1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
|
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
// SPDX-FileCopyrightInfo: Copyright © DUNE Project contributors, see file LICENSE.md in module root
// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
#ifndef DUNE_DEBUGALIGN_HH
#define DUNE_DEBUGALIGN_HH
#include <algorithm>
#include <cassert>
#include <cmath>
#include <complex>
#include <cstddef>
#include <cstdint>
#include <cstdlib> // abs
#include <functional>
#include <istream>
#include <ostream>
#include <type_traits>
#include <utility>
#include <dune/common/classname.hh>
#include <dune/common/indices.hh>
#include <dune/common/simd/base.hh>
#include <dune/common/simd/defaults.hh>
#include <dune/common/typetraits.hh>
namespace Dune {
//! type of the handler called by `violatedAlignment()`
using ViolatedAlignmentHandler =
std::function<void(const char*, std::size_t, const void*)>;
//! access the handler called by `violatedAlignment()`
/**
* This may be used to obtain the handler for the purpose of calling, or for
* saving it somewhere to restore it later. It may also be used to set the
* handler simply by assigning a new handler. Setting the handler races
* with other accesses.
*/
ViolatedAlignmentHandler &violatedAlignmentHandler();
//! called when an alignment violation is detected
/**
* \p className Name of the class whose alignment was violated
* \p expectedAlignment The (over-)alignment that the class expected
* \p address The address the class actually found itself at.
*
* The main purpose of the function is to serve as a convenient breakpoint
* for debugging -- which is why we put it in an external compilation unit
* so it isn't inlined.
*/
void violatedAlignment(const char *className, std::size_t expectedAlignment,
const void *address);
//! check whether an address conforms to the given alignment
inline bool isAligned(const void *p, std::size_t align)
{
void* aligned_p = (void*)p;
std::size_t space = align*2;
return p == std::align(align, align, aligned_p, space);
}
//! CRTP base mixin class to check alignment
template<std::size_t align, class Impl>
struct alignas(align) AlignedBase
{
/**
* @brief Overload of placement new
* @details Checks if address is misaligned and forwards to global new
*
* @param count number of elements to allocate
* @param ptr address of the placement new
* @return void* the address where the object is placed
*/
static void* operator new(std::size_t count, void* ptr) {
if(!isAligned(ptr, align))
violatedAlignment(className<Impl>().c_str(), align, ptr);
return ::operator new(count*sizeof(Impl), ptr);
}
/**
* @brief Overload of placement new[]
* @details Checks if address is misaligned and forwards to global new
*
* @param count number of elements to allocate
* @param ptr address of the placement new
* @return void* the address where the object is placed
*/
static void* operator new[](std::size_t count, void* ptr) {
if(!isAligned(ptr, align))
violatedAlignment(className<Impl>().c_str(), align, ptr);
return ::operator new[](count*sizeof(Impl), ptr);
}
};
//! an alignment large enough to trigger alignment errors
static constexpr auto debugAlignment = 2*alignof(std::max_align_t);
namespace AlignedNumberImpl {
template<class T, std::size_t align = debugAlignment>
class AlignedNumber;
} // namespace AlignedNumberImpl
using AlignedNumberImpl::AlignedNumber;
template<class T, std::size_t align>
struct IsNumber<AlignedNumberImpl::AlignedNumber<T,align>>
: public std::true_type {};
//! align a value to a certain alignment
template<std::size_t align = debugAlignment, class T>
AlignedNumber<T, align> aligned(T value) { return { std::move(value) }; }
// The purpose of this namespace is to move the `<cmath>` function overloads
// out of namespace `Dune`. This avoids problems where people called
// e.g. `sqrt(1.0)` inside the `Dune` namespace, without first doing `using
// std::sqrt;`. Without any `Dune::sqrt()`, such a use will find
// `::sqrt()`, but with `Dune::sqrt()` it will find only `Dune::sqrt()`,
// which does not have an overload for `double`.
namespace AlignedNumberImpl {
//! aligned wrappers for arithmetic types
template<class T, std::size_t align>
class AlignedNumber
: public AlignedBase<align, AlignedNumber<T, align> >
{
T value_;
public:
AlignedNumber() = default;
AlignedNumber(T value) : value_(std::move(value)) {}
template<class U, std::size_t uAlign,
class = std::enable_if_t<(align >= uAlign) &&
std::is_convertible<U, T>::value> >
AlignedNumber(const AlignedNumber<U, uAlign> &o) : value_(U(o)) {}
// accessors
template<class U,
class = std::enable_if_t<std::is_convertible<T, U>::value> >
explicit operator U() const { return value_; }
const T &value() const { return value_; }
T &value() { return value_; }
// I/O
template<class charT, class Traits>
friend std::basic_istream<charT, Traits>&
operator>>(std::basic_istream<charT, Traits>& str, AlignedNumber &u)
{
return str >> u.value_;
}
template<class charT, class Traits>
friend std::basic_ostream<charT, Traits>&
operator<<(std::basic_ostream<charT, Traits>& str,
const AlignedNumber &u)
{
return str << u.value_;
}
// The trick with `template<class U = T, class = std::void_t<expr(U)> >` is
// needed because at least g++-4.9 seems to evaluates a default argument
// in `template<class = std::void_t<expr(T))> >` as soon as possible and will
// error out if `expr(T)` is invalid. E.g. for `expr(T)` =
// `decltype(--std::declval<T&>())`, instantiating `AlignedNumber<bool>`
// will result in an unrecoverable error (`--` cannot be applied to a
// `bool`).
// Increment, decrement
template<class U = T, class = std::void_t<decltype(++std::declval<U&>())> >
AlignedNumber &operator++() { ++value_; return *this; }
template<class U = T, class = std::void_t<decltype(--std::declval<U&>())> >
AlignedNumber &operator--() { --value_; return *this; }
template<class U = T, class = std::void_t<decltype(std::declval<U&>()++)> >
decltype(auto) operator++(int) { return aligned<align>(value_++); }
template<class U = T, class = std::void_t<decltype(std::declval<U&>()--)> >
decltype(auto) operator--(int) { return aligned<align>(value_--); }
// unary operators
template<class U = T,
class = std::void_t<decltype(+std::declval<const U&>())> >
decltype(auto) operator+() const { return aligned<align>(+value_); }
template<class U = T,
class = std::void_t<decltype(-std::declval<const U&>())> >
decltype(auto) operator-() const { return aligned<align>(-value_); }
/*
* silence warnings from GCC about using `~` on a bool
* (when instantiated for T=bool)
*/
#if __GNUC__ >= 7
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wbool-operation"
#endif
#ifdef __clang__
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wbool-operation"
#endif
template<class U = T,
class = std::void_t<decltype(~std::declval<const U&>())> >
decltype(auto) operator~() const { return aligned<align>(~value_); }
#if __GNUC__ >= 7
# pragma GCC diagnostic pop
#endif
#ifdef __clang__
# pragma clang diagnostic pop
#endif
template<class U = T,
class = std::void_t<decltype(!std::declval<const U&>())> >
decltype(auto) operator!() const { return aligned<align>(!value_); }
// assignment operators
#define DUNE_ASSIGN_OP(OP) \
template<class U, std::size_t uAlign, \
class = std::enable_if_t< \
( uAlign <= align && \
sizeof(std::declval<T&>() OP std::declval<U>()) ) \
> > \
AlignedNumber &operator OP(const AlignedNumber<U, uAlign> &u) \
{ \
value_ OP U(u); \
return *this; \
} \
\
template<class U, \
class = std::void_t<decltype(std::declval<T&>() OP \
std::declval<U>())> > \
AlignedNumber &operator OP(const U &u) \
{ \
value_ OP u; \
return *this; \
} \
\
static_assert(true, "Require semicolon to unconfuse editors")
DUNE_ASSIGN_OP(+=);
DUNE_ASSIGN_OP(-=);
DUNE_ASSIGN_OP(*=);
DUNE_ASSIGN_OP(/=);
DUNE_ASSIGN_OP(%=);
DUNE_ASSIGN_OP(^=);
DUNE_ASSIGN_OP(&=);
DUNE_ASSIGN_OP(|=);
DUNE_ASSIGN_OP(<<=);
DUNE_ASSIGN_OP(>>=);
#undef DUNE_ASSIGN_OP
};
// binary operators
#define DUNE_BINARY_OP(OP) \
template<class T, std::size_t tAlign, class U, std::size_t uAlign, \
class = std::void_t<decltype(std::declval<T>() \
OP std::declval<U>())> > \
decltype(auto) \
operator OP(const AlignedNumber<T, tAlign> &t, \
const AlignedNumber<U, uAlign> &u) \
{ \
/* can't use std::max(); not constexpr */ \
return aligned<(tAlign > uAlign ? tAlign : uAlign)>(T(t) OP U(u)); \
} \
\
template<class T, class U, std::size_t uAlign, \
class = std::void_t<decltype(std::declval<T>() \
OP std::declval<U>())> > \
decltype(auto) \
operator OP(const T &t, const AlignedNumber<U, uAlign> &u) \
{ \
return aligned<uAlign>(t OP U(u)); \
} \
\
template<class T, std::size_t tAlign, class U, \
class = std::void_t<decltype(std::declval<T>() \
OP std::declval<U>())> > \
decltype(auto) \
operator OP(const AlignedNumber<T, tAlign> &t, const U &u) \
{ \
return aligned<tAlign>(T(t) OP u); \
} \
\
static_assert(true, "Require semicolon to unconfuse editors")
DUNE_BINARY_OP(+);
DUNE_BINARY_OP(-);
DUNE_BINARY_OP(*);
DUNE_BINARY_OP(/);
DUNE_BINARY_OP(%);
DUNE_BINARY_OP(^);
DUNE_BINARY_OP(&);
DUNE_BINARY_OP(|);
DUNE_BINARY_OP(<<);
DUNE_BINARY_OP(>>);
DUNE_BINARY_OP(==);
DUNE_BINARY_OP(!=);
DUNE_BINARY_OP(<);
DUNE_BINARY_OP(>);
DUNE_BINARY_OP(<=);
DUNE_BINARY_OP(>=);
DUNE_BINARY_OP(&&);
DUNE_BINARY_OP(||);
#undef DUNE_BINARY_OP
//////////////////////////////////////////////////////////////////////
//
// Overloads for the functions provided by the standard library
//
#define DUNE_UNARY_FUNC(name) \
template<class T, std::size_t align> \
decltype(auto) name(const AlignedNumber<T, align> &u) \
{ \
using std::name; \
return aligned<align>(name(T(u))); \
} \
static_assert(true, "Require semicolon to unconfuse editors")
//
// <cmath> functions
//
// note: only unary functions are provided at the moment. Getting all the
// overloads right for functions with more than one argument is tricky.
// All <cmath> functions appear in the list below in the order they are
// listed in in the standard, but the unimplemented ones are commented
// out.
// note: abs is provided by both <cstdlib> (for integer) and <cmath> (for
// floating point). This overload works for both.
DUNE_UNARY_FUNC(abs);
DUNE_UNARY_FUNC(acos);
DUNE_UNARY_FUNC(acosh);
DUNE_UNARY_FUNC(asin);
DUNE_UNARY_FUNC(asinh);
DUNE_UNARY_FUNC(atan);
// atan2
DUNE_UNARY_FUNC(atanh);
DUNE_UNARY_FUNC(cbrt);
DUNE_UNARY_FUNC(ceil);
// copysign
DUNE_UNARY_FUNC(cos);
DUNE_UNARY_FUNC(cosh);
DUNE_UNARY_FUNC(erf);
DUNE_UNARY_FUNC(erfc);
DUNE_UNARY_FUNC(exp);
DUNE_UNARY_FUNC(exp2);
DUNE_UNARY_FUNC(expm1);
DUNE_UNARY_FUNC(fabs);
// fdim
DUNE_UNARY_FUNC(floor);
// fma
// fmax
// fmin
// fmod
// frexp
// hypos
DUNE_UNARY_FUNC(ilogb);
// ldexp
DUNE_UNARY_FUNC(lgamma);
DUNE_UNARY_FUNC(llrint);
DUNE_UNARY_FUNC(llround);
DUNE_UNARY_FUNC(log);
DUNE_UNARY_FUNC(log10);
DUNE_UNARY_FUNC(log1p);
DUNE_UNARY_FUNC(log2);
DUNE_UNARY_FUNC(logb);
DUNE_UNARY_FUNC(lrint);
DUNE_UNARY_FUNC(lround);
// modf
DUNE_UNARY_FUNC(nearbyint);
// nextafter
// nexttoward
// pow
// remainder
// remquo
DUNE_UNARY_FUNC(rint);
DUNE_UNARY_FUNC(round);
// scalbln
// scalbn
DUNE_UNARY_FUNC(sin);
DUNE_UNARY_FUNC(sinh);
DUNE_UNARY_FUNC(sqrt);
DUNE_UNARY_FUNC(tan);
DUNE_UNARY_FUNC(tanh);
DUNE_UNARY_FUNC(tgamma);
DUNE_UNARY_FUNC(trunc);
DUNE_UNARY_FUNC(isfinite);
DUNE_UNARY_FUNC(isinf);
DUNE_UNARY_FUNC(isnan);
DUNE_UNARY_FUNC(isnormal);
DUNE_UNARY_FUNC(signbit);
// isgreater
// isgreaterequal
// isless
// islessequal
// islessgreater
// isunordered
//
// <complex> functions
//
// not all functions are implemented, and unlike for <cmath>, no
// comprehensive list is provided
DUNE_UNARY_FUNC(real);
#undef DUNE_UNARY_FUNC
// We need to overload min() and max() since they require types to be
// LessThanComparable, which requires `a<b` to be "convertible to bool".
// That wording seems to be a leftover from C++03, and today is probably
// equivalent to "implicitly convertible". There is also issue 2114
// <https://cplusplus.github.io/LWG/issue2114> in the standard (still open
// as of 2018-07-06), which strives to require both "implicitly" and
// "contextually" convertible -- plus a few other things.
//
// We do not want our debug type to automatically decay to the underlying
// type, so we do not want to make the conversion non-explicit. So the
// only option left is to overload min() and max().
template<class T, std::size_t align>
auto max(const AlignedNumber<T, align> &a,
const AlignedNumber<T, align> &b)
{
using std::max;
return aligned<align>(max(T(a), T(b)));
}
template<class T, std::size_t align>
auto max(const T &a, const AlignedNumber<T, align> &b)
{
using std::max;
return aligned<align>(max(a, T(b)));
}
template<class T, std::size_t align>
auto max(const AlignedNumber<T, align> &a, const T &b)
{
using std::max;
return aligned<align>(max(T(a), b));
}
template<class T, std::size_t align>
auto min(const AlignedNumber<T, align> &a,
const AlignedNumber<T, align> &b)
{
using std::min;
return aligned<align>(min(T(a), T(b)));
}
template<class T, std::size_t align>
auto min(const T &a, const AlignedNumber<T, align> &b)
{
using std::min;
return aligned<align>(min(a, T(b)));
}
template<class T, std::size_t align>
auto min(const AlignedNumber<T, align> &a, const T &b)
{
using std::min;
return aligned<align>(min(T(a), b));
}
} // namespace AlignedNumberImpl
// SIMD-like functions from "conditional.hh"
template<class T, std::size_t align>
AlignedNumber<T, align>
cond(const AlignedNumber<bool, align> &b,
const AlignedNumber<T, align> &v1, const AlignedNumber<T, align> &v2)
{
return b ? v1 : v2;
}
// SIMD-like functions from "rangeutilities.hh"
template<class T, std::size_t align>
T max_value(const AlignedNumber<T, align>& val)
{
return T(val);
}
template<class T, std::size_t align>
T min_value(const AlignedNumber<T, align>& val)
{
return T(val);
}
template<std::size_t align>
bool any_true(const AlignedNumber<bool, align>& val)
{
return bool(val);
}
template<std::size_t align>
bool all_true(const AlignedNumber<bool, align>& val)
{
return bool(val);
}
// SIMD-like functionality from "simd/interface.hh"
namespace Simd {
namespace Overloads {
template<class T, std::size_t align>
struct ScalarType<AlignedNumber<T, align> > { using type = T; };
template<class U, class T, std::size_t align>
struct RebindType<U, AlignedNumber<T, align> > {
using type = AlignedNumber<U, align>;
};
template<class T, std::size_t align>
struct LaneCount<AlignedNumber<T, align> > : index_constant<1> {};
template<class T, std::size_t align>
T& lane(ADLTag<5>, std::size_t l, AlignedNumber<T, align> &v)
{
assert(l == 0);
return v.value();
}
template<class T, std::size_t align>
T lane(ADLTag<5>, std::size_t l, const AlignedNumber<T, align> &v)
{
assert(l == 0);
return v.value();
}
template<class T, std::size_t align>
const AlignedNumber<T, align> &
cond(ADLTag<5>, AlignedNumber<bool, align> mask,
const AlignedNumber<T, align> &ifTrue,
const AlignedNumber<T, align> &ifFalse)
{
return mask ? ifTrue : ifFalse;
}
template<std::size_t align>
bool anyTrue(ADLTag<5>, const AlignedNumber<bool, align> &mask)
{
return bool(mask);
}
} // namespace Overloads
} // namespace Simd
} // namespace Dune
#endif // DUNE_DEBUGALIGN_HH
|