret_gt;
}
if (nx < ny) {
goto ret_lt;
}
for (i = nx - 1; i >= 0; i--) {
tx = x->v[i];
ty = y->v[i];
if (tx > ty) {
goto ret_gt;
}
if (tx < ty) {
goto ret_lt;
}
}
return 0;
ret_gt:
return 1;
ret_lt:
return -1;
}
/* x <- y + z */
#if defined(DUK_USE_64BIT_OPS)
DUK_LOCAL void duk__bi_add(duk__bigint *x, duk__bigint *y, duk__bigint *z) {
duk_uint64_t tmp;
duk_small_int_t i, ny, nz;
DUK_ASSERT(duk__bi_is_valid(y));
DUK_ASSERT(duk__bi_is_valid(z));
if (z->n > y->n) {
duk__bigint *t;
t = y;
y = z;
z = t;
}
DUK_ASSERT(y->n >= z->n);
ny = y->n;
nz = z->n;
tmp = 0U;
for (i = 0; i < ny; i++) {
DUK_ASSERT(i < DUK__BI_MAX_PARTS);
tmp += y->v[i];
if (i < nz) {
tmp += z->v[i];
}
x->v[i] = (duk_uint32_t) (tmp & 0xffffffffUL);
tmp = tmp >> 32;
}
if (tmp != 0U) {
DUK_ASSERT(i < DUK__BI_MAX_PARTS);
x->v[i++] = (duk_uint32_t) tmp;
}
x->n = i;
DUK_ASSERT(x->n <= DUK__BI_MAX_PARTS);
/* no need to normalize */
DUK_ASSERT(duk__bi_is_valid(x));
}
#else /* DUK_USE_64BIT_OPS */
DUK_LOCAL void duk__bi_add(duk__bigint *x, duk__bigint *y, duk__bigint *z) {
duk_uint32_t carry, tmp1, tmp2;
duk_small_int_t i, ny, nz;
DUK_ASSERT(duk__bi_is_valid(y));
DUK_ASSERT(duk__bi_is_valid(z));
if (z->n > y->n) {
duk__bigint *t;
t = y;
y = z;
z = t;
}
DUK_ASSERT(y->n >= z->n);
ny = y->n;
nz = z->n;
carry = 0U;
for (i = 0; i < ny; i++) {
/* Carry is detected based on wrapping which relies on exact 32-bit
* types.
*/
DUK_ASSERT(i < DUK__BI_MAX_PARTS);
tmp1 = y->v[i];
tmp2 = tmp1;
if (i < nz) {
tmp2 += z->v[i];
}
/* Careful with carry condition:
* - If carry not added: 0x12345678 + 0 + 0xffffffff = 0x12345677 (< 0x12345678)
* - If carry added: 0x12345678 + 1 + 0xffffffff = 0x12345678 (== 0x12345678)
*/
if (carry) {
tmp2++;
carry = (tmp2 <= tmp1 ? 1U : 0U);
} else {
carry = (tmp2 < tmp1 ? 1U : 0U);
}
x->v[i] = tmp2;
}
if (carry) {
DUK_ASSERT(i < DUK__BI_MAX_PARTS);
DUK_ASSERT(carry == 1U);
x->v[i++] = carry;
}
x->n = i;
DUK_ASSERT(x->n <= DUK__BI_MAX_PARTS);
/* no need to normalize */
DUK_ASSERT(duk__bi_is_valid(x));
}
#endif /* DUK_USE_64BIT_OPS */
/* x <- y + z */
DUK_LOCAL void duk__bi_add_small(duk__bigint *x, duk__bigint *y, duk_uint32_t z) {
duk__bigint tmp;
DUK_ASSERT(duk__bi_is_valid(y));
/* XXX: this could be optimized; there is only one call site now though */
duk__bi_set_small(&tmp, z);
duk__bi_add(x, y, &tmp);
DUK_ASSERT(duk__bi_is_valid(x));
}
#if 0 /* unused */
/* x <- x + y, use t as temp */
DUK_LOCAL void duk__bi_add_copy(duk__bigint *x, duk__bigint *y, duk__bigint *t) {
duk__bi_add(t, x, y);
duk__bi_copy(x, t);
}
#endif
/* x <- y - z, require x >= y => z >= 0, i.e. y >= z */
#if defined(DUK_USE_64BIT_OPS)
DUK_LOCAL void duk__bi_sub(duk__bigint *x, duk__bigint *y, duk__bigint *z) {
duk_small_int_t i, ny, nz;
duk_uint32_t ty, tz;
duk_int64_t tmp;
DUK_ASSERT(duk__bi_is_valid(y));
DUK_ASSERT(duk__bi_is_valid(z));
DUK_ASSERT(duk__bi_compare(y, z) >= 0);
DUK_ASSERT(y->n >= z->n);
ny = y->n;
nz = z->n;
tmp = 0;
for (i = 0; i < ny; i++) {
ty = y->v[i];
if (i < nz) {
tz = z->v[i];
} else {
tz = 0;
}
tmp = (duk_int64_t) ty - (duk_int64_t) tz + tmp;
x->v[i] = (duk_uint32_t) ((duk_uint64_t) tmp & 0xffffffffUL);
tmp = tmp >> 32; /* 0 or -1 */
}
DUK_ASSERT(tmp == 0);
x->n = i;
duk__bi_normalize(x); /* need to normalize, may even cancel to 0 */
DUK_ASSERT(duk__bi_is_valid(x));
}
#else
DUK_LOCAL void duk__bi_sub(duk__bigint *x, duk__bigint *y, duk__bigint *z) {
duk_small_int_t i, ny, nz;
duk_uint32_t tmp1, tmp2, borrow;
DUK_ASSERT(duk__bi_is_valid(y));
DUK_ASSERT(duk__bi_is_valid(z));
DUK_ASSERT(duk__bi_compare(y, z) >= 0);
DUK_ASSERT(y->n >= z->n);
ny = y->n;
nz = z->n;
borrow = 0U;
for (i = 0; i < ny; i++) {
/* Borrow is detected based on wrapping which relies on exact 32-bit
* types.
*/
tmp1 = y->v[i];
tmp2 = tmp1;
if (i < nz) {
tmp2 -= z->v[i];
}
/* Careful with borrow condition:
* - If borrow not subtracted: 0x12345678 - 0 - 0xffffffff = 0x12345679 (> 0x12345678)
* - If borrow subtracted: 0x12345678 - 1 - 0xffffffff = 0x12345678 (== 0x12345678)
*/
if (borrow) {
tmp2--;
borrow = (tmp2 >= tmp1 ? 1U : 0U);
} else {
borrow = (tmp2 > tmp1 ? 1U : 0U);
}
x->v[i] = tmp2;
}
DUK_ASSERT(borrow == 0U);
x->n = i;
duk__bi_normalize(x); /* need to normalize, may even cancel to 0 */
DUK_ASSERT(duk__bi_is_valid(x));
}
#endif
#if 0 /* unused */
/* x <- y - z */
DUK_LOCAL void duk__bi_sub_small(duk__bigint *x, duk__bigint *y, duk_uint32_t z) {
duk__bigint tmp;
DUK_ASSERT(duk__bi_is_valid(y));
/* XXX: this could be optimized */
duk__bi_set_small(&tmp, z);
duk__bi_sub(x, y, &tmp);
DUK_ASSERT(duk__bi_is_valid(x));
}
#endif
/* x <- x - y, use t as temp */
DUK_LOCAL void duk__bi_sub_copy(duk__bigint *x, duk__bigint *y, duk__bigint *t) {
duk__bi_sub(t, x, y);
duk__bi_copy(x, t);
}
/* x <- y * z */
DUK_LOCAL void duk__bi_mul(duk__bigint *x, duk__bigint *y, duk__bigint *z) {
duk_small_int_t i, j, nx, nz;
DUK_ASSERT(duk__bi_is_valid(y));
DUK_ASSERT(duk__bi_is_valid(z));
nx = y->n + z->n; /* max possible */
DUK_ASSERT(nx <= DUK__BI_MAX_PARTS);
if (nx == 0) {
/* Both inputs are zero; cases where only one is zero can go
* through main algorithm.
*/
x->n = 0;
return;
}
duk_memzero((void *) x->v, (size_t) (sizeof(duk_uint32_t) * (size_t) nx));
x->n = nx;
nz = z->n;
for (i = 0; i < y->n; i++) {
#if defined(DUK_USE_64BIT_OPS)
duk_uint64_t tmp = 0U;
for (j = 0; j < nz; j++) {
tmp += (duk_uint64_t) y->v[i] * (duk_uint64_t) z->v[j] + x->v[i + j];
x->v[i + j] = (duk_uint32_t) (tmp & 0xffffffffUL);
tmp = tmp >> 32;
}
if (tmp > 0) {
DUK_ASSERT(i + j < nx);
DUK_ASSERT(i + j < DUK__BI_MAX_PARTS);
DUK_ASSERT(x->v[i + j] == 0U);
x->v[i + j] = (duk_uint32_t) tmp;
}
#else
/*
* Multiply + add + carry for 32-bit components using only 16x16->32
* multiplies and carry detection based on unsigned overflow.
*
* 1st mult, 32-bit: (A*2^16 + B)
* 2nd mult, 32-bit: (C*2^16 + D)
* 3rd add, 32-bit: E
* 4th add, 32-bit: F
*
* (AC*2^16 + B) * (C*2^16 + D) + E + F
* = AC*2^32 + AD*2^16 + BC*2^16 + BD + E + F
* = AC*2^32 + (AD + BC)*2^16 + (BD + E + F)
* = AC*2^32 + AD*2^16 + BC*2^16 + (BD + E + F)
*/
duk_uint32_t a, b, c, d, e, f;
duk_uint32_t r, s, t;
a = y->v[i];
b = a & 0xffffUL;
a = a >> 16;
f = 0;
for (j = 0; j < nz; j++) {
c = z->v[j];
d = c & 0xffffUL;
c = c >> 16;
e = x->v[i + j];
/* build result as: (r << 32) + s: start with (BD + E + F) */
r = 0;
s = b * d;
/* add E */
t = s + e;
if (t < s) {
r++;
} /* carry */
s = t;
/* add F */
t = s + f;
if (t < s) {
r++;
} /* carry */
s = t;
/* add BC*2^16 */
t = b * c;
r += (t >> 16);
t = s + ((t & 0xffffUL) << 16);
if (t < s) {
r++;
} /* carry */
s = t;
/* add AD*2^16 */
t = a * d;
r += (t >> 16);
t = s + ((t & 0xffffUL) << 16);
if (t < s) {
r++;
} /* carry */
s = t;
/* add AC*2^32 */
t = a * c;
r += t;
DUK_DDD(DUK_DDDPRINT("ab=%08lx cd=%08lx ef=%08lx -> rs=%08lx %08lx",
(unsigned long) y->v[i],
(unsigned long) z->v[j],
(unsigned long) x->v[i + j],
(unsigned long) r,
(unsigned long) s));
x->v[i + j] = s;
f = r;
}
if (f > 0U) {
DUK_ASSERT(i + j < nx);
DUK_ASSERT(i + j < DUK__BI_MAX_PARTS);
DUK_ASSERT(x->v[i + j] == 0U);
x->v[i + j] = (duk_uint32_t) f;
}
#endif /* DUK_USE_64BIT_OPS */
}
duk__bi_normalize(x);
DUK_ASSERT(duk__bi_is_valid(x));
}
/* x <- y * z */
DUK_LOCAL void duk__bi_mul_small(duk__bigint *x, duk__bigint *y, duk_uint32_t z) {
duk__bigint tmp;
DUK_ASSERT(duk__bi_is_valid(y));
/* XXX: this could be optimized */
duk__bi_set_small(&tmp, z);
duk__bi_mul(x, y, &tmp);
DUK_ASSERT(duk__bi_is_valid(x));
}
/* x <- x * y, use t as temp */
DUK_LOCAL void duk__bi_mul_copy(duk__bigint *x, duk__bigint *y, duk__bigint *t) {
duk__bi_mul(t, x, y);
duk__bi_copy(x, t);
}
/* x <- x * y, use t as temp */
DUK_LOCAL void duk__bi_mul_small_copy(duk__bigint *x, duk_uint32_t y, duk__bigint *t) {
duk__bi_mul_small(t, x, y);
duk__bi_copy(x, t);
}
DUK_LOCAL int duk__bi_is_even(duk__bigint *x) {
DUK_ASSERT(duk__bi_is_valid(x));
return (x->n == 0) || ((x->v[0] & 0x01) == 0);
}
DUK_LOCAL int duk__bi_is_zero(duk__bigint *x) {
DUK_ASSERT(duk__bi_is_valid(x));
return (x->n == 0); /* this is the case for normalized numbers */
}
/* Bigint is 2^52. Used to detect normalized IEEE double mantissa values
* which are at the lowest edge (next floating point value downwards has
* a different exponent). The lowest mantissa has the form:
*
* 1000........000 (52 zeroes; only "hidden bit" is set)
*/
DUK_LOCAL duk_small_int_t duk__bi_is_2to52(duk__bigint *x) {
DUK_ASSERT(duk__bi_is_valid(x));
return (duk_small_int_t) (x->n == 2) && (x->v[0] == 0U) && (x->v[1] == (1U << (52 - 32)));
}
/* x <- (1<<y) */
DUK_LOCAL void duk__bi_twoexp(duk__bigint *x, duk_small_int_t y) {
duk_small_int_t n, r;
n = (y / 32) + 1;
DUK_ASSERT(n > 0);
r = y % 32;
duk_memzero((void *) x->v, sizeof(duk_uint32_t) * (size_t) n);
x->n = n;
x->v[n - 1] = (((duk_uint32_t) 1) << r);
}
/* x <- b^y; use t1 and t2 as temps */
DUK_LOCAL void duk__bi_exp_small(duk__bigint *x, duk_small_int_t b, duk_small_int_t y, duk__bigint *t1, duk__bigint *t2) {
/* Fast path the binary case */
DUK_ASSERT(x != t1 && x != t2 && t1 != t2); /* distinct bignums, easy mistake to make */
DUK_ASSERT(b >= 0);
DUK_ASSERT(y >= 0);
if (b == 2) {
duk__bi_twoexp(x, y);
return;
}
/* http://en.wikipedia.org/wiki/Exponentiation_by_squaring */
DUK_DDD(DUK_DDDPRINT("exp_small: b=%ld, y=%ld", (long) b, (long) y));
duk__bi_set_small(x, 1);
duk__bi_set_small(t1, (duk_uint32_t) b);
for (;;) {
/* Loop structure ensures that we don't compute t1^2 unnecessarily
* on the final round, as that might create a bignum exceeding the
* current DUK__BI_MAX_PARTS limit.
*/
if (y & 0x01) {
duk__bi_mul_copy(x, t1, t2);
}
y = y >> 1;
if (y == 0) {
break;
}
duk__bi_mul_copy(t1, t1, t2);
}
DUK__BI_PRINT("exp_small result", x);
}
/*
* A Dragon4 number-to-string variant, based on:
*
* Guy L. Steele Jr., Jon L. White: "How to Print Floating-Point Numbers
* Accurately"
*
* Robert G. Burger, R. Kent Dybvig: "Printing Floating-Point Numbers
* Quickly and Accurately"
*
* The current algorithm is based on Figure 1 of the Burger-Dybvig paper,
* i.e. the base implementation without logarithm estimation speedups
* (these would increase code footprint considerably). Fixed-format output
* does not follow the suggestions in the paper; instead, we generate an
* extra digit and round-with-carry.
*
* The same algorithm is used for number parsing (with b=10 and B=2)
* by generating one extra digit and doing rounding manually.
*
* See doc/number-conversion.rst for limitations.
*/
/* Maximum number of digits generated. */
#define DUK__MAX_OUTPUT_DIGITS 1040 /* (Number.MAX_VALUE).toString(2).length == 1024, + slack */
/* Maximum number of characters in formatted value. */
#define DUK__MAX_FORMATTED_LENGTH 1040 /* (-Number.MAX_VALUE).toString(2).length == 1025, + slack */
/* Number and (minimum) size of bigints in the nc_ctx structure. */
#define DUK__NUMCONV_CTX_NUM_BIGINTS 7
#define DUK__NUMCONV_CTX_BIGINTS_SIZE (sizeof(duk__bigint) * DUK__NUMCONV_CTX_NUM_BIGINTS)
typedef struct {
/* Currently about 7*152 = 1064 bytes. The space for these
* duk__bigints is used also as a temporary buffer for generating
* the final string. This is a bit awkard; a union would be
* more correct.
*/
duk__bigint f, r, s, mp, mm, t1, t2;
duk_small_int_t is_s2n; /* if 1, doing a string-to-number; else doing a number-to-string */
duk_small_int_t is_fixed; /* if 1, doing a fixed format output (not free format) */
duk_small_int_t req_digits; /* requested number of output digits; 0 = free-format */
duk_small_int_t abs_pos; /* digit position is absolute, not relative */
duk_small_int_t e; /* exponent for 'f' */
duk_small_int_t b; /* input radix */
duk_small_int_t B; /* output radix */
duk_small_int_t k; /* see algorithm */
duk_small_int_t low_ok; /* see algorithm */
duk_small_int_t high_ok; /* see algorithm */
duk_small_int_t unequal_gaps; /* m+ != m- (very rarely) */
/* Buffer used for generated digits, values are in the range [0,B-1]. */
duk_uint8_t digits[DUK__MAX_OUTPUT_DIGITS];
duk_small_int_t count; /* digit count */
} duk__numconv_stringify_ctx;
/* Note: computes with 'idx' in assertions, so caller beware.
* 'idx' is preincremented, i.e. '1' on first call, because it
* is more convenient for the caller.
*/
#define DUK__DRAGON4_OUTPUT_PREINC(nc_ctx, preinc_idx, x) \
do { \
DUK_ASSERT((preinc_idx) -1 >= 0); \
DUK_ASSERT((preinc_idx) -1 < DUK__MAX_OUTPUT_DIGITS); \
((nc_ctx)->digits[(preinc_idx) -1]) = (duk_uint8_t) (x); \
} while (0)
DUK_LOCAL duk_size_t duk__dragon4_format_uint32(duk_uint8_t *buf, duk_uint32_t x, duk_small_int_t radix) {
duk_uint8_t *p;
duk_size_t len;
duk_small_int_t dig;
duk_uint32_t t;
DUK_ASSERT(buf != NULL);
DUK_ASSERT(radix >= 2 && radix <= 36);
/* A 32-bit unsigned integer formats to at most 32 digits (the
* worst case happens with radix == 2). Output the digits backwards,
* and use a memmove() to get them in the right place.
*/
p = buf + 32;
for (;;) {
t = x / (duk_uint32_t) radix;
dig = (duk_small_int_t) (x - t * (duk_uint32_t) radix);
x = t;
DUK_ASSERT(dig >= 0 && dig < 36);
*(--p) = DUK__DIGITCHAR(dig);
if (x == 0) {
break;
}
}
len = (duk_size_t) ((buf + 32) - p);
duk_memmove((void *) buf, (const void *) p, (size_t) len);
return len;
}
DUK_LOCAL void duk__dragon4_prepare(duk__numconv_stringify_ctx *nc_ctx) {
duk_small_int_t lowest_mantissa;
#if 1
/* Assume IEEE round-to-even, so that shorter encoding can be used
* when round-to-even would produce correct result. By removing
* this check (and having low_ok == high_ok == 0) the results would
* still be accurate but in some cases longer than necessary.
*/
if (duk__bi_is_even(&nc_ctx->f)) {
DUK_DDD(DUK_DDDPRINT("f is even"));
nc_ctx->low_ok = 1;
nc_ctx->high_ok = 1;
} else {
DUK_DDD(DUK_DDDPRINT("f is odd"));
nc_ctx->low_ok = 0;
nc_ctx->high_ok = 0;
}
#else
/* Note: not honoring round-to-even should work but now generates incorrect
* results. For instance, 1e23 serializes to "a000...", i.e. the first digit
* equals the radix (10). Scaling stops one step too early in this case.
* Don't know why this is the case, but since this code path is unused, it
* doesn't matter.
*/
nc_ctx->low_ok = 0;
nc_ctx->high_ok = 0;
#endif
/* For string-to-number, pretend we never have the lowest mantissa as there
* is no natural "precision" for inputs. Having lowest_mantissa == 0, we'll
* fall into the base cases for both e >= 0 and e < 0.
*/
if (nc_ctx->is_s2n) {
lowest_mantissa = 0;
} else {
lowest_mantissa = duk__bi_is_2to52(&nc_ctx->f);
}
nc_ctx->unequal_gaps = 0;
if (nc_ctx->e >= 0) {
/* exponent non-negative (and thus not minimum exponent) */
if (lowest_mantissa) {
/* (>= e 0) AND (= f (expt b (- p 1)))
*
* be <- (expt b e) == b^e
* be1 <- (* be b) == (expt b (+ e 1)) == b^(e+1)
* r <- (* f be1 2) == 2 * f * b^(e+1) [if b==2 -> f * b^(e+2)]
* s <- (* b 2) [if b==2 -> 4]
* m+ <- be1 == b^(e+1)
* m- <- be == b^e
* k <- 0
* B <- B
* low_ok <- round
* high_ok <- round
*/
DUK_DDD(DUK_DDDPRINT("non-negative exponent (not smallest exponent); "
"lowest mantissa value for this exponent -> "
"unequal gaps"));
duk__bi_exp_small(&nc_ctx->mm, nc_ctx->b, nc_ctx->e, &nc_ctx->t1, &nc_ctx->t2); /* mm <- b^e */
duk__bi_mul_small(&nc_ctx->mp, &nc_ctx->mm, (duk_uint32_t) nc_ctx->b); /* mp <- b^(e+1) */
duk__bi_mul_small(&nc_ctx->t1, &nc_ctx->f, 2);
duk__bi_mul(&nc_ctx->r, &nc_ctx->t1, &nc_ctx->mp); /* r <- (2 * f) * b^(e+1) */
duk__bi_set_small(&nc_ctx->s, (duk_uint32_t) (nc_ctx->b * 2)); /* s <- 2 * b */
nc_ctx->unequal_gaps = 1;
} else {
/* (>= e 0) AND (not (= f (expt b (- p 1))))
*
* be <- (expt b e) == b^e
* r <- (* f be 2) == 2 * f * b^e [if b==2 -> f * b^(e+1)]
* s <- 2
* m+ <- be == b^e
* m- <- be == b^e
* k <- 0
* B <- B
* low_ok <- round
* high_ok <- round
*/
DUK_DDD(DUK_DDDPRINT("non-negative exponent (not smallest exponent); "
"not lowest mantissa for this exponent -> "
"equal gaps"));
duk__bi_exp_small(&nc_ctx->mm, nc_ctx->b, nc_ctx->e, &nc_ctx->t1, &nc_ctx->t2); /* mm <- b^e */
duk__bi_copy(&nc_ctx->mp, &nc_ctx->mm); /* mp <- b^e */
duk__bi_mul_small(&nc_ctx->t1, &nc_ctx->f, 2);
duk__bi_mul(&nc_ctx->r, &nc_ctx->t1, &nc_ctx->mp); /* r <- (2 * f) * b^e */
duk__bi_set_small(&nc_ctx->s, 2); /* s <- 2 */
}
} else {
/* When doing string-to-number, lowest_mantissa is always 0 so
* the exponent check, while incorrect, won't matter.
*/
if (nc_ctx->e > DUK__IEEE_DOUBLE_EXP_MIN /*not minimum exponent*/ &&
lowest_mantissa /* lowest mantissa for this exponent*/) {
/* r <- (* f b 2) [if b==2 -> (* f 4)]
* s <- (* (expt b (- 1 e)) 2) == b^(1-e) * 2 [if b==2 -> b^(2-e)]
* m+ <- b == 2
* m- <- 1
* k <- 0
* B <- B
* low_ok <- round
* high_ok <- round
*/
DUK_DDD(DUK_DDDPRINT("negative exponent; not minimum exponent and "
"lowest mantissa for this exponent -> "
"unequal gaps"));
duk__bi_mul_small(&nc_ctx->r, &nc_ctx->f, (duk_uint32_t) (nc_ctx->b * 2)); /* r <- (2 * b) * f */
duk__bi_exp_small(&nc_ctx->t1,
nc_ctx->b,
1 - nc_ctx->e,
&nc_ctx->s,
&nc_ctx->t2); /* NB: use 's' as temp on purpose */
duk__bi_mul_small(&nc_ctx->s, &nc_ctx->t1, 2); /* s <- b^(1-e) * 2 */
duk__bi_set_small(&nc_ctx->mp, 2);
duk__bi_set_small(&nc_ctx->mm, 1);
nc_ctx->unequal_gaps = 1;
} else {
/* r <- (* f 2)
* s <- (* (expt b (- e)) 2) == b^(-e) * 2 [if b==2 -> b^(1-e)]
* m+ <- 1
* m- <- 1
* k <- 0
* B <- B
* low_ok <- round
* high_ok <- round
*/
DUK_DDD(DUK_DDDPRINT("negative exponent; minimum exponent or not "
"lowest mantissa for this exponent -> "
"equal gaps"));
duk__bi_mul_small(&nc_ctx->r, &nc_ctx->f, 2); /* r <- 2 * f */
duk__bi_exp_small(&nc_ctx->t1,
nc_ctx->b,
-nc_ctx->e,
&nc_ctx->s,
&nc_ctx->t2); /* NB: use 's' as temp on purpose */
duk__bi_mul_small(&nc_ctx->s, &nc_ctx->t1, 2); /* s <- b^(-e) * 2 */
duk__bi_set_small(&nc_ctx->mp, 1);
duk__bi_set_small(&nc_ctx->mm, 1);
}
}
}
DUK_LOCAL void duk__dragon4_scale(duk__numconv_stringify_ctx *nc_ctx) {
duk_small_int_t k = 0;
/* This is essentially the 'scale' algorithm, with recursion removed.
* Note that 'k' is either correct immediately, or will move in one
* direction in the loop. There's no need to do the low/high checks
* on every round (like the Scheme algorithm does).
*
* The scheme algorithm finds 'k' and updates 's' simultaneously,
* while the logical algorithm finds 'k' with 's' having its initial
* value, after which 's' is updated separately (see the Burger-Dybvig
* paper, Section 3.1, steps 2 and 3).
*
* The case where m+ == m- (almost always) is optimized for, because
* it reduces the bigint operations considerably and almost always
* applies. The scale loop only needs to work with m+, so this works.
*/
/* XXX: this algorithm could be optimized quite a lot by using e.g.
* a logarithm based estimator for 'k' and performing B^n multiplication
* using a lookup table or using some bit-representation based exp
* algorithm. Currently we just loop, with significant performance
* impact for very large and very small numbers.
*/
DUK_DDD(
DUK_DDDPRINT("scale: B=%ld, low_ok=%ld, high_ok=%ld", (long) nc_ctx->B, (long) nc_ctx->low_ok, (long) nc_ctx->high_ok));
DUK__BI_PRINT("r(init)", &nc_ctx->r);
DUK__BI_PRINT("s(init)", &nc_ctx->s);
DUK__BI_PRINT("mp(init)", &nc_ctx->mp);
DUK__BI_PRINT("mm(init)", &nc_ctx->mm);
for (;;) {
DUK_DDD(DUK_DDDPRINT("scale loop (inc k), k=%ld", (long) k));
DUK__BI_PRINT("r", &nc_ctx->r);
DUK__BI_PRINT("s", &nc_ctx->s);
DUK__BI_PRINT("m+", &nc_ctx->mp);
DUK__BI_PRINT("m-", &nc_ctx->mm);
duk__bi_add(&nc_ctx->t1, &nc_ctx->r, &nc_ctx->mp); /* t1 = (+ r m+) */
if (duk__bi_compare(&nc_ctx->t1, &nc_ctx->s) >= (nc_ctx->high_ok ? 0 : 1)) {
DUK_DDD(DUK_DDDPRINT("k is too low"));
/* r <- r
* s <- (* s B)
* m+ <- m+
* m- <- m-
* k <- (+ k 1)
*/
duk__bi_mul_small_copy(&nc_ctx->s, (duk_uint32_t) nc_ctx->B, &nc_ctx->t1);
k++;
} else {
break;
}
}
/* k > 0 -> k was too low, and cannot be too high */
if (k > 0) {
goto skip_dec_k;
}
for (;;) {
DUK_DDD(DUK_DDDPRINT("scale loop (dec k), k=%ld", (long) k));
DUK__BI_PRINT("r", &nc_ctx->r);
DUK__BI_PRINT("s", &nc_ctx->s);
DUK__BI_PRINT("m+", &nc_ctx->mp);
DUK__BI_PRINT("m-", &nc_ctx->mm);
duk__bi_add(&nc_ctx->t1, &nc_ctx->r, &nc_ctx->mp); /* t1 = (+ r m+) */
duk__bi_mul_small(&nc_ctx->t2, &nc_ctx->t1, (duk_uint32_t) nc_ctx->B); /* t2 = (* (+ r m+) B) */
if (duk__bi_compare(&nc_ctx->t2, &nc_ctx->s) <= (nc_ctx->high_ok ? -1 : 0)) {
DUK_DDD(DUK_DDDPRINT("k is too high"));
/* r <- (* r B)
* s <- s
* m+ <- (* m+ B)
* m- <- (* m- B)
* k <- (- k 1)
*/
duk__bi_mul_small_copy(&nc_ctx->r, (duk_uint32_t) nc_ctx->B, &nc_ctx->t1);
duk__bi_mul_small_copy(&nc_ctx->mp, (duk_uint32_t) nc_ctx->B, &nc_ctx->t1);
if (nc_ctx->unequal_gaps) {
DUK_DDD(DUK_DDDPRINT("m+ != m- -> need to update m- too"));
duk__bi_mul_small_copy(&nc_ctx->mm, (duk_uint32_t) nc_ctx->B, &nc_ctx->t1);
}
k--;
} else {
break;
}
}
skip_dec_k:
if (!nc_ctx->unequal_gaps) {
DUK_DDD(DUK_DDDPRINT("equal gaps, copy m- from m+"));
duk__bi_copy(&nc_ctx->mm, &nc_ctx->mp); /* mm <- mp */
}
nc_ctx->k = k;
DUK_DDD(DUK_DDDPRINT("final k: %ld", (long) k));
DUK__BI_PRINT("r(final)", &nc_ctx->r);
DUK__BI_PRINT("s(final)", &nc_ctx->s);
DUK__BI_PRINT("mp(final)", &nc_ctx->mp);
DUK__BI_PRINT("mm(final)", &nc_ctx->mm);
}
DUK_LOCAL void duk__dragon4_generate(duk__numconv_stringify_ctx *nc_ctx) {
duk_small_int_t tc1, tc2; /* terminating conditions */
duk_small_int_t d; /* current digit */
duk_small_int_t count = 0; /* digit count */
/*
* Digit generation loop.
*
* Different termination conditions:
*
* 1. Free format output. Terminate when shortest accurate
* representation found.
*
* 2. Fixed format output, with specific number of digits.
* Ignore termination conditions, terminate when digits
* generated. Caller requests an extra digit and rounds.
*
* 3. Fixed format output, with a specific absolute cut-off
* position (e.g. 10 digits after decimal point). Note
* that we always generate at least one digit, even if
* the digit is below the cut-off point already.
*/
for (;;) {
DUK_DDD(DUK_DDDPRINT("generate loop, count=%ld, k=%ld, B=%ld, low_ok=%ld, high_ok=%ld",
(long) count,
(long) nc_ctx->k,
(long) nc_ctx->B,
(long) nc_ctx->low_ok,
(long) nc_ctx->high_ok));
DUK__BI_PRINT("r", &nc_ctx->r);
DUK__BI_PRINT("s", &nc_ctx->s);
DUK__BI_PRINT("m+", &nc_ctx->mp);
DUK__BI_PRINT("m-", &nc_ctx->mm);
/* (quotient-remainder (* r B) s) using a dummy subtraction loop */
duk__bi_mul_small(&nc_ctx->t1, &nc_ctx->r, (duk_uint32_t) nc_ctx->B); /* t1 <- (* r B) */
d = 0;
for (;;) {
if (duk__bi_compare(&nc_ctx->t1, &nc_ctx->s) < 0) {
break;
}
duk__bi_sub_copy(&nc_ctx->t1, &nc_ctx->s, &nc_ctx->t2); /* t1 <- t1 - s */
d++;
}
duk__bi_copy(&nc_ctx->r, &nc_ctx->t1); /* r <- (remainder (* r B) s) */
/* d <- (quotient (* r B) s) (in range 0...B-1) */
DUK_DDD(DUK_DDDPRINT("-> d(quot)=%ld", (long) d));
DUK__BI_PRINT("r(rem)", &nc_ctx->r);
duk__bi_mul_small_copy(&nc_ctx->mp, (duk_uint32_t) nc_ctx->B, &nc_ctx->t2); /* m+ <- (* m+ B) */
duk__bi_mul_small_copy(&nc_ctx->mm, (duk_uint32_t) nc_ctx->B, &nc_ctx->t2); /* m- <- (* m- B) */
DUK__BI_PRINT("mp(upd)", &nc_ctx->mp);
DUK__BI_PRINT("mm(upd)", &nc_ctx->mm);
/* Terminating conditions. For fixed width output, we just ignore the
* terminating conditions (and pretend that tc1 == tc2 == false). The
* the current shortcut for fixed-format output is to generate a few
* extra digits and use rounding (with carry) to finish the output.
*/
if (nc_ctx->is_fixed == 0) {
/* free-form */
tc1 = (duk__bi_compare(&nc_ctx->r, &nc_ctx->mm) <= (nc_ctx->low_ok ? 0 : -1));
duk__bi_add(&nc_ctx->t1, &nc_ctx->r, &nc_ctx->mp); /* t1 <- (+ r m+) */
tc2 = (duk__bi_compare(&nc_ctx->t1, &nc_ctx->s) >= (nc_ctx->high_ok ? 0 : 1));
DUK_DDD(DUK_DDDPRINT("tc1=%ld, tc2=%ld", (long) tc1, (long) tc2));
} else {
/* fixed-format */
tc1 = 0;
tc2 = 0;
}
/* Count is incremented before DUK__DRAGON4_OUTPUT_PREINC() call
* on purpose, which is taken into account by the macro.
*/
count++;
if (tc1) {
if (tc2) {
/* tc1 = true, tc2 = true */
duk__bi_mul_small(&nc_ctx->t1, &nc_ctx->r, 2);
if (duk__bi_compare(&nc_ctx->t1, &nc_ctx->s) < 0) { /* (< (* r 2) s) */
DUK_DDD(DUK_DDDPRINT("tc1=true, tc2=true, 2r > s: output d --> %ld (k=%ld)",
(long) d,
(long) nc_ctx->k));
DUK__DRAGON4_OUTPUT_PREINC(nc_ctx, count, d);
} else {
DUK_DDD(DUK_DDDPRINT("tc1=true, tc2=true, 2r <= s: output d+1 --> %ld (k=%ld)",
(long) (d + 1),
(long) nc_ctx->k));
DUK__DRAGON4_OUTPUT_PREINC(nc_ctx, count, d + 1);
}
break;
} else {
/* tc1 = true, tc2 = false */
DUK_DDD(DUK_DDDPRINT("tc1=true, tc2=false: output d --> %ld (k=%ld)", (long) d, (long) nc_ctx->k));
DUK__DRAGON4_OUTPUT_PREINC(nc_ctx, count, d);
break;
}
} else {
if (tc2) {
/* tc1 = false, tc2 = true */
DUK_DDD(DUK_DDDPRINT("tc1=false, tc2=true: output d+1 --> %ld (k=%ld)",
(long) (d + 1),
(long) nc_ctx->k));
DUK__DRAGON4_OUTPUT_PREINC(nc_ctx, count, d + 1);
break;
} else {
/* tc1 = false, tc2 = false */
DUK_DDD(DUK_DDDPRINT("tc1=false, tc2=false: output d --> %ld (k=%ld)", (long) d, (long) nc_ctx->k));
DUK__DRAGON4_OUTPUT_PREINC(nc_ctx, count, d);
/* r <- r (updated above: r <- (remainder (* r B) s)
* s <- s
* m+ <- m+ (updated above: m+ <- (* m+ B)
* m- <- m- (updated above: m- <- (* m- B)
* B, low_ok, high_ok are fixed
*/
/* fall through and continue for-loop */
}
}
/* fixed-format termination conditions */
if (nc_ctx->is_fixed) {
if (nc_ctx->abs_pos) {
int pos = nc_ctx->k - count + 1; /* count is already incremented, take into account */
DUK_DDD(DUK_DDDPRINT("fixed format, absolute: abs pos=%ld, k=%ld, count=%ld, req=%ld",
(long) pos,
(long) nc_ctx->k,
(long) count,
(long) nc_ctx->req_digits));
if (pos <= nc_ctx->req_digits) {
DUK_DDD(DUK_DDDPRINT("digit position reached req_digits, end generate loop"));
break;
}
} else {
DUK_DDD(DUK_DDDPRINT("fixed format, relative: k=%ld, count=%ld, req=%ld",
(long) nc_ctx->k,
(long) count,
(long) nc_ctx->req_digits));
if (count >= nc_ctx->req_digits) {
DUK_DDD(DUK_DDDPRINT("digit count reached req_digits, end generate loop"));
break;
}
}
}
} /* for */
nc_ctx->count = count;
DUK_DDD(DUK_DDDPRINT("generate finished"));
#if defined(DUK_USE_DEBUG_LEVEL) && (DUK_USE_DEBUG_LEVEL >= 2)
{
duk_uint8_t buf[2048];
duk_small_int_t i, t;
duk_memzero(buf, sizeof(buf));
for (i = 0; i < nc_ctx->count; i++) {
t = nc_ctx->digits[i];
if (t < 0 || t > 36) {
buf[i] = (duk_uint8_t) '?';
} else {
buf[i] = (duk_uint8_t) DUK__DIGITCHAR(t);
}
}
DUK_DDD(DUK_DDDPRINT("-> generated digits; k=%ld, digits='%s'", (long) nc_ctx->k, (const char *) buf));
}
#endif
}
/* Round up digits to a given position. If position is out-of-bounds,
* does nothing. If carry propagates over the first digit, a '1' is
* prepended to digits and 'k' will be updated. Return value indicates
* whether carry propagated over the first digit.
*
* Note that nc_ctx->count is NOT updated based on the rounding position
* (it is updated only if carry overflows over the first digit and an
* extra digit is prepended).
*/
DUK_LOCAL duk_small_int_t duk__dragon4_fixed_format_round(duk__numconv_stringify_ctx *nc_ctx, duk_small_int_t round_idx) {
duk_small_int_t t;
duk_uint8_t *p;
duk_uint8_t roundup_limit;
duk_small_int_t ret = 0;
/*
* round_idx points to the digit which is considered for rounding; the
* digit to its left is the final digit of the rounded value. If round_idx
* is zero, rounding will be performed; the result will either be an empty
* rounded value or if carry happens a '1' digit is generated.
*/
if (round_idx >= nc_ctx->count) {
DUK_DDD(DUK_DDDPRINT("round_idx out of bounds (%ld >= %ld (count)) -> no rounding",
(long) round_idx,
(long) nc_ctx->count));
return 0;
} else if (round_idx < 0) {
DUK_DDD(DUK_DDDPRINT("round_idx out of bounds (%ld < 0) -> no rounding", (long) round_idx));
return 0;
}
/*
* Round-up limit.
*
* For even values, divides evenly, e.g. 10 -> roundup_limit=5.
*
* For odd values, rounds up, e.g. 3 -> roundup_limit=2.
* If radix is 3, 0/3 -> down, 1/3 -> down, 2/3 -> up.
*/
roundup_limit = (duk_uint8_t) ((nc_ctx->B + 1) / 2);
p = &nc_ctx->digits[round_idx];
if (*p >= roundup_limit) {
DUK_DDD(DUK_DDDPRINT("fixed-format rounding carry required"));
/* carry */
for (;;) {
*p = 0;
if (p == &nc_ctx->digits[0]) {
DUK_DDD(DUK_DDDPRINT("carry propagated to first digit -> special case handling"));
duk_memmove((void *) (&nc_ctx->digits[1]),
(const void *) (&nc_ctx->digits[0]),
(size_t) (sizeof(char) * (size_t) nc_ctx->count));
nc_ctx->digits[0] = 1; /* don't increase 'count' */
nc_ctx->k++; /* position of highest digit changed */
nc_ctx->count++; /* number of digits changed */
ret = 1;
break;
}
DUK_DDD(DUK_DDDPRINT("fixed-format rounding carry: B=%ld, roundup_limit=%ld, p=%p, digits=%p",
(long) nc_ctx->B,
(long) roundup_limit,
(void *) p,
(void *) nc_ctx->digits));
p--;
t = *p;
DUK_DDD(DUK_DDDPRINT("digit before carry: %ld", (long) t));
if (++t < nc_ctx->B) {
DUK_DDD(DUK_DDDPRINT("rounding carry terminated"));
*p = (duk_uint8_t) t;
break;
}
DUK_DDD(DUK_DDDPRINT("wraps, carry to next digit"));
}
}
return ret;
}
#define DUK__NO_EXP (65536) /* arbitrary marker, outside valid exp range */
DUK_LOCAL void duk__dragon4_convert_and_push(duk__numconv_stringify_ctx *nc_ctx,
duk_hthread *thr,
duk_small_int_t radix,
duk_small_int_t digits,
duk_small_uint_t flags,
duk_small_int_t neg) {
duk_small_int_t k;
duk_small_int_t pos, pos_end;
duk_small_int_t expt;
duk_small_int_t dig;
duk_uint8_t *q;
duk_uint8_t *buf;
/*
* The string conversion here incorporates all the necessary ECMAScript
* semantics without attempting to be generic. nc_ctx->digits contains
* nc_ctx->count digits (>= 1), with the topmost digit's 'position'
* indicated by nc_ctx->k as follows:
*
* digits="123" count=3 k=0 --> 0.123
* digits="123" count=3 k=1 --> 1.23
* digits="123" count=3 k=5 --> 12300
* digits="123" count=3 k=-1 --> 0.0123
*
* Note that the identifier names used for format selection are different
* in Burger-Dybvig paper and ECMAScript specification (quite confusingly
* so, because e.g. 'k' has a totally different meaning in each). See
* documentation for discussion.
*
* ECMAScript doesn't specify any specific behavior for format selection
* (e.g. when to use exponent notation) for non-base-10 numbers.
*
* The bigint space in the context is reused for string output, as there
* is more than enough space for that (>1kB at the moment), and we avoid
* allocating even more stack.
*/
DUK_ASSERT(DUK__NUMCONV_CTX_BIGINTS_SIZE >= DUK__MAX_FORMATTED_LENGTH);
DUK_ASSERT(nc_ctx->count >= 1);
k = nc_ctx->k;
buf = (duk_uint8_t *) &nc_ctx->f; /* XXX: union would be more correct */
q = buf;
/* Exponent handling: if exponent format is used, record exponent value and
* fake k such that one leading digit is generated (e.g. digits=123 -> "1.23").
*
* toFixed() prevents exponent use; otherwise apply a set of criteria to
* match the other API calls (toString(), toPrecision, etc).
*/
expt = DUK__NO_EXP;
if (!nc_ctx->abs_pos /* toFixed() */) {
if ((flags & DUK_N2S_FLAG_FORCE_EXP) || /* exponential notation forced */
((flags & DUK_N2S_FLAG_NO_ZERO_PAD) && /* fixed precision and zero padding would be required */
(k - digits >= 1)) || /* (e.g. k=3, digits=2 -> "12X") */
((k > 21 || k <= -6) && (radix == 10))) { /* toString() conditions */
DUK_DDD(DUK_DDDPRINT("use exponential notation: k=%ld -> expt=%ld", (long) k, (long) (k - 1)));
expt = k - 1; /* e.g. 12.3 -> digits="123" k=2 -> 1.23e1 */
k = 1; /* generate mantissa with a single leading whole number digit */
}
}
if (neg) {
*q++ = '-';
}
/* Start position (inclusive) and end position (exclusive) */
pos = (k >= 1 ? k : 1);
if (nc_ctx->is_fixed) {
if (nc_ctx->abs_pos) {
/* toFixed() */
pos_end = -digits;
} else {
pos_end = k - digits;
}
} else {
pos_end = k - nc_ctx->count;
}
if (pos_end > 0) {
pos_end = 0;
}
DUK_DDD(DUK_DDDPRINT("expt=%ld, k=%ld, count=%ld, pos=%ld, pos_end=%ld, is_fixed=%ld, "
"digits=%ld, abs_pos=%ld",
(long) expt,
(long) k,
(long) nc_ctx->count,
(long) pos,
(long) pos_end,
(long) nc_ctx->is_fixed,
(long) digits,
(long) nc_ctx->abs_pos));
/* Digit generation */
while (pos > pos_end) {
DUK_DDD(DUK_DDDPRINT("digit generation: pos=%ld, pos_end=%ld", (long) pos, (long) pos_end));
if (pos == 0) {
*q++ = (duk_uint8_t) '.';
}
if (pos > k) {
*q++ = (duk_uint8_t) '0';
} else if (pos <= k - nc_ctx->count) {
*q++ = (duk_uint8_t) '0';
} else {
dig = nc_ctx->digits[k - pos];
DUK_ASSERT(dig >= 0 && dig < nc_ctx->B);
*q++ = (duk_uint8_t) DUK__DIGITCHAR(dig);
}
pos--;
}
DUK_ASSERT(pos <= 1);
/* Exponent */
if (expt != DUK__NO_EXP) {
/*
* Exponent notation for non-base-10 numbers isn't specified in ECMAScript
* specification, as it never explicitly turns up: non-decimal numbers can
* only be formatted with Number.prototype.toString([radix]) and for that,
* behavior is not explicitly specified.
*
* Logical choices include formatting the exponent as decimal (e.g. binary
* 100000 as 1e+5) or in current radix (e.g. binary 100000 as 1e+101).
* The Dragon4 algorithm (in the original paper) prints the exponent value
* in the target radix B. However, for radix values 15 and above, the
* exponent separator 'e' is no longer easily parseable. Consider, for
* instance, the number "1.faecee+1c".
*/
duk_size_t len;
char expt_sign;
*q++ = 'e';
if (expt >= 0) {
expt_sign = '+';
} else {
expt_sign = '-';
expt = -expt;
}
*q++ = (duk_uint8_t) expt_sign;
len = duk__dragon4_format_uint32(q, (duk_uint32_t) expt, radix);
q += len;
}
duk_push_lstring(thr, (const char *) buf, (size_t) (q - buf));
}
/*
* Conversion helpers
*/
DUK_LOCAL void duk__dragon4_double_to_ctx(duk__numconv_stringify_ctx *nc_ctx, duk_double_t x) {
duk_double_union u;
duk_uint32_t tmp;
duk_small_int_t expt;
/*
* seeeeeee eeeeffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
* A B C D E F G H
*
* s sign bit
* eee... exponent field
* fff... fraction
*
* ieee value = 1.ffff... * 2^(e - 1023) (normal)
* = 0.ffff... * 2^(-1022) (denormal)
*
* algorithm v = f * b^e
*/
DUK_DBLUNION_SET_DOUBLE(&u, x);
nc_ctx->f.n = 2;
tmp = DUK_DBLUNION_GET_LOW32(&u);
nc_ctx->f.v[0] = tmp;
tmp = DUK_DBLUNION_GET_HIGH32(&u);
nc_ctx->f.v[1] = tmp & 0x000fffffUL;
expt = (duk_small_int_t) ((tmp >> 20) & 0x07ffUL);
if (expt == 0) {
/* denormal */
expt = DUK__IEEE_DOUBLE_EXP_MIN - 52;
duk__bi_normalize(&nc_ctx->f);
} else {
/* normal: implicit leading 1-bit */
nc_ctx->f.v[1] |= 0x00100000UL;
expt = expt - DUK__IEEE_DOUBLE_EXP_BIAS - 52;
DUK_ASSERT(duk__bi_is_valid(&nc_ctx->f)); /* true, because v[1] has at least one bit set */
}
DUK_ASSERT(duk__bi_is_valid(&nc_ctx->f));
nc_ctx->e = expt;
}
DUK_LOCAL void duk__dragon4_ctx_to_double(duk__numconv_stringify_ctx *nc_ctx, duk_double_t *x) {
duk_double_union u;
duk_small_int_t expt;
duk_small_int_t i;
duk_small_int_t bitstart;
duk_small_int_t bitround;
duk_small_int_t bitidx;
duk_small_int_t skip_round;
duk_uint32_t t, v;
DUK_ASSERT(nc_ctx->count == 53 + 1);
/* Sometimes this assert is not true right now; it will be true after
* rounding. See: test-bug-numconv-mantissa-assert.js.
*/
DUK_ASSERT_DISABLE(nc_ctx->digits[0] == 1); /* zero handled by caller */
/* Should not be required because the code below always sets both high
* and low parts, but at least gcc-4.4.5 fails to deduce this correctly
* (perhaps because the low part is set (seemingly) conditionally in a
* loop), so this is here to avoid the bogus warning.
*/
duk_memzero((void *) &u, sizeof(u));
/*
* Figure out how generated digits match up with the mantissa,
* and then perform rounding. If mantissa overflows, need to
* recompute the exponent (it is bumped and may overflow to
* infinity).
*
* For normal numbers the leading '1' is hidden and ignored,
* and the last bit is used for rounding:
*
* rounding pt
* <--------52------->|
* 1 x x x x ... x x x x|y ==> x x x x ... x x x x
*
* For denormals, the leading '1' is included in the number,
* and the rounding point is different:
*
* rounding pt
* <--52 or less--->|
* 1 x x x x ... x x|x x y ==> 0 0 ... 1 x x ... x x
*
* The largest denormals will have a mantissa beginning with
* a '1' (the explicit leading bit); smaller denormals will
* have leading zero bits.
*
* If the exponent would become too high, the result becomes
* Infinity. If the exponent is so small that the entire
* mantissa becomes zero, the result becomes zero.
*
* Note: the Dragon4 'k' is off-by-one with respect to the IEEE
* exponent. For instance, k==0 indicates that the leading '1'
* digit is at the first binary fraction position (0.1xxx...);
* the corresponding IEEE exponent would be -1.
*/
skip_round = 0;
recheck_exp:
expt = nc_ctx->k - 1; /* IEEE exp without bias */
if (expt > 1023) {
/* Infinity */
bitstart = -255; /* needed for inf: causes mantissa to become zero,
* and rounding to be skipped.
*/
expt = 2047;
} else if (expt >= -1022) {
/* normal */
bitstart = 1; /* skip leading digit */
expt += DUK__IEEE_DOUBLE_EXP_BIAS;
DUK_ASSERT(expt >= 1 && expt <= 2046);
} else {
/* denormal or zero */
bitstart = 1023 + expt; /* expt==-1023 -> bitstart=0 (leading 1);
* expt==-1024 -> bitstart=-1 (one left of leading 1), etc
*/
expt = 0;
}
bitround = bitstart + 52;
DUK_DDD(DUK_DDDPRINT("ieee expt=%ld, bitstart=%ld, bitround=%ld", (long) expt, (long) bitstart, (long) bitround));
if (!skip_round) {
if (duk__dragon4_fixed_format_round(nc_ctx, bitround)) {
/* Corner case: see test-numconv-parse-mant-carry.js. We could
* just bump the exponent and update bitstart, but it's more robust
* to recompute (but avoid rounding twice).
*/
DUK_DDD(DUK_DDDPRINT("rounding caused exponent to be bumped, recheck exponent"));
skip_round = 1;
goto recheck_exp;
}
}
/*
* Create mantissa
*/
t = 0;
for (i = 0; i < 52; i++) {
bitidx = bitstart + 52 - 1 - i;
if (bitidx >= nc_ctx->count) {
v = 0;
} else if (bitidx < 0) {
v = 0;
} else {
v = nc_ctx->digits[bitidx];
}
DUK_ASSERT(v == 0 || v == 1);
t += v << (i % 32);
if (i == 31) {
/* low 32 bits is complete */
DUK_DBLUNION_SET_LOW32(&u, t);
t = 0;
}
}
/* t has high mantissa */
DUK_DDD(DUK_DDDPRINT("mantissa is complete: %08lx %08lx", (unsigned long) t, (unsigned long) DUK_DBLUNION_GET_LOW32(&u)));
DUK_ASSERT(expt >= 0 && expt <= 0x7ffL);
t += ((duk_uint32_t) expt) << 20;
#if 0 /* caller handles sign change */
if (negative) {
t |= 0x80000000U;
}
#endif
DUK_DBLUNION_SET_HIGH32(&u, t);
DUK_DDD(DUK_DDDPRINT("number is complete: %08lx %08lx",
(unsigned long) DUK_DBLUNION_GET_HIGH32(&u),
(unsigned long) DUK_DBLUNION_GET_LOW32(&u)));
*x = DUK_DBLUNION_GET_DOUBLE(&u);
}
/*
* Exposed number-to-string API
*
* Input: [ number ]
* Output: [ string ]
*/
DUK_LOCAL DUK_NOINLINE void duk__numconv_stringify_raw(duk_hthread *thr,
duk_small_int_t radix,
duk_small_int_t digits,
duk_small_uint_t flags) {
duk_double_t x;
duk_small_int_t c;
duk_small_int_t neg;
duk_uint32_t uval;
duk__numconv_stringify_ctx nc_ctx_alloc; /* large context; around 2kB now */
duk__numconv_stringify_ctx *nc_ctx = &nc_ctx_alloc;
x = (duk_double_t) duk_require_number(thr, -1);
duk_pop(thr);
/*
* Handle special cases (NaN, infinity, zero).
*/
c = (duk_small_int_t) DUK_FPCLASSIFY(x);
if (DUK_SIGNBIT((double) x)) {
x = -x;
neg = 1;
} else {
neg = 0;
}
/* NaN sign bit is platform specific with unpacked, un-normalized NaNs */
DUK_ASSERT(c == DUK_FP_NAN || DUK_SIGNBIT((double) x) == 0);
if (c == DUK_FP_NAN) {
duk_push_hstring_stridx(thr, DUK_STRIDX_NAN);
return;
} else if (c == DUK_FP_INFINITE) {
if (neg) {
/* -Infinity */
duk_push_hstring_stridx(thr, DUK_STRIDX_MINUS_INFINITY);
} else {
/* Infinity */
duk_push_hstring_stridx(thr, DUK_STRIDX_INFINITY);
}
return;
} else if (c == DUK_FP_ZERO) {
/* We can't shortcut zero here if it goes through special formatting
* (such as forced exponential notation).
*/
;
}
/*
* Handle integers in 32-bit range (that is, [-(2**32-1),2**32-1])
* specially, as they're very likely for embedded programs. This
* is now done for all radix values. We must be careful not to use
* the fast path when special formatting (e.g. forced exponential)
* is in force.
*
* XXX: could save space by supporting radix 10 only and using
* sprintf "%lu" for the fast path and for exponent formatting.
*/
uval = duk_double_to_uint32_t(x);
if (duk_double_equals((double) uval, x) && /* integer number in range */
flags == 0) { /* no special formatting */
/* use bigint area as a temp */
duk_uint8_t *buf = (duk_uint8_t *) (&nc_ctx->f);
duk_uint8_t *p = buf;
DUK_ASSERT(DUK__NUMCONV_CTX_BIGINTS_SIZE >= 32 + 1); /* max size: radix=2 + sign */
if (neg && uval != 0) {
/* no negative sign for zero */
*p++ = (duk_uint8_t) '-';
}
p += duk__dragon4_format_uint32(p, uval, radix);
duk_push_lstring(thr, (const char *) buf, (duk_size_t) (p - buf));
return;
}
/*
* Dragon4 setup.
*
* Convert double from IEEE representation for conversion;
* normal finite values have an implicit leading 1-bit. The
* slow path algorithm doesn't handle zero, so zero is special
* cased here but still creates a valid nc_ctx, and goes
* through normal formatting in case special formatting has
* been requested (e.g. forced exponential format: 0 -> "0e+0").
*/
/* Would be nice to bulk clear the allocation, but the context
* is 1-2 kilobytes and nothing should rely on it being zeroed.
*/
#if 0
duk_memzero((void *) nc_ctx, sizeof(*nc_ctx)); /* slow init, do only for slow path cases */
#endif
nc_ctx->is_s2n = 0;
nc_ctx->b = 2;
nc_ctx->B = radix;
nc_ctx->abs_pos = 0;
if (flags & DUK_N2S_FLAG_FIXED_FORMAT) {
nc_ctx->is_fixed = 1;
if (flags & DUK_N2S_FLAG_FRACTION_DIGITS) {
/* absolute req_digits; e.g. digits = 1 -> last digit is 0,
* but add an extra digit for rounding.
*/
nc_ctx->abs_pos = 1;
nc_ctx->req_digits = (-digits + 1) - 1;
} else {
nc_ctx->req_digits = digits + 1;
}
} else {
nc_ctx->is_fixed = 0;
nc_ctx->req_digits = 0;
}
if (c == DUK_FP_ZERO) {
/* Zero special case: fake requested number of zero digits; ensure
* no sign bit is printed. Relative and absolute fixed format
* require separate handling.
*/
duk_small_int_t count;
if (nc_ctx->is_fixed) {
if (nc_ctx->abs_pos) {
count = digits + 2; /* lead zero + 'digits' fractions + 1 for rounding */
} else {
count = digits + 1; /* + 1 for rounding */
}
} else {
count = 1;
}
DUK_DDD(DUK_DDDPRINT("count=%ld", (long) count));
DUK_ASSERT(count >= 1);
duk_memzero((void *) nc_ctx->digits, (size_t) count);
nc_ctx->count = count;
nc_ctx->k = 1; /* 0.000... */
neg = 0;
goto zero_skip;
}
duk__dragon4_double_to_ctx(nc_ctx, x); /* -> sets 'f' and 'e' */
DUK__BI_PRINT("f", &nc_ctx->f);
DUK_DDD(DUK_DDDPRINT("e=%ld", (long) nc_ctx->e));
/*
* Dragon4 slow path digit generation.
*/
duk__dragon4_prepare(nc_ctx); /* setup many variables in nc_ctx */
DUK_DDD(DUK_DDDPRINT("after prepare:"));
DUK__BI_PRINT("r", &nc_ctx->r);
DUK__BI_PRINT("s", &nc_ctx->s);
DUK__BI_PRINT("mp", &nc_ctx->mp);
DUK__BI_PRINT("mm", &nc_ctx->mm);
duk__dragon4_scale(nc_ctx);
DUK_DDD(DUK_DDDPRINT("after scale; k=%ld", (long) nc_ctx->k));
DUK__BI_PRINT("r", &nc_ctx->r);
DUK__BI_PRINT("s", &nc_ctx->s);
DUK__BI_PRINT("mp", &nc_ctx->mp);
DUK__BI_PRINT("mm", &nc_ctx->mm);
duk__dragon4_generate(nc_ctx);
/*
* Convert and push final string.
*/
zero_skip:
if (flags & DUK_N2S_FLAG_FIXED_FORMAT) {
/* Perform fixed-format rounding. */
duk_small_int_t roundpos;
if (flags & DUK_N2S_FLAG_FRACTION_DIGITS) {
/* 'roundpos' is relative to nc_ctx->k and increases to the right
* (opposite of how 'k' changes).
*/
roundpos = -digits; /* absolute position for digit considered for rounding */
roundpos = nc_ctx->k - roundpos;
} else {
roundpos = digits;
}
DUK_DDD(DUK_DDDPRINT("rounding: k=%ld, count=%ld, digits=%ld, roundpos=%ld",
(long) nc_ctx->k,
(long) nc_ctx->count,
(long) digits,
(long) roundpos));
(void) duk__dragon4_fixed_format_round(nc_ctx, roundpos);
/* Note: 'count' is currently not adjusted by rounding (i.e. the
* digits are not "chopped off". That shouldn't matter because
* the digit position (absolute or relative) is passed on to the
* convert-and-push function.
*/
}
duk__dragon4_convert_and_push(nc_ctx, thr, radix, digits, flags, neg);
}
DUK_INTERNAL void duk_numconv_stringify(duk_hthread *thr, duk_small_int_t radix, duk_small_int_t digits, duk_small_uint_t flags) {
duk_native_stack_check(thr);
duk__numconv_stringify_raw(thr, radix, digits, flags);
}
/*
* Exposed string-to-number API
*
* Input: [ string ]
* Output: [ number ]
*
* If number parsing fails, a NaN is pushed as the result. If number parsing
* fails due to an internal error, an InternalError is thrown.
*/
DUK_LOCAL DUK_NOINLINE void duk__numconv_parse_raw(duk_hthread *thr, duk_small_int_t radix, duk_small_uint_t flags) {
duk__numconv_stringify_ctx nc_ctx_alloc; /* large context; around 2kB now */
duk__numconv_stringify_ctx *nc_ctx = &nc_ctx_alloc;
duk_double_t res;
duk_hstring *h_str;
duk_int_t expt;
duk_bool_t expt_neg;
duk_small_int_t expt_adj;
duk_small_int_t neg;
duk_small_int_t dig;
duk_small_int_t dig_whole;
duk_small_int_t dig_lzero;
duk_small_int_t dig_frac;
duk_small_int_t dig_expt;
duk_small_int_t dig_prec;
const duk__exp_limits *explim;
const duk_uint8_t *p;
duk_small_int_t ch;
DUK_DDD(DUK_DDDPRINT("parse number: %!T, radix=%ld, flags=0x%08lx",
(duk_tval *) duk_get_tval(thr, -1),
(long) radix,
(unsigned long) flags));
DUK_ASSERT(radix >= 2 && radix <= 36);
DUK_ASSERT(radix - 2 < (duk_small_int_t) sizeof(duk__str2num_digits_for_radix));
/*
* Preliminaries: trim, sign, Infinity check
*
* We rely on the interned string having a NUL terminator, which will
* cause a parse failure wherever it is encountered. As a result, we
* don't need separate pointer checks.
*
* There is no special parsing for 'NaN' in the specification although
* 'Infinity' (with an optional sign) is allowed in some contexts.
* Some contexts allow plus/minus sign, while others only allow the
* minus sign (like JSON.parse()).
*
* Automatic hex number detection (leading '0x' or '0X') and octal
* number detection (leading '0' followed by at least one octal digit)
* is done here too.
*
* Symbols are not explicitly rejected here (that's up to the caller).
* If a symbol were passed here, it should ultimately safely fail
* parsing due to a syntax error.
*/
if (flags & DUK_S2N_FLAG_TRIM_WHITE) {
/* Leading / trailing whitespace is sometimes accepted and
* sometimes not. After white space trimming, all valid input
* characters are pure ASCII.
*/
duk_trim(thr, -1);
}
h_str = duk_require_hstring(thr, -1);
DUK_ASSERT(h_str != NULL);
p = (const duk_uint8_t *) DUK_HSTRING_GET_DATA(h_str);
neg = 0;
ch = *p;
if (ch == (duk_small_int_t) '+') {
if ((flags & DUK_S2N_FLAG_ALLOW_PLUS) == 0) {
DUK_DDD(DUK_DDDPRINT("parse failed: leading plus sign not allowed"));
goto parse_fail;
}
p++;
} else if (ch == (duk_small_int_t) '-') {
if ((flags & DUK_S2N_FLAG_ALLOW_MINUS) == 0) {
DUK_DDD(DUK_DDDPRINT("parse failed: leading minus sign not allowed"));
goto parse_fail;
}
p++;
neg = 1;
}
if ((flags & DUK_S2N_FLAG_ALLOW_INF) && DUK_STRNCMP((const char *) p, "Infinity", 8) == 0) {
/* Don't check for Infinity unless the context allows it.
* 'Infinity' is a valid integer literal in e.g. base-36:
*
* parseInt('Infinity', 36)
* 1461559270678
*/
if ((flags & DUK_S2N_FLAG_ALLOW_GARBAGE) == 0 && p[8] != DUK_ASC_NUL) {
DUK_DDD(DUK_DDDPRINT("parse failed: trailing garbage after matching 'Infinity' not allowed"));
goto parse_fail;
} else {
res = DUK_DOUBLE_INFINITY;
goto negcheck_and_ret;
}
}
ch = *p;
if (ch == (duk_small_int_t) '0') {
duk_small_int_t detect_radix = 0;
ch = DUK_LOWERCASE_CHAR_ASCII(p[1]); /* 'x' or 'X' -> 'x' */
if ((flags & DUK_S2N_FLAG_ALLOW_AUTO_HEX_INT) && ch == DUK_ASC_LC_X) {
DUK_DDD(DUK_DDDPRINT("detected 0x/0X hex prefix, changing radix and preventing fractions and exponent"));
detect_radix = 16;
#if 0
} else if ((flags & DUK_S2N_FLAG_ALLOW_AUTO_LEGACY_OCT_INT) &&
(ch >= (duk_small_int_t) '0' && ch <= (duk_small_int_t) '9')) {
DUK_DDD(DUK_DDDPRINT("detected 0n oct prefix, changing radix and preventing fractions and exponent"));
detect_radix = 8;
/* NOTE: if this legacy octal case is added back, it has
* different flags and 'p' advance so this needs to be
* reworked.
*/
flags |= DUK_S2N_FLAG_ALLOW_EMPTY_AS_ZERO; /* interpret e.g. '09' as '0', not NaN */
p += 1;
#endif
} else if ((flags & DUK_S2N_FLAG_ALLOW_AUTO_OCT_INT) && ch == DUK_ASC_LC_O) {
DUK_DDD(DUK_DDDPRINT("detected 0o oct prefix, changing radix and preventing fractions and exponent"));
detect_radix = 8;
} else if ((flags & DUK_S2N_FLAG_ALLOW_AUTO_BIN_INT) && ch == DUK_ASC_LC_B) {
DUK_DDD(DUK_DDDPRINT("detected 0b bin prefix, changing radix and preventing fractions and exponent"));
detect_radix = 2;
}
if (detect_radix > 0) {
radix = detect_radix;
/* Clear empty as zero flag: interpret e.g. '0x' and '0xg' as a NaN (= parse error) */
flags &= ~(DUK_S2N_FLAG_ALLOW_EXP | DUK_S2N_FLAG_ALLOW_EMPTY_FRAC | DUK_S2N_FLAG_ALLOW_FRAC |
DUK_S2N_FLAG_ALLOW_NAKED_FRAC | DUK_S2N_FLAG_ALLOW_EMPTY_AS_ZERO);
flags |= DUK_S2N_FLAG_ALLOW_LEADING_ZERO; /* allow e.g. '0x0009' and '0b00010001' */
p += 2;
}
}
/*
* Scan number and setup for Dragon4.
*
* The fast path case is detected during setup: an integer which
* can be converted without rounding, no net exponent. The fast
* path could be implemented as a separate scan, but may not really
* be worth it: the multiplications for building 'f' are not
* expensive when 'f' is small.
*
* The significand ('f') must contain enough bits of (apparent)
* accuracy, so that Dragon4 will generate enough binary output digits.
* For decimal numbers, this means generating a 20-digit significand,
* which should yield enough practical accuracy to parse IEEE doubles.
* In fact, the ECMAScript specification explicitly allows an
* implementation to treat digits beyond 20 as zeroes (and even
* to round the 20th digit upwards). For non-decimal numbers, the
* appropriate number of digits has been precomputed for comparable
* accuracy.
*
* Digit counts:
*
* [ dig_lzero ]
* |
* .+-..---[ dig_prec ]----.
* | || |
* 0000123.456789012345678901234567890e+123456
* | | | | | |
* `--+--' `------[ dig_frac ]-------' `-+--'
* | |
* [ dig_whole ] [ dig_expt ]
*
* dig_frac and dig_expt are -1 if not present
* dig_lzero is only computed for whole number part
*
* Parsing state
*
* Parsing whole part dig_frac < 0 AND dig_expt < 0
* Parsing fraction part dig_frac >= 0 AND dig_expt < 0
* Parsing exponent part dig_expt >= 0 (dig_frac may be < 0 or >= 0)
*
* Note: in case we hit an implementation limit (like exponent range),
* we should throw an error, NOT return NaN or Infinity. Even with
* very large exponent (or significand) values the final result may be
* finite, so NaN/Infinity would be incorrect.
*/
duk__bi_set_small(&nc_ctx->f, 0);
dig_prec = 0;
dig_lzero = 0;
dig_whole = 0;
dig_frac = -1;
dig_expt = -1;
expt = 0;
expt_adj = 0; /* essentially tracks digit position of lowest 'f' digit */
expt_neg = 0;
for (;;) {
ch = *p++;
DUK_DDD(DUK_DDDPRINT("parse digits: p=%p, ch='%c' (%ld), expt=%ld, expt_adj=%ld, "
"dig_whole=%ld, dig_frac=%ld, dig_expt=%ld, dig_lzero=%ld, dig_prec=%ld",
(const void *) p,
(int) ((ch >= 0x20 && ch <= 0x7e) ? ch : '?'),
(long) ch,
(long) expt,
(long) expt_adj,
(long) dig_whole,
(long) dig_frac,
(long) dig_expt,
(long) dig_lzero,
(long) dig_prec));
DUK__BI_PRINT("f", &nc_ctx->f);
/* Most common cases first. */
if (ch >= (duk_small_int_t) '0' && ch <= (duk_small_int_t) '9') {
dig = (duk_small_int_t) ch - '0' + 0;
} else if (ch == (duk_small_int_t) '.') {
/* A leading digit is not required in some cases, e.g. accept ".123".
* In other cases (JSON.parse()) a leading digit is required. This
* is checked for after the loop.
*/
if (dig_frac >= 0 || dig_expt >= 0) {
if (flags & DUK_S2N_FLAG_ALLOW_GARBAGE) {
DUK_DDD(DUK_DDDPRINT("garbage termination (invalid period)"));
break;
} else {
DUK_DDD(DUK_DDDPRINT("parse failed: period not allowed"));
goto parse_fail;
}
}
if ((flags & DUK_S2N_FLAG_ALLOW_FRAC) == 0) {
/* Some contexts don't allow fractions at all; this can't be a
* post-check because the state ('f' and expt) would be incorrect.
*/
if (flags & DUK_S2N_FLAG_ALLOW_GARBAGE) {
DUK_DDD(DUK_DDDPRINT("garbage termination (invalid first period)"));
break;
} else {
DUK_DDD(DUK_DDDPRINT("parse failed: fraction part not allowed"));
}
}
DUK_DDD(DUK_DDDPRINT("start fraction part"));
dig_frac = 0;
continue;
} else if (ch == (duk_small_int_t) 0) {
DUK_DDD(DUK_DDDPRINT("NUL termination"));
break;
} else if ((flags & DUK_S2N_FLAG_ALLOW_EXP) && dig_expt < 0 &&
(ch == (duk_small_int_t) 'e' || ch == (duk_small_int_t) 'E')) {
/* Note: we don't parse back exponent notation for anything else
* than radix 10, so this is not an ambiguous check (e.g. hex
* exponent values may have 'e' either as a significand digit
* or as an exponent separator).
*
* If the exponent separator occurs twice, 'e' will be interpreted
* as a digit (= 14) and will be rejected as an invalid decimal
* digit.
*/
DUK_DDD(DUK_DDDPRINT("start exponent part"));
/* Exponent without a sign or with a +/- sign is accepted
* by all call sites (even JSON.parse()).
*/
ch = *p;
if (ch == (duk_small_int_t) '-') {
expt_neg = 1;
p++;
} else if (ch == (duk_small_int_t) '+') {
p++;
}
dig_expt = 0;
continue;
} else if (ch >= (duk_small_int_t) 'a' && ch <= (duk_small_int_t) 'z') {
dig = (duk_small_int_t) (ch - (duk_small_int_t) 'a' + 0x0a);
} else if (ch >= (duk_small_int_t) 'A' && ch <= (duk_small_int_t) 'Z') {
dig = (duk_small_int_t) (ch - (duk_small_int_t) 'A' + 0x0a);
} else {
dig = 255; /* triggers garbage digit check below */
}
DUK_ASSERT((dig >= 0 && dig <= 35) || dig == 255);
if (dig >= radix) {
if (flags & DUK_S2N_FLAG_ALLOW_GARBAGE) {
DUK_DDD(DUK_DDDPRINT("garbage termination"));
break;
} else {
DUK_DDD(DUK_DDDPRINT("parse failed: trailing garbage or invalid digit"));
goto parse_fail;
}
}
if (dig_expt < 0) {
/* whole or fraction digit */
if (dig_prec < duk__str2num_digits_for_radix[radix - 2]) {
/* significant from precision perspective */
duk_small_int_t f_zero = duk__bi_is_zero(&nc_ctx->f);
if (f_zero && dig == 0) {
/* Leading zero is not counted towards precision digits; not
* in the integer part, nor in the fraction part.
*/
if (dig_frac < 0) {
dig_lzero++;
}
} else {
/* XXX: join these ops (multiply-accumulate), but only if
* code footprint decreases.
*/
duk__bi_mul_small(&nc_ctx->t1, &nc_ctx->f, (duk_uint32_t) radix);
duk__bi_add_small(&nc_ctx->f, &nc_ctx->t1, (duk_uint32_t) dig);
dig_prec++;
}
} else {
/* Ignore digits beyond a radix-specific limit, but note them
* in expt_adj.
*/
expt_adj++;
}
if (dig_frac >= 0) {
dig_frac++;
expt_adj--;
} else {
dig_whole++;
}
} else {
/* exponent digit */
DUK_ASSERT(radix == 10);
expt = expt * radix + dig;
if (expt > DUK_S2N_MAX_EXPONENT) {
/* Impose a reasonable exponent limit, so that exp
* doesn't need to get tracked using a bigint.
*/
DUK_DDD(DUK_DDDPRINT("parse failed: exponent too large"));
goto parse_explimit_error;
}
dig_expt++;
}
}
/* Leading zero. */
if (dig_lzero > 0 && dig_whole > 1) {
if ((flags & DUK_S2N_FLAG_ALLOW_LEADING_ZERO) == 0) {
DUK_DDD(DUK_DDDPRINT("parse failed: leading zeroes not allowed in integer part"));
goto parse_fail;
}
}
/* Validity checks for various fraction formats ("0.1", ".1", "1.", "."). */
if (dig_whole == 0) {
if (dig_frac == 0) {
/* "." is not accepted in any format */
DUK_DDD(DUK_DDDPRINT("parse failed: plain period without leading or trailing digits"));
goto parse_fail;
} else if (dig_frac > 0) {
/* ".123" */
if ((flags & DUK_S2N_FLAG_ALLOW_NAKED_FRAC) == 0) {
DUK_DDD(DUK_DDDPRINT("parse failed: fraction part not allowed without "
"leading integer digit(s)"));
goto parse_fail;
}
} else {
/* Empty ("") is allowed in some formats (e.g. Number(''), as zero,
* but it must not have a leading +/- sign (GH-2019). Note that
* for Number(), h_str is already trimmed so we can check for zero
* length and still get Number(' + ') == NaN.
*/
if ((flags & DUK_S2N_FLAG_ALLOW_EMPTY_AS_ZERO) == 0) {
DUK_DDD(DUK_DDDPRINT("parse failed: empty string not allowed (as zero)"));
goto parse_fail;
} else if (DUK_HSTRING_GET_BYTELEN(h_str) != 0) {
DUK_DDD(DUK_DDDPRINT("parse failed: no digits, but not empty (had a +/- sign)"));
goto parse_fail;
}
}
} else {
if (dig_frac == 0) {
/* "123." is allowed in some formats */
if ((flags & DUK_S2N_FLAG_ALLOW_EMPTY_FRAC) == 0) {
DUK_DDD(DUK_DDDPRINT("parse failed: empty fractions"));
goto parse_fail;
}
} else if (dig_frac > 0) {
/* "123.456" */
;
} else {
/* "123" */
;
}
}
/* Exponent without digits (e.g. "1e" or "1e+"). If trailing garbage is
* allowed, ignore exponent part as garbage (= parse as "1", i.e. exp 0).
*/
if (dig_expt == 0) {
if ((flags & DUK_S2N_FLAG_ALLOW_GARBAGE) == 0) {
DUK_DDD(DUK_DDDPRINT("parse failed: empty exponent"));
goto parse_fail;
}
DUK_ASSERT(expt == 0);
}
if (expt_neg) {
expt = -expt;
}
DUK_DDD(
DUK_DDDPRINT("expt=%ld, expt_adj=%ld, net exponent -> %ld", (long) expt, (long) expt_adj, (long) (expt + expt_adj)));
expt += expt_adj;
/* Fast path check. */
if (nc_ctx->f.n <= 1 && /* 32-bit value */
expt == 0 /* no net exponent */) {
/* Fast path is triggered for no exponent and also for balanced exponent
* and fraction parts, e.g. for "1.23e2" == "123". Remember to respect
* zero sign.
*/
/* XXX: could accept numbers larger than 32 bits, e.g. up to 53 bits? */
DUK_DDD(DUK_DDDPRINT("fast path number parse"));
if (nc_ctx->f.n == 1) {
res = (double) nc_ctx->f.v[0];
} else {
res = 0.0;
}
goto negcheck_and_ret;
}
/* Significand ('f') padding. */
while (dig_prec < duk__str2num_digits_for_radix[radix - 2]) {
/* Pad significand with "virtual" zero digits so that Dragon4 will
* have enough (apparent) precision to work with.
*/
DUK_DDD(DUK_DDDPRINT("dig_prec=%ld, pad significand with zero", (long) dig_prec));
duk__bi_mul_small_copy(&nc_ctx->f, (duk_uint32_t) radix, &nc_ctx->t1);
DUK__BI_PRINT("f", &nc_ctx->f);
expt--;
dig_prec++;
}
DUK_DDD(DUK_DDDPRINT("final exponent: %ld", (long) expt));
/* Detect zero special case. */
if (nc_ctx->f.n == 0) {
/* This may happen even after the fast path check, if exponent is
* not balanced (e.g. "0e1"). Remember to respect zero sign.
*/
DUK_DDD(DUK_DDDPRINT("significand is zero"));
res = 0.0;
goto negcheck_and_ret;
}
/* Quick reject of too large or too small exponents. This check
* would be incorrect for zero (e.g. "0e1000" is zero, not Infinity)
* so zero check must be above.
*/
explim = &duk__str2num_exp_limits[radix - 2];
if (expt > explim->upper) {
DUK_DDD(DUK_DDDPRINT("exponent too large -> infinite"));
res = (duk_double_t) DUK_DOUBLE_INFINITY;
goto negcheck_and_ret;
} else if (expt < explim->lower) {
DUK_DDD(DUK_DDDPRINT("exponent too small -> zero"));
res = (duk_double_t) 0.0;
goto negcheck_and_ret;
}
nc_ctx->is_s2n = 1;
nc_ctx->e = expt;
nc_ctx->b = radix;
nc_ctx->B = 2;
nc_ctx->is_fixed = 1;
nc_ctx->abs_pos = 0;
nc_ctx->req_digits = 53 + 1;
DUK__BI_PRINT("f", &nc_ctx->f);
DUK_DDD(DUK_DDDPRINT("e=%ld", (long) nc_ctx->e));
/*
* Dragon4 slow path (binary) digit generation.
* An extra digit is generated for rounding.
*/
duk__dragon4_prepare(nc_ctx); /* setup many variables in nc_ctx */
DUK_DDD(DUK_DDDPRINT("after prepare:"));
DUK__BI_PRINT("r", &nc_ctx->r);
DUK__BI_PRINT("s", &nc_ctx->s);
DUK__BI_PRINT("mp", &nc_ctx->mp);
DUK__BI_PRINT("mm", &nc_ctx->mm);
duk__dragon4_scale(nc_ctx);
DUK_DDD(DUK_DDDPRINT("after scale; k=%ld", (long) nc_ctx->k));
DUK__BI_PRINT("r", &nc_ctx->r);
DUK__BI_PRINT("s", &nc_ctx->s);
DUK__BI_PRINT("mp", &nc_ctx->mp);
DUK__BI_PRINT("mm", &nc_ctx->mm);
duk__dragon4_generate(nc_ctx);
DUK_ASSERT(nc_ctx->count == 53 + 1);
/*
* Convert binary digits into an IEEE double. Need to handle
* denormals and rounding correctly.
*
* Some call sites currently assume the result is always a
* non-fastint double. If this is changed, check all call
* sites.
*/
duk__dragon4_ctx_to_double(nc_ctx, &res);
goto negcheck_and_ret;
negcheck_and_ret:
if (neg) {
res = -res;
}
duk_pop(thr);
duk_push_number(thr, (double) res);
DUK_DDD(DUK_DDDPRINT("result: %!T", (duk_tval *) duk_get_tval(thr, -1)));
return;
parse_fail:
DUK_DDD(DUK_DDDPRINT("parse failed"));
duk_pop(thr);
duk_push_nan(thr);
return;
parse_explimit_error:
DUK_DDD(DUK_DDDPRINT("parse failed, internal error, can't return a value"));
DUK_ERROR_RANGE(thr, "exponent too large");
DUK_WO_NORETURN(return;);
}
DUK_INTERNAL void duk_numconv_parse(duk_hthread *thr, duk_small_int_t radix, duk_small_uint_t flags) {
duk_native_stack_check(thr);
duk__numconv_parse_raw(thr, radix, flags);
}
|