1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
|
// SPDX-FileCopyrightInfo: Copyright © DUNE Project contributors, see file LICENSE.md in module root
// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
#ifndef DUNE_COMMON_SIMD_LOOP_HH
#define DUNE_COMMON_SIMD_LOOP_HH
#include <array>
#include <cmath>
#include <cstddef>
#include <cstdlib>
#include <cstdint>
#include <ostream>
#include <dune/common/math.hh>
#include <dune/common/simd/simd.hh>
#include <dune/common/typetraits.hh>
namespace Dune {
/*
* silence warnings from GCC about using integer operands on a bool
* (when instantiated for T=bool)
*/
#if __GNUC__ >= 7
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wbool-operation"
# pragma GCC diagnostic ignored "-Wint-in-bool-context"
# define GCC_WARNING_DISABLED
#endif
/*
* silence warnings from Clang about using bitwise operands on
* a bool (when instantiated for T=bool)
*/
#ifdef __clang__
#if __has_warning("-Wbitwise-instead-of-logical")
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wbitwise-instead-of-logical"
# define CLANG_WARNING_DISABLED
#endif
#endif
/*
* Introduce a simd pragma if OpenMP is available in standard version >= 4
*/
#if _OPENMP >= 201307
#define DUNE_PRAGMA_OMP_SIMD _Pragma("omp simd")
#else
#define DUNE_PRAGMA_OMP_SIMD
#endif
/**
* This class specifies a vector-like type deriving from std::array
* for memory management and basic accessibility.
* This type is capable of dealing with all (well-defined) operators
* and is usable with the SIMD-interface.
*
* @tparam T Base type. Could also be vectorized type.
* @tparam S Size
* @tparam minimum alignment. It is inherited to rebound types.
*/
template<class T, std::size_t S, std::size_t A = 0>
class alignas(A==0?alignof(T):A) LoopSIMD : public std::array<T,S> {
public:
//default constructor
LoopSIMD() {
assert(reinterpret_cast<uintptr_t>(this) % std::min(alignof(LoopSIMD<T,S,A>),alignof(std::max_align_t)) == 0);
}
// broadcast constructor initializing the content with a given value
LoopSIMD(Simd::Scalar<T> i) : LoopSIMD() {
this->fill(i);
}
template<std::size_t OA>
explicit LoopSIMD(const LoopSIMD<T,S,OA>& other)
: std::array<T,S>(other)
{
assert(reinterpret_cast<uintptr_t>(this) % std::min(alignof(LoopSIMD<T,S,A>),alignof(std::max_align_t)) == 0);
}
/*
* Definition of basic operators
*/
//Prefix operators
#define DUNE_SIMD_LOOP_PREFIX_OP(SYMBOL) \
auto operator SYMBOL() { \
DUNE_PRAGMA_OMP_SIMD \
for(std::size_t i=0; i<S; i++){ \
SYMBOL(*this)[i]; \
} \
return *this; \
} \
static_assert(true, "expecting ;")
DUNE_SIMD_LOOP_PREFIX_OP(++);
DUNE_SIMD_LOOP_PREFIX_OP(--);
#undef DUNE_SIMD_LOOP_PREFIX_OP
//Unary operators
#define DUNE_SIMD_LOOP_UNARY_OP(SYMBOL) \
auto operator SYMBOL() const { \
LoopSIMD<T,S,A> out; \
DUNE_PRAGMA_OMP_SIMD \
for(std::size_t i=0; i<S; i++){ \
out[i] = SYMBOL((*this)[i]); \
} \
return out; \
} \
static_assert(true, "expecting ;")
DUNE_SIMD_LOOP_UNARY_OP(+);
DUNE_SIMD_LOOP_UNARY_OP(-);
DUNE_SIMD_LOOP_UNARY_OP(~);
auto operator!() const {
Simd::Mask<LoopSIMD<T,S,A>> out;
DUNE_PRAGMA_OMP_SIMD
for(std::size_t i=0; i<S; i++){
out[i] = !((*this)[i]);
}
return out;
}
#undef DUNE_SIMD_LOOP_UNARY_OP
//Postfix operators
#define DUNE_SIMD_LOOP_POSTFIX_OP(SYMBOL) \
auto operator SYMBOL(int){ \
LoopSIMD<T,S,A> out = *this; \
SYMBOL(*this); \
return out; \
} \
static_assert(true, "expecting ;")
DUNE_SIMD_LOOP_POSTFIX_OP(++);
DUNE_SIMD_LOOP_POSTFIX_OP(--);
#undef DUNE_SIMD_LOOP_POSTFIX_OP
//Assignment operators
#define DUNE_SIMD_LOOP_ASSIGNMENT_OP(SYMBOL) \
auto operator SYMBOL(const Simd::Scalar<T> s) { \
DUNE_PRAGMA_OMP_SIMD \
for(std::size_t i=0; i<S; i++){ \
(*this)[i] SYMBOL s; \
} \
return *this; \
} \
\
auto operator SYMBOL(const LoopSIMD<T,S,A> &v) { \
DUNE_PRAGMA_OMP_SIMD \
for(std::size_t i=0; i<S; i++){ \
(*this)[i] SYMBOL v[i]; \
} \
return *this; \
} \
static_assert(true, "expecting ;")
DUNE_SIMD_LOOP_ASSIGNMENT_OP(+=);
DUNE_SIMD_LOOP_ASSIGNMENT_OP(-=);
DUNE_SIMD_LOOP_ASSIGNMENT_OP(*=);
DUNE_SIMD_LOOP_ASSIGNMENT_OP(/=);
DUNE_SIMD_LOOP_ASSIGNMENT_OP(%=);
DUNE_SIMD_LOOP_ASSIGNMENT_OP(<<=);
DUNE_SIMD_LOOP_ASSIGNMENT_OP(>>=);
DUNE_SIMD_LOOP_ASSIGNMENT_OP(&=);
DUNE_SIMD_LOOP_ASSIGNMENT_OP(|=);
DUNE_SIMD_LOOP_ASSIGNMENT_OP(^=);
#undef DUNE_SIMD_LOOP_ASSIGNMENT_OP
};
//Arithmetic operators
#define DUNE_SIMD_LOOP_BINARY_OP(SYMBOL) \
template<class T, std::size_t S, std::size_t A> \
auto operator SYMBOL(const LoopSIMD<T,S,A> &v, const Simd::Scalar<T> s) { \
LoopSIMD<T,S,A> out; \
DUNE_PRAGMA_OMP_SIMD \
for(std::size_t i=0; i<S; i++){ \
out[i] = v[i] SYMBOL s; \
} \
return out; \
} \
template<class T, std::size_t S, std::size_t A> \
auto operator SYMBOL(const Simd::Scalar<T> s, const LoopSIMD<T,S,A> &v) { \
LoopSIMD<T,S,A> out; \
DUNE_PRAGMA_OMP_SIMD \
for(std::size_t i=0; i<S; i++){ \
out[i] = s SYMBOL v[i]; \
} \
return out; \
} \
template<class T, std::size_t S, std::size_t A> \
auto operator SYMBOL(const LoopSIMD<T,S,A> &v, \
const LoopSIMD<T,S,A> &w) { \
LoopSIMD<T,S,A> out; \
DUNE_PRAGMA_OMP_SIMD \
for(std::size_t i=0; i<S; i++){ \
out[i] = v[i] SYMBOL w[i]; \
} \
return out; \
} \
static_assert(true, "expecting ;")
DUNE_SIMD_LOOP_BINARY_OP(+);
DUNE_SIMD_LOOP_BINARY_OP(-);
DUNE_SIMD_LOOP_BINARY_OP(*);
DUNE_SIMD_LOOP_BINARY_OP(/);
DUNE_SIMD_LOOP_BINARY_OP(%);
DUNE_SIMD_LOOP_BINARY_OP(&);
DUNE_SIMD_LOOP_BINARY_OP(|);
DUNE_SIMD_LOOP_BINARY_OP(^);
#undef DUNE_SIMD_LOOP_BINARY_OP
//Bitshift operators
#define DUNE_SIMD_LOOP_BITSHIFT_OP(SYMBOL) \
template<class T, std::size_t S, std::size_t A, class U> \
auto operator SYMBOL(const LoopSIMD<T,S,A> &v, const U s) { \
LoopSIMD<T,S,A> out; \
DUNE_PRAGMA_OMP_SIMD \
for(std::size_t i=0; i<S; i++){ \
out[i] = v[i] SYMBOL s; \
} \
return out; \
} \
template<class T, std::size_t S, std::size_t A, class U, std::size_t AU> \
auto operator SYMBOL(const LoopSIMD<T,S,A> &v, \
const LoopSIMD<U,S,AU> &w) { \
LoopSIMD<T,S,A> out; \
DUNE_PRAGMA_OMP_SIMD \
for(std::size_t i=0; i<S; i++){ \
out[i] = v[i] SYMBOL w[i]; \
} \
return out; \
} \
static_assert(true, "expecting ;")
DUNE_SIMD_LOOP_BITSHIFT_OP(<<);
DUNE_SIMD_LOOP_BITSHIFT_OP(>>);
#undef DUNE_SIMD_LOOP_BITSHIFT_OP
//Comparison operators
#define DUNE_SIMD_LOOP_COMPARISON_OP(SYMBOL) \
template<class T, std::size_t S, std::size_t A, class U> \
auto operator SYMBOL(const LoopSIMD<T,S,A> &v, const U s) { \
Simd::Mask<LoopSIMD<T,S,A>> out; \
DUNE_PRAGMA_OMP_SIMD \
for(std::size_t i=0; i<S; i++){ \
out[i] = v[i] SYMBOL s; \
} \
return out; \
} \
template<class T, std::size_t S, std::size_t A> \
auto operator SYMBOL(const Simd::Scalar<T> s, const LoopSIMD<T,S,A> &v) { \
Simd::Mask<LoopSIMD<T,S,A>> out; \
DUNE_PRAGMA_OMP_SIMD \
for(std::size_t i=0; i<S; i++){ \
out[i] = s SYMBOL v[i]; \
} \
return out; \
} \
template<class T, std::size_t S, std::size_t A> \
auto operator SYMBOL(const LoopSIMD<T,S,A> &v, \
const LoopSIMD<T,S,A> &w) { \
Simd::Mask<LoopSIMD<T,S,A>> out; \
DUNE_PRAGMA_OMP_SIMD \
for(std::size_t i=0; i<S; i++){ \
out[i] = v[i] SYMBOL w[i]; \
} \
return out; \
} \
static_assert(true, "expecting ;")
DUNE_SIMD_LOOP_COMPARISON_OP(<);
DUNE_SIMD_LOOP_COMPARISON_OP(>);
DUNE_SIMD_LOOP_COMPARISON_OP(<=);
DUNE_SIMD_LOOP_COMPARISON_OP(>=);
DUNE_SIMD_LOOP_COMPARISON_OP(==);
DUNE_SIMD_LOOP_COMPARISON_OP(!=);
#undef DUNE_SIMD_LOOP_COMPARISON_OP
//Boolean operators
#define DUNE_SIMD_LOOP_BOOLEAN_OP(SYMBOL) \
template<class T, std::size_t S, std::size_t A> \
auto operator SYMBOL(const LoopSIMD<T,S,A> &v, const Simd::Scalar<T> s) { \
Simd::Mask<LoopSIMD<T,S,A>> out; \
DUNE_PRAGMA_OMP_SIMD \
for(std::size_t i=0; i<S; i++){ \
out[i] = v[i] SYMBOL s; \
} \
return out; \
} \
template<class T, std::size_t S, std::size_t A> \
auto operator SYMBOL(const Simd::Mask<T> s, const LoopSIMD<T,S,A> &v) { \
Simd::Mask<LoopSIMD<T,S,A>> out; \
DUNE_PRAGMA_OMP_SIMD \
for(std::size_t i=0; i<S; i++){ \
out[i] = s SYMBOL v[i]; \
} \
return out; \
} \
template<class T, std::size_t S, std::size_t A> \
auto operator SYMBOL(const LoopSIMD<T,S,A> &v, \
const LoopSIMD<T,S,A> &w) { \
Simd::Mask<LoopSIMD<T,S,A>> out; \
DUNE_PRAGMA_OMP_SIMD \
for(std::size_t i=0; i<S; i++){ \
out[i] = v[i] SYMBOL w[i]; \
} \
return out; \
} \
static_assert(true, "expecting ;")
DUNE_SIMD_LOOP_BOOLEAN_OP(&&);
DUNE_SIMD_LOOP_BOOLEAN_OP(||);
#undef DUNE_SIMD_LOOP_BOOLEAN_OP
//prints a given LoopSIMD
template<class T, std::size_t S, std::size_t A>
std::ostream& operator<< (std::ostream &os, const LoopSIMD<T,S,A> &v) {
os << "[";
for(std::size_t i=0; i<S-1; i++) {
os << v[i] << ", ";
}
os << v[S-1] << "]";
return os;
}
namespace Simd {
namespace Overloads {
/*
* Implementation/Overloads of the functions needed for
* SIMD-interface-compatibility
*/
//Implementation of SIMD-interface-types
template<class T, std::size_t S, std::size_t A>
struct ScalarType<LoopSIMD<T,S,A>> {
using type = Simd::Scalar<T>;
};
template<class U, class T, std::size_t S, std::size_t A>
struct RebindType<U, LoopSIMD<T,S,A>> {
using type = LoopSIMD<Simd::Rebind<U, T>,S,A>;
};
//Implementation of SIMD-interface-functionality
template<class T, std::size_t S, std::size_t A>
struct LaneCount<LoopSIMD<T,S,A>> : index_constant<S*lanes<T>()> {};
template<class T, std::size_t S, std::size_t A>
auto lane(ADLTag<5>, std::size_t l, LoopSIMD<T,S,A> &&v)
-> decltype(std::move(Simd::lane(l%lanes<T>(), v[l/lanes<T>()])))
{
return std::move(Simd::lane(l%lanes<T>(), v[l/lanes<T>()]));
}
template<class T, std::size_t S, std::size_t A>
auto lane(ADLTag<5>, std::size_t l, const LoopSIMD<T,S,A> &v)
-> decltype(Simd::lane(l%lanes<T>(), v[l/lanes<T>()]))
{
return Simd::lane(l%lanes<T>(), v[l/lanes<T>()]);
}
template<class T, std::size_t S, std::size_t A>
auto lane(ADLTag<5>, std::size_t l, LoopSIMD<T,S,A> &v)
-> decltype(Simd::lane(l%lanes<T>(), v[l/lanes<T>()]))
{
return Simd::lane(l%lanes<T>(), v[l/lanes<T>()]);
}
template<class T, std::size_t S, std::size_t AM, std::size_t AD>
auto cond(ADLTag<5>, Simd::Mask<LoopSIMD<T,S,AM>> mask,
LoopSIMD<T,S,AD> ifTrue, LoopSIMD<T,S,AD> ifFalse) {
LoopSIMD<T,S,AD> out;
for(std::size_t i=0; i<S; i++) {
out[i] = Simd::cond(mask[i], ifTrue[i], ifFalse[i]);
}
return out;
}
template<class M, class T, std::size_t S, std::size_t A>
auto cond(ADLTag<5, std::is_same<bool, Simd::Scalar<M> >::value
&& Simd::lanes<M>() == Simd::lanes<LoopSIMD<T,S,A> >()>,
M mask, LoopSIMD<T,S,A> ifTrue, LoopSIMD<T,S,A> ifFalse)
{
LoopSIMD<T,S,A> out;
for(auto l : range(Simd::lanes(mask)))
Simd::lane(l, out) = Simd::lane(l, mask) ? Simd::lane(l, ifTrue) : Simd::lane(l, ifFalse);
return out;
}
template<class M, std::size_t S, std::size_t A>
bool anyTrue(ADLTag<5>, LoopSIMD<M,S,A> mask) {
bool out = false;
for(std::size_t i=0; i<S; i++) {
out |= Simd::anyTrue(mask[i]);
}
return out;
}
template<class M, std::size_t S, std::size_t A>
bool allTrue(ADLTag<5>, LoopSIMD<M,S,A> mask) {
bool out = true;
for(std::size_t i=0; i<S; i++) {
out &= Simd::allTrue(mask[i]);
}
return out;
}
template<class M, std::size_t S, std::size_t A>
bool anyFalse(ADLTag<5>, LoopSIMD<M,S,A> mask) {
bool out = false;
for(std::size_t i=0; i<S; i++) {
out |= Simd::anyFalse(mask[i]);
}
return out;
}
template<class M, std::size_t S, std::size_t A>
bool allFalse(ADLTag<5>, LoopSIMD<M,S,A> mask) {
bool out = true;
for(std::size_t i=0; i<S; i++) {
out &= Simd::allFalse(mask[i]);
}
return out;
}
} //namespace Overloads
} //namespace Simd
/*
* Overloads the unary cmath-operations. Operations requiring
* or returning more than one argument are not supported.
* Due to inconsistency with the return values, cmath-operations
* on integral types are also not supported-
*/
#define DUNE_SIMD_LOOP_CMATH_UNARY_OP(expr) \
template<class T, std::size_t S, std::size_t A, typename Sfinae = \
typename std::enable_if_t<!std::is_integral<Simd::Scalar<T>>::value> > \
auto expr(const LoopSIMD<T,S,A> &v) { \
using std::expr; \
LoopSIMD<T,S,A> out; \
for(std::size_t i=0; i<S; i++) { \
out[i] = expr(v[i]); \
} \
return out; \
} \
static_assert(true, "expecting ;")
#define DUNE_SIMD_LOOP_CMATH_UNARY_OP_WITH_RETURN(expr, returnType) \
template<class T, std::size_t S, std::size_t A, typename Sfinae = \
typename std::enable_if_t<!std::is_integral<Simd::Scalar<T>>::value> > \
auto expr(const LoopSIMD<T,S,A> &v) { \
using std::expr; \
LoopSIMD<returnType,S> out; \
for(std::size_t i=0; i<S; i++) { \
out[i] = expr(v[i]); \
} \
return out; \
} \
static_assert(true, "expecting ;")
DUNE_SIMD_LOOP_CMATH_UNARY_OP(cos);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(sin);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(tan);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(acos);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(asin);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(atan);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(cosh);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(sinh);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(tanh);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(acosh);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(asinh);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(atanh);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(exp);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(log);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(log10);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(exp2);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(expm1);
DUNE_SIMD_LOOP_CMATH_UNARY_OP_WITH_RETURN(ilogb, int);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(log1p);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(log2);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(logb);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(sqrt);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(cbrt);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(erf);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(erfc);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(tgamma);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(lgamma);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(ceil);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(floor);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(trunc);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(round);
DUNE_SIMD_LOOP_CMATH_UNARY_OP_WITH_RETURN(lround, long);
DUNE_SIMD_LOOP_CMATH_UNARY_OP_WITH_RETURN(llround, long long);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(rint);
DUNE_SIMD_LOOP_CMATH_UNARY_OP_WITH_RETURN(lrint, long);
DUNE_SIMD_LOOP_CMATH_UNARY_OP_WITH_RETURN(llrint, long long);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(nearbyint);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(fabs);
DUNE_SIMD_LOOP_CMATH_UNARY_OP(abs);
#undef DUNE_SIMD_LOOP_CMATH_UNARY_OP
#undef DUNE_SIMD_LOOP_CMATH_UNARY_OP_WITH_RETURN
/* not implemented cmath-functions:
* atan2
* frexp, idexp
* modf
* scalbn, scalbln
* pow
* hypot
* remainder, remquo
* copysign
* nan
* nextafter, nexttoward
* fdim, fmax, fmin
*/
/*
* Overloads specific functions usually provided by the std library
* More overloads will be provided should the need arise.
*/
#define DUNE_SIMD_LOOP_STD_UNARY_OP(expr) \
template<class T, std::size_t S, std::size_t A> \
auto expr(const LoopSIMD<T,S,A> &v) { \
using std::expr; \
LoopSIMD<T,S,A> out; \
for(std::size_t i=0; i<S; i++) { \
out[i] = expr(v[i]); \
} \
return out; \
} \
\
template<class T, std::size_t S, std::size_t A> \
auto expr(const LoopSIMD<std::complex<T>,S,A> &v) { \
using std::expr; \
LoopSIMD<T,S,A> out; \
for(std::size_t i=0; i<S; i++) { \
out[i] = expr(v[i]); \
} \
return out; \
} \
static_assert(true, "expecting ;")
DUNE_SIMD_LOOP_STD_UNARY_OP(real);
DUNE_SIMD_LOOP_STD_UNARY_OP(imag);
#undef DUNE_SIMD_LOOP_STD_UNARY_OP
#define DUNE_SIMD_LOOP_STD_BINARY_OP(expr) \
template<class T, std::size_t S, std::size_t A> \
auto expr(const LoopSIMD<T,S,A> &v, const LoopSIMD<T,S,A> &w) { \
using std::expr; \
LoopSIMD<T,S,A> out; \
for(std::size_t i=0; i<S; i++) { \
out[i] = expr(v[i],w[i]); \
} \
return out; \
} \
static_assert(true, "expecting ;")
DUNE_SIMD_LOOP_STD_BINARY_OP(max);
DUNE_SIMD_LOOP_STD_BINARY_OP(min);
#undef DUNE_SIMD_LOOP_STD_BINARY_OP
namespace MathOverloads {
template<class T, std::size_t S, std::size_t A>
auto isNaN(const LoopSIMD<T,S,A> &v, PriorityTag<3>, ADLTag) {
Simd::Mask<LoopSIMD<T,S,A>> out;
for(auto l : range(S))
out[l] = Dune::isNaN(v[l]);
return out;
}
template<class T, std::size_t S, std::size_t A>
auto isInf(const LoopSIMD<T,S,A> &v, PriorityTag<3>, ADLTag) {
Simd::Mask<LoopSIMD<T,S,A>> out;
for(auto l : range(S))
out[l] = Dune::isInf(v[l]);
return out;
}
template<class T, std::size_t S, std::size_t A>
auto isFinite(const LoopSIMD<T,S,A> &v, PriorityTag<3>, ADLTag) {
Simd::Mask<LoopSIMD<T,S,A>> out;
for(auto l : range(S))
out[l] = Dune::isFinite(v[l]);
return out;
}
} //namespace MathOverloads
template<class T, std::size_t S, std::size_t A>
struct IsNumber<LoopSIMD<T,S,A>> :
public std::integral_constant<bool, IsNumber<T>::value>{
};
#ifdef CLANG_WARNING_DISABLED
# pragma clang diagnostic pop
# undef CLANG_WARNING_DISABLED
#endif
#ifdef GCC_WARNING_DISABLED
# pragma GCC diagnostic pop
# undef GCC_WARNING_DISABLED
#endif
} //namespace Dune
#endif
|