1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
|
// SPDX-FileCopyrightInfo: Copyright © DUNE Project contributors, see file LICENSE.md in module root
// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
#ifndef DUNE_COMMON_SIMD_INTERFACE_HH
#define DUNE_COMMON_SIMD_INTERFACE_HH
/** @file
* @brief User interface of the SIMD abstraction
* @ingroup SIMDLib
*
* This file provides the user interface functions of the SIMD abstraction
* layer.
*
* This file should never be included by users of the SIMD
* abstraction. Include <dune/common/simd/simd.hh> instead.
*/
#include <cassert>
#include <cstddef>
#include <type_traits>
#include <utility>
#include <dune/common/simd/base.hh>
#include <dune/common/typelist.hh>
namespace Dune {
//! @brief Namespace for vectorization interface functions used by library
//! developers
/**
* @ingroup SIMDLib
*/
namespace Simd {
/** @addtogroup SIMDLib
*
* @{
*
* @section understand_simd Understanding SIMD types
*
* The (idealized) model of a SIMD type `V` used in this abstraction layer
* is that they are fixed-length vectors of some scalar type `S`.
* Operations and operators that take values of type `S` as arguments,
* except for `operator,()`, should be overloaded to support values of
* type `V` too. These operations should apply element-wise. If the
* operation takes more than one argument, it should accept arbitrary
* combinations of `V` and `S`. The exception is the combination of `S`
* on the left hand side and `V` on the right hand side of one of the
* assignment operators, which does not make sense.
*
* The result of a boolean operation is a mask type `M`, which is a SIMD
* type with scalar type `bool` with the same number of elements as `V`.
* The result of all other operations is again of type `V`, or of some
* type convertible to `V`.
*
* This is very similar to `std::valarray`, with the main difference
* being that `std::valarray` is dynamic in size, while for this
* abstraction the size is static.
*
* @section SIMDLibPromoWarn Type promotion issues
*
* True SIMD types have an issue with type promotion, which means they
* cannot behave completely analogous to built-in integral types (this is
* a non-issue with floating point types). Essentially, operations on
* true SIMD types cannot promote their arguments, because the promoted
* types typically require more storage than the original types, meaning
* an argument that was passed in a single vector register would need
* multiple vector registers after promotion, which would mean greater
* register pressure. Also, there would be conversion operations
* required, which (at least on x86) is not typically the case for
* promotions of the built-in types. Lastly, with larger types the vector
* units can typically operate on fewer lanes at a time.
*
* Omitting integral promotions has in many cases no negative impact,
* because many programmers do not really expect them anyway. There are
* however cases where they matter, and for illustration I want to explain
* one that crept up during unit testing.
*
* Here is a simplified (and somewhat pseudo-code) version of the test.
* The test checks the result of unary `-` on `Vc::Vector<unsigned short>`
* by comparing the result of unary `-` when applied to the complete
* vector to the result of unary `-` when applied to each lane
* individually.
* \code
* Vc::Vector<unsigned short> varg;
* for(std::size_t l = 0; l < lanes(varg); ++l)
* lane(l, varg) = l + 1;
* auto vresult = -varg;
* for(std::size_t l = 0; l < lanes(varg); ++l)
* assert(lane(l, vresult) == -lane(l, varg));
* \endcode
* The test fails in lane 0. On the left side of the `==`, `lane(0,
* vresult)` is `(unsigned short)65535`, which is the same as `(unsigned
* short)-1`, as it should be. On the right side, `lane(0, varg)` is
* `(unsigned short)1`. `-` promotes its argument, so that becomes
* `(int)1`, and the result of the negation is `(int)-1`.
*
* Now the comparison is `(unsigned short)65535 == (int)-1`. The
* comparison operator applies the *usual arithmetic conversions* to bring
* both operands to the same type. In this case this boils down to
* converting the left side to `int` via integral promotions and the
* comparison becomes `(int)65535 == (int)-1`. The result is of course
* `false` and the assertion triggers.
*
* The only way to thoroughly prevent this kind of problem is to convert
* the result of any operation back to the expected type. In the above
* example, the assertion would need to be written as `assert(lane(l,
* vresult) == static_cast<unsigned short>(-lane(l, varg)));`. In
* practice, this should only be a problem with operations on unsigned
* types where the result may be "negative". Most code in Dune will want
* to operate on floating point types, where this is a non-issue.
*
* (Of course, this is also a problem for code that operates on untrusted
* input, but you should not be doing that with Dune anyway).
*
* Still, when writing code using the SIMD abstractions, you should be
* aware that in the following snippet
* \code
* auto var1 = lane(0, -vec);
* auto var2 = -lane(0, vec);
* \endcode
* the exact types of `var1` and `var2` may be somewhat surprising.
*
* @section simd_abstraction_limit Limitations of the Abstraction Layer
*
* Since the abstraction layer cannot overload operators of SIMD types
* (that would be meddling with the domain of the library that provides
* the SIMD types), nor provide its own constructors, there are severe
* limitations in what the abstraction layer guarantees. Besides the
* standard types, the first SIMD library supported is Vc, so that is
* where most of the limitations stem from; see \ref SIMDVcRestrictions in
* \ref SIMDVc.
*
* The biggest limitations are with masks. In Vc masks support a very
* restricted set of operations compared to other SIMD types, so in what
* follows we will distinguish between masks with a very small set of
* operations and between vectors with a larger set of operations.
*
* Here is a compact table of the limitations as a quick reference,
* together with suggested workarounds for the constructs that don't work.
* `s` denotes a scalar object/expression (i.e. of type `double` or in the
* case of masks `bool`). `v` denotes a vector/mask object/expression.
* `sv` means that both scalar and vector arguments are accepted. `V`
* denotes a vector/mask type. `@` means any applicable operator that is
* not otherwise listed.
*
* <!-- The following table is in orgtbl format -- If you are using emacs,
* you may want to enable the `orgtbl` minor mode. We substitute `|`
* with `¦` when describing or-operators so as to not confuse
* orgtbl. -->
* \code
| | Vectors | workaround | Masks | workaround |
|-------------------------+---------+----------------------------+-------------+------------------|
| V v(s); | y | | y | |
| V v = s; | y | V v(s); | *N* | V v(s); |
| V v{s}; | *N* | V v(s); | y | V v(s); |
| V v = {s}; | *N* | V v(s); | y | V v(s); |
|-------------------------+---------+----------------------------+-------------+------------------|
| v = s; | y | v = V(s); | *N* | v = V(s); |
| v = {s}; | *N* | v = V(s); | *N* | v = V(s); |
|-------------------------+---------+----------------------------+-------------+------------------|
| v++; ++v; | *N* | v += Scalar<V>(1); | *N*(n/a)[2] | v = V(true); |
| v--; --v; | *N* | v -= Scalar<V>(1); | n/a | |
|-------------------------+---------+----------------------------+-------------+------------------|
| +v; -v; | y | | *N* | none |
| !v; | y | | y | |
| ~v; | y | | *N* | none |
|-------------------------+---------+----------------------------+-------------+------------------|
| sv @ sv; but see below | y | | *N* | none |
|-------------------------+---------+----------------------------+-------------+------------------|
| s << v; s >> v; | *N* | v << V(s); | *N* | none |
|-------------------------+---------+----------------------------+-------------+------------------|
| v == v; v != v; | y | | *N* [1] | !(v ^ v); v ^ v; |
|-------------------------+---------+----------------------------+-------------+------------------|
| v & v; v ^ v; v ¦ v; | y | | y | |
| v && v; v ¦¦ v; | *N* | maskAnd(v,v); maskOr(v,v); | y | |
|-------------------------+---------+----------------------------+-------------+------------------|
| v @= sv; but see below | y | | *N* | none |
| v &= v; v ^= v; v ¦= v; | y | | y | |
|-------------------------+---------+----------------------------+-------------+------------------|
| v, v;[3,4] | *N* | void(v), v; | y | |
* \endcode
*
* Notes:
*
* - [1] In Vc, mask-mask `==` and `!=` operations exist, but the result
* is of type `bool`, i.e. a scalar.
*
* - [2] `++` (either kind) on bools is deprecated by the standard. Our
* test suite does not check for it on masks, but it was supported by Vc
* masks at some point.
*
* - [3] Contrary to the other operators, the expected result for `(sv1,
* sv2)` is exactly `sv2`, no broadcasting applied.
*
* - [4] Try to avoid the use of `operator,` unless both operands are
* built-in types if possible. Libraries had a tendency to overload
* `operator,` to provide for things like container initialization
* before C++11, and these overloads may still be present in the library
* you are using and replace the default meaning of `operator,`.
*
* Support levels:
*
* - `y`: operation generally works; some instances of the operation may
* not apply
*
* - `*N*`: operation generally does not work; some instances of the
* operation may not apply
*
* - `n/a`: operation does not apply (i.e. bitwise operations to
* floating-point operands, `--` (and in the future possibly `++`) to
* boolean operands, assignment operators to scalar left hand sides)
*/
/** @name Basic interface
*
* Templates and functions in this group are directly implemented by
* templates and functions in namespace Overloads.
*
* @{
*/
//! Element type of some SIMD type
/**
* \tparam V The SIMD (mask or vector) type. `const`, `volatile` or
* reference qualifiers are automatically ignored.
*
* Not all operations that access the element of a vector return (a
* reference to) the scalar type -- some may return proxy objects instead.
* Use `autoCopy()` to make sure you are getting a prvalue of the scalar
* type.
*
* Implemented by `Overloads::ScalarType`.
*/
template<class V>
using Scalar = typename Overloads::ScalarType<std::decay_t<V> >::type;
//! Construct SIMD type with different scalar type
/**
* \tparam S The new scalar type
* \tparam V The SIMD (mask or vector) type.
*
* The resulting type a SIMD vector of `S` with the same number of lanes
* as `V`. `const`, `volatile` or reference qualifiers in `S` and `V` are
* automatically ignored, and the result will have no such qualifiers.
*
* Implementations shall rebind to `LoopSIMD<S, lanes<V>()>` if they can't
* support a particular rebind natively.
*
* Implemented by `Overloads::RebindType`.
*/
template<class S, class V>
using Rebind =
typename Overloads::RebindType<std::decay_t<S>, std::decay_t<V>>::type;
//! @} group Basic interface
/** @name Syntactic Sugar
*
* Templates and functions in this group provide syntactic sugar, they are
* implemented using the functionality from @ref SimdInterfaceBase, and
* are not customizable by implementations.
*
* @{
*/
//! Mask type type of some SIMD type
/**
* \tparam V The SIMD (mask or vector) type. `const`, `volatile` or
* reference qualifiers are automatically ignored.
*
* The mask type is kind of a SIMD vector of `bool` with the same number
* of lanes as `V`. It results from comparison operations between values
* of type `V`. It is only "kind of" a SIMD vector, because the
* guaranteed supported operations are extremely limited. At the moment
* only the logical operators `&&`, `||` and `!` and the "bitwise"
* operators `&`, `^` and `|` between masks are supported, and even with
* those operators you cannot rely on automatic broadcasting of `bool`
* values.
*
* \note In particular, masks do not support comparison. As a workaround
* you can use `^` instead of `!=` and `!(m1 ^ m2)` instead of `m1
* == m2`. (The reason why comparison is not supported is because
* in Vc `==` and `!=` between masks yield a single `bool` result
* and not a mask.)
*
* This is an alias for `Rebind<bool, V>`.
*/
template<class V>
using Mask = Rebind<bool, V>;
//! @} group Syntactic Sugar
/** @name Basic interface
* @{
*/
//! Number of lanes in a SIMD type
/**
* \tparam V The SIMD (mask or vector) type. `const`, `volatile`
* or reference qualifiers are automatically ignored.
*
* Implemented by `Overloads::LaneCount`.
*/
template<class V>
constexpr std::size_t lanes()
{
return Overloads::LaneCount<std::decay_t<V>>::value;
}
//! Extract an element of a SIMD type
/**
* \param l Number of lane to extract
* \param v SIMD object to extract from
*
* \return If `v` is a non-`const` lvalue, a reference
* `Scalar<decay_t<V>>&`, or a proxy object through which the
* element of `v` may be modified. Otherwise, `v` is a `const`
* lvalue or an rvalue, and the result is a prvalue (a temporary)
* of type `Scalar<decay_t<V>>`.
*
* Implemented by `Overloads::lane()`.
*/
template<class V>
decltype(auto) lane(std::size_t l, V &&v)
{
assert(l < lanes<V>());
return lane(Overloads::ADLTag<7>{}, l, std::forward<V>(v));
}
//! Cast an expression from one implementation to another
/**
* Implemented by `Overloads::implCast()`
*
* Requires the scalar type and the number of lanes to match exactly.
*
* This is particularly useful for masks, which often know the type they
* were derived from. This can become a problem when doing a conditional
* operation e.g. on some floating point vector type, but with a mask
* derived from some index vector type.
*
* \note One of the few functions that explicitly take a template
* argument (`V` in this case).
*/
template<class V, class U>
constexpr V implCast(U &&u)
{
static_assert(std::is_same<Scalar<V>, Scalar<U> >::value,
"Scalar types must match exactly in implCast");
static_assert(lanes<V>() == lanes<U>(),
"Number of lanes must match in implCast");
return implCast(Overloads::ADLTag<7>{}, MetaType<std::decay_t<V> >{},
std::forward<U>(u));
}
//! Broadcast a scalar to a vector explicitly
/**
* Implemented by `Overloads::broadcast()`
*
* This is useful because the syntax for broadcasting can vary wildly
* between implementations.
*
* \note One of the few functions that explicitly take a template
* argument (`V` in this case).
*/
template<class V, class S>
constexpr V broadcast(S s)
{
return broadcast(Overloads::ADLTag<7>{}, MetaType<std::decay_t<V> >{},
std::move(s));
}
//! Like the ?: operator
/**
* Equivalent to
* \code
* V result;
* for(std::size_t l = 0; l < lanes(mask); ++l)
* lane(l, result) =
* ( lane(l, mask) ? lane(l, ifTrue) : lane(l ifFalse) );
* return result;
* \endcode
*
* Implemented by `Overloads::cond()`.
*/
template<class M, class V>
V cond(M &&mask, const V &ifTrue, const V &ifFalse)
{
return cond(Overloads::ADLTag<7>{},
implCast<Mask<V> >(std::forward<M>(mask)), ifTrue, ifFalse);
}
//! Like the ?: operator
/**
* Overload for plain bool masks, accepting any simd type
*
* Implemented by `Overloads::cond()`.
*/
template<class V>
V cond(bool mask, const V &ifTrue, const V &ifFalse)
{
return mask ? ifTrue : ifFalse;
}
//! The binary maximum value over two simd objects
/**
* Implemented by `Overloads::max()`.
*/
template<class V>
auto max(const V &v1, const V &v2)
{
return max(Overloads::ADLTag<7>{}, v1, v2);
}
//! The binary minimum value over two simd objects
/**
* Implemented by `Overloads::min()`.
*/
template<class V>
auto min(const V &v1, const V &v2)
{
return min(Overloads::ADLTag<7>{}, v1, v2);
}
//! Whether any entry is `true`
/**
* Implemented by `Overloads::anyTrue()`.
*/
template<class Mask>
bool anyTrue(const Mask &mask)
{
return anyTrue(Overloads::ADLTag<7>{}, mask);
}
//! Whether all entries are `true`
/**
* Implemented by `Overloads::allTrue()`.
*/
template<class Mask>
bool allTrue(const Mask &mask)
{
return allTrue(Overloads::ADLTag<7>{}, mask);
}
//! Whether any entry is `false`
/**
* Implemented by `Overloads::anyFalse()`.
*/
template<class Mask>
bool anyFalse(const Mask &mask)
{
return anyFalse(Overloads::ADLTag<7>{}, mask);
}
//! Whether all entries are `false`
/**
* Implemented by `Overloads::allFalse()`.
*/
template<class Mask>
bool allFalse(const Mask &mask)
{
return allFalse(Overloads::ADLTag<7>{}, mask);
}
//! The horizontal maximum value over all lanes
/**
* Implemented by `Overloads::max()`.
*/
template<class V>
Scalar<V> max(const V &v)
{
return max(Overloads::ADLTag<7>{}, v);
}
//! The horizontal minimum value over all lanes
/**
* Implemented by `Overloads::min()`.
*/
template<class V>
Scalar<V> min(const V &v)
{
return min(Overloads::ADLTag<7>{}, v);
}
//! Convert to mask, analogue of bool(s) for scalars
/**
* Implemented by `Overloads::mask()`.
*/
template<class V>
auto mask(const V &v)
{
return mask(Overloads::ADLTag<7>{}, v);
}
//! Logic or of masks
/**
* Implemented by `Overloads::maskOr()`.
*/
template<class V1, class V2>
auto maskOr(const V1 &v1, const V2 &v2)
{
return maskOr(Overloads::ADLTag<7>{}, v1, v2);
}
//! Logic and of masks
/**
* Implemented by `Overloads::maskAnd()`.
*/
template<class V1, class V2>
auto maskAnd(const V1 &v1, const V2 &v2)
{
return maskAnd(Overloads::ADLTag<7>{}, v1, v2);
}
//! @} group Basic interface
/** @name Syntactic Sugar
*
* Templates and functions in this group provide syntactic sugar, they are
* implemented using the functionality from @ref SimdInterfaceBase, and
* are not customizable by implementations.
*
* @{
*/
//! Number of lanes in a SIMD type
/**
* \tparam V The SIMD (mask or vector) type.
*
* The value of the parameter is ignored; the call is simply forwarded to
* `lanes<V>()`.
*/
template<class V>
std::size_t lanes(const V &)
{
return lanes<V>();
}
//! @} group Syntactic Sugar
//! @} Group SIMDLib
} // namespace Simd
} // namespace Dune
#endif // DUNE_COMMON_SIMD_INTERFACE_HH
|