File: fvector.hh

package info (click to toggle)
dune-common 2.10.0-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,824 kB
  • sloc: cpp: 52,256; python: 3,979; sh: 1,658; makefile: 17
file content (651 lines) | stat: -rw-r--r-- 18,634 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
// SPDX-FileCopyrightInfo: Copyright © DUNE Project contributors, see file LICENSE.md in module root
// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
#ifndef DUNE_COMMON_FVECTOR_HH
#define DUNE_COMMON_FVECTOR_HH

#include <array>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <type_traits>
#include <utility>
#include <initializer_list>

#include <dune/common/boundschecking.hh>
#include <dune/common/densevector.hh>
#include <dune/common/ftraits.hh>
#include <dune/common/math.hh>
#include <dune/common/promotiontraits.hh>
#include <dune/common/typetraits.hh>
#include <dune/common/typeutilities.hh>

namespace Dune {

  /** @addtogroup DenseMatVec
      @{
   */

  /*! \file
   * \brief Implements a vector constructed from a given type
     representing a field and a compile-time given size.
   */

  template< class K, int SIZE > class FieldVector;
  template< class K, int SIZE >
  struct DenseMatVecTraits< FieldVector<K,SIZE> >
  {
    typedef FieldVector<K,SIZE> derived_type;
    typedef std::array<K,SIZE> container_type;
    typedef K value_type;
    typedef typename container_type::size_type size_type;
  };

  template< class K, int SIZE >
  struct FieldTraits< FieldVector<K,SIZE> >
  {
    typedef typename FieldTraits<K>::field_type field_type;
    typedef typename FieldTraits<K>::real_type real_type;
  };

  /**
   * @brief TMP to check the size of a DenseVectors statically, if possible.
   *
   * If the implementation type of C is  a FieldVector, we statically check
   * whether its dimension is SIZE.
   * @tparam C The implementation of the other DenseVector
   * @tparam SIZE The size we need assume.
   */
  template<typename C, int SIZE>
  struct IsFieldVectorSizeCorrect
  {
    /**
     * \brief True if C is not of type FieldVector or its dimension
     * is not equal SIZE.
     */
    constexpr static bool value = true;
  };

  template<typename T, int SIZE>
  struct IsFieldVectorSizeCorrect<FieldVector<T,SIZE>,SIZE>
  {
    constexpr static bool value = true;
  };

  template<typename T, int SIZE, int SIZE1>
  struct IsFieldVectorSizeCorrect<FieldVector<T,SIZE1>,SIZE>
  {
    constexpr static bool value = false;
  };


  /** \brief vector space out of a tensor product of fields.
   *
   * \tparam K    the field type (use float, double, complex, etc)
   * \tparam SIZE number of components.
   */
  template< class K, int SIZE >
  class FieldVector :
    public DenseVector< FieldVector<K,SIZE> >
  {
    std::array<K,SIZE> _data;
    typedef DenseVector< FieldVector<K,SIZE> > Base;
  public:
    //! The size of this vector.
    constexpr static int dimension = SIZE;

    typedef typename Base::size_type size_type;
    typedef typename Base::value_type value_type;

    /** \brief The type used for references to the vector entry */
    typedef value_type& reference;

    /** \brief The type used for const references to the vector entry */
    typedef const value_type& const_reference;

    //! Default constructor, making value-initialized vector with all components set to zero
    constexpr FieldVector () noexcept
      : _data{}
    {}

    //! Constructor making vector with identical coordinates
    explicit constexpr FieldVector (const K& k)
        noexcept(std::is_nothrow_copy_assignable_v<K>)
    {
      for (auto& d : _data)
        d = k;
    }

    //! Construct from a std::initializer_list
    constexpr FieldVector (const std::initializer_list<K>& l)
      : _data{}
    {
      assert(l.size() == dimension);
      for (int i = 0; i < dimension; ++i)
        _data[i] = std::data(l)[i];
    }

    //! Constructor from another dense vector if the elements are assignable to K
    template<class T,
      std::enable_if_t<IsFieldVectorSizeCorrect<T,dimension>::value, int> = 0,
      decltype(std::declval<K&>() = std::declval<const T&>()[0], bool{}) = true>
    FieldVector (const DenseVector<T>& x)
    {
      assert(x.size() == dimension);
      for (int i = 0; i < dimension; ++i)
        _data[i] = x[i];
    }

    //! Converting constructor from FieldVector with different element type
    template<class T,
      std::enable_if_t<std::is_assignable_v<K&, const T&>, int> = 0>
    explicit constexpr FieldVector (const FieldVector<T, SIZE>& x)
        noexcept(std::is_nothrow_assignable_v<K&, const T&>)
    {
      for (int i = 0; i < dimension; ++i)
        _data[i] = x[i];
    }

    //! Converting constructor with FieldVector of different size (deleted)
    template<class K1, int SIZE1,
      std::enable_if_t<(SIZE1 != SIZE), int> = 0>
    explicit FieldVector (const FieldVector<K1, SIZE1>&) = delete;

    //! Copy constructor with default behavior
    FieldVector (const FieldVector&) = default;


    //! Assignment from another dense vector
    template<class T,
      std::enable_if_t<IsFieldVectorSizeCorrect<T,dimension>::value, int> = 0,
      decltype(std::declval<K&>() = std::declval<const T&>()[0], bool{}) = true>
    FieldVector& operator= (const DenseVector<T>& x)
    {
      assert(x.size() == dimension);
      for (int i = 0; i < dimension; ++i)
        _data[i] = x[i];
      return *this;
    }

    //! Converting assignment operator from FieldVector with different element type
    template<class T,
      std::enable_if_t<std::is_assignable_v<K&, const T&>, int> = 0>
    FieldVector& operator= (const FieldVector<T, SIZE>& x)
        noexcept(std::is_nothrow_assignable_v<K&, const T&>)
    {
      for (int i = 0; i < dimension; ++i)
        _data[i] = x[i];
      return *this;
    }

    //! Converting assignment operator with FieldVector of different size (deleted)
    template<class K1, int SIZE1,
      std::enable_if_t<(SIZE1 != SIZE), int> = 0>
    FieldVector& operator= (const FieldVector<K1, SIZE1>&) = delete;

    //! Copy assignment operator with default behavior
    constexpr FieldVector& operator= (const FieldVector&) = default;

    using Base::operator=;

    //! Obtain the number of elements stored in the vector
    static constexpr size_type size () noexcept { return dimension; }

    //! Return a reference to the `i`th element
    reference operator[] (size_type i)
    {
      DUNE_ASSERT_BOUNDS(i < dimension);
      return _data[i];
    }

    //! Return a (const) reference to the `i`th element
    const_reference operator[] (size_type i) const
    {
      DUNE_ASSERT_BOUNDS(i < dimension);
      return _data[i];
    }

    //! Return pointer to underlying array
    constexpr K* data () noexcept
    {
      return _data.data();
    }

    //! Return pointer to underlying array
    constexpr const K* data () const noexcept
    {
      return _data.data();
    }

    //! Vector space multiplication with scalar
    template<class Scalar,
      std::enable_if_t<IsNumber<Scalar>::value, int> = 0>
    friend constexpr auto operator* (const FieldVector& vector, Scalar scalar)
    {
      using T = typename PromotionTraits<value_type,Scalar>::PromotedType;
      FieldVector<T,SIZE> result;

      for (size_type i = 0; i < vector.size(); ++i)
        result[i] = vector[i] * scalar;
      return result;
    }

    //! Vector space multiplication with scalar
    template<class Scalar,
      std::enable_if_t<IsNumber<Scalar>::value, int> = 0>
    friend constexpr auto operator* (Scalar scalar, const FieldVector& vector)
    {
      using T = typename PromotionTraits<value_type,Scalar>::PromotedType;
      FieldVector<T,SIZE> result;

      for (size_type i = 0; i < vector.size(); ++i)
        result[i] = scalar * vector[i];
      return result;
    }

    //! Vector space division by scalar
    template<class Scalar,
      std::enable_if_t<IsNumber<Scalar>::value, int> = 0>
    friend constexpr auto operator/ (const FieldVector& vector, Scalar scalar)
    {
      using T = typename PromotionTraits<value_type,Scalar>::PromotedType;
      FieldVector<T,SIZE> result;

      for (size_type i = 0; i < vector.size(); ++i)
        result[i] = vector[i] / scalar;

      return result;
    }

  };

  /** \brief Read a FieldVector from an input stream
   *  \relates FieldVector
   *
   *  \note This operator is STL compliant, i.e., the content of v is only
   *        changed if the read operation is successful.
   *
   *  \param[in]  in  std :: istream to read from
   *  \param[out] v   FieldVector to be read
   *
   *  \returns the input stream (in)
   */
  template<class K, int SIZE>
  std::istream &operator>> (std::istream& in, FieldVector<K, SIZE>& v)
  {
    FieldVector<K, SIZE> w;
    for (int i = 0; i < SIZE; ++i)
      in >> w[i];
    if (in)
      v = w;
    return in;
  }

#ifndef DOXYGEN
  template< class K >
  struct DenseMatVecTraits< FieldVector<K,1> >
  {
    typedef FieldVector<K,1> derived_type;
    typedef K container_type;
    typedef K value_type;
    typedef size_t size_type;
  };

  /** \brief Vectors containing only one component
   */
  template<class K>
  class FieldVector<K, 1> :
    public DenseVector< FieldVector<K,1> >
  {
    K _data;
    typedef DenseVector< FieldVector<K,1> > Base;
  public:
    //! The size of this vector.
    constexpr static int dimension = 1;

    typedef typename Base::size_type size_type;

    /** \brief The type used for references to the vector entry */
    typedef K& reference;

    /** \brief The type used for const references to the vector entry */
    typedef const K& const_reference;

    //===== construction

    /** \brief Default constructor */
    constexpr FieldVector () noexcept
      : _data()
    {}

    /** \brief Constructor with a given scalar */
    template<class T,
      std::enable_if_t<std::is_constructible_v<K,T>, int> = 0>
    constexpr FieldVector (const T& k) noexcept
      : _data(k)
    {}

    /** \brief Construct from a std::initializer_list */
    constexpr FieldVector (const std::initializer_list<K>& l)
    {
      assert(l.size() == 1);
      _data = *l.begin();
    }

    //! Constructor from static vector of different type
    template<class T,
      std::enable_if_t<std::is_constructible_v<K,T>, int> = 0>
    constexpr FieldVector (const FieldVector<T,1>& x) noexcept
      : _data(x[0])
    {}

    //! Constructor from other dense vector
    template<class T,
      std::enable_if_t<IsFieldVectorSizeCorrect<T,1>::value, int> = 0,
      decltype(std::declval<K&>() = std::declval<const T&>()[0], bool{}) = true>
    FieldVector (const DenseVector<T>& x)
    {
      assert(x.size() == 1);
      _data = x[0];
    }

    //! copy constructor
    constexpr FieldVector (const FieldVector&) = default;

    //! copy assignment operator
    constexpr FieldVector& operator= (const FieldVector&) = default;

    //! assignment from static vector of different type
    template<class T,
      decltype(std::declval<K&>() = std::declval<const T&>(), bool{}) = true>
    constexpr FieldVector& operator= (const FieldVector<T,1>& other) noexcept
    {
      _data = other[0];
      return *this;
    }

    //! assignment from other dense vector
    template<class T,
      std::enable_if_t<IsFieldVectorSizeCorrect<T,1>::value, int> = 0,
      decltype(std::declval<K&>() = std::declval<const T&>()[0], bool{}) = true>
    FieldVector& operator= (const DenseVector<T>& other)
    {
      assert(other.size() == 1);
      _data = other[0];
      return *this;
    }

    //! Assignment operator for scalar
    template<class T,
      decltype(std::declval<K&>() = std::declval<const T&>(), bool{}) = true>
    constexpr FieldVector& operator= (const T& k) noexcept
    {
      _data = k;
      return *this;
    }

    //===== forward methods to container
    static constexpr size_type size () noexcept { return 1; }

    reference operator[] ([[maybe_unused]] size_type i)
    {
      DUNE_ASSERT_BOUNDS(i == 0);
      return _data;
    }
    const_reference operator[] ([[maybe_unused]] size_type i) const
    {
      DUNE_ASSERT_BOUNDS(i == 0);
      return _data;
    }

    //! return pointer to underlying array
    constexpr K* data () noexcept
    {
      return &_data;
    }

    //! return pointer to underlying array
    constexpr const K* data () const noexcept
    {
      return &_data;
    }

    //===== conversion operator

    /** \brief Conversion operator */
    constexpr operator reference () noexcept { return _data; }

    /** \brief Const conversion operator */
    constexpr operator const_reference () const noexcept { return _data; }
  };

  /* ----- FV / FV ----- */
  /* mostly not necessary as these operations are already covered via the cast operator */

  //! Binary compare, when using FieldVector<K,1> like K
  template<class K>
  constexpr bool operator> (const FieldVector<K,1>& a, const FieldVector<K,1>& b) noexcept
  {
    return a[0]>b[0];
  }

  //! Binary compare, when using FieldVector<K,1> like K
  template<class K>
  constexpr bool operator>= (const FieldVector<K,1>& a, const FieldVector<K,1>& b) noexcept
  {
    return a[0]>=b[0];
  }

  //! Binary compare, when using FieldVector<K,1> like K
  template<class K>
  constexpr bool operator< (const FieldVector<K,1>& a, const FieldVector<K,1>& b) noexcept
  {
    return a[0]<b[0];
  }

  //! Binary compare, when using FieldVector<K,1> like K
  template<class K>
  constexpr bool operator<= (const FieldVector<K,1>& a, const FieldVector<K,1>& b) noexcept
  {
    return a[0]<=b[0];
  }

  /* ----- FV / scalar ----- */

  //! Binary addition, when using FieldVector<K,1> like K
  template<class K>
  constexpr FieldVector<K,1> operator+ (const FieldVector<K,1>& a, const K b) noexcept
  {
    return a[0]+b;
  }

  //! Binary subtraction, when using FieldVector<K,1> like K
  template<class K>
  constexpr FieldVector<K,1> operator- (const FieldVector<K,1>& a, const K b) noexcept
  {
    return a[0]-b;
  }

  //! Binary multiplication, when using FieldVector<K,1> like K
  template<class K>
  constexpr FieldVector<K,1> operator* (const FieldVector<K,1>& a, const K b) noexcept
  {
    return a[0]*b;
  }

  //! Binary division, when using FieldVector<K,1> like K
  template<class K>
  constexpr FieldVector<K,1> operator/ (const FieldVector<K,1>& a, const K b) noexcept
  {
    return a[0]/b;
  }

  //! Binary compare, when using FieldVector<K,1> like K
  template<class K>
  constexpr bool operator> (const FieldVector<K,1>& a, const K b) noexcept
  {
    return a[0]>b;
  }

  //! Binary compare, when using FieldVector<K,1> like K
  template<class K>
  constexpr bool operator>= (const FieldVector<K,1>& a, const K b) noexcept
  {
    return a[0]>=b;
  }

  //! Binary compare, when using FieldVector<K,1> like K
  template<class K>
  constexpr bool operator< (const FieldVector<K,1>& a, const K b) noexcept
  {
    return a[0]<b;
  }

  //! Binary compare, when using FieldVector<K,1> like K
  template<class K>
  constexpr bool operator<= (const FieldVector<K,1>& a, const K b) noexcept
  {
    return a[0]<=b;
  }

  //! Binary compare, when using FieldVector<K,1> like K
  template<class K>
  constexpr bool operator== (const FieldVector<K,1>& a, const K b) noexcept
  {
    return a[0]==b;
  }

  //! Binary compare, when using FieldVector<K,1> like K
  template<class K>
  constexpr bool operator!= (const FieldVector<K,1>& a, const K b) noexcept
  {
    return a[0]!=b;
  }

  /* ----- scalar / FV ------ */

  //! Binary addition, when using FieldVector<K,1> like K
  template<class K>
  constexpr FieldVector<K,1> operator+ (const K a, const FieldVector<K,1>& b) noexcept
  {
    return a+b[0];
  }

  //! Binary subtraction, when using FieldVector<K,1> like K
  template<class K>
  constexpr FieldVector<K,1> operator- (const K a, const FieldVector<K,1>& b) noexcept
  {
    return a-b[0];
  }

  //! Binary multiplication, when using FieldVector<K,1> like K
  template<class K>
  constexpr FieldVector<K,1> operator* (const K a, const FieldVector<K,1>& b) noexcept
  {
    return a*b[0];
  }

  //! Binary division, when using FieldVector<K,1> like K
  template<class K>
  constexpr FieldVector<K,1> operator/ (const K a, const FieldVector<K,1>& b) noexcept
  {
    return a/b[0];
  }

  //! Binary compare, when using FieldVector<K,1> like K
  template<class K>
  constexpr bool operator> (const K a, const FieldVector<K,1>& b) noexcept
  {
    return a>b[0];
  }

  //! Binary compare, when using FieldVector<K,1> like K
  template<class K>
  constexpr bool operator>= (const K a, const FieldVector<K,1>& b) noexcept
  {
    return a>=b[0];
  }

  //! Binary compare, when using FieldVector<K,1> like K
  template<class K>
  constexpr bool operator< (const K a, const FieldVector<K,1>& b) noexcept
  {
    return a<b[0];
  }

  //! Binary compare, when using FieldVector<K,1> like K
  template<class K>
  constexpr bool operator<= (const K a, const FieldVector<K,1>& b) noexcept
  {
    return a<=b[0];
  }

  //! Binary compare, when using FieldVector<K,1> like K
  template<class K>
  constexpr bool operator== (const K a, const FieldVector<K,1>& b) noexcept
  {
    return a==b[0];
  }

  //! Binary compare, when using FieldVector<K,1> like K
  template<class K>
  constexpr bool operator!= (const K a, const FieldVector<K,1>& b) noexcept
  {
    return a!=b[0];
  }
#endif

  /* Overloads for common classification functions */
  namespace MathOverloads {

    //! Returns whether all entries are finite
    template<class K, int SIZE>
    auto isFinite (const FieldVector<K,SIZE>& b, PriorityTag<2>, ADLTag)
    {
      bool out = true;
      for (int i = 0; i < SIZE; ++i) {
        out &= Dune::isFinite(b[i]);
      }
      return out;
    }

    //! Returns whether any entry is infinite
    template<class K, int SIZE>
    bool isInf (const FieldVector<K,SIZE>& b, PriorityTag<2>, ADLTag)
    {
      bool out = false;
      for (int i = 0; i < SIZE; ++i) {
        out |= Dune::isInf(b[i]);
      }
      return out;
    }

    //! Returns whether any entry is NaN
    template<class K, int SIZE,
      std::enable_if_t<HasNaN<K>::value, int> = 0>
    bool isNaN (const FieldVector<K,SIZE>& b, PriorityTag<2>, ADLTag)
    {
      bool out = false;
      for (int i = 0; i < SIZE; ++i) {
        out |= Dune::isNaN(b[i]);
      }
      return out;
    }

    //! Returns true if either b or c is NaN
    template<class K,
      std::enable_if_t<HasNaN<K>::value, int> = 0>
    bool isUnordered (const FieldVector<K,1>& b, const FieldVector<K,1>& c,
                      PriorityTag<2>, ADLTag)
    {
      return Dune::isUnordered(b[0],c[0]);
    }

  } // end namespace MathOverloads

  /** @} end documentation */

} // end namespace Dune

#endif // DUNE_COMMON_FVECTOR_HH