1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
// SPDX-FileCopyrightInfo: Copyright © DUNE Project contributors, see file LICENSE.md in module root
// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
#ifndef DUNE_COMMON_STD_SPAN_HH
#define DUNE_COMMON_STD_SPAN_HH
#include <cassert>
#include <cstddef>
#include <exception>
#include <iterator>
#include <limits>
#include <stdexcept>
#include <string>
#include <type_traits>
#if __has_include(<version>)
#include <version>
#endif
#include <dune/common/exceptions.hh>
#include <dune/common/std/memory.hh>
namespace Dune::Std {
/// \brief A constant of type std::size_t that is used to differentiate std::span of static and dynamic extent.
inline constexpr std::size_t dynamic_extent = std::numeric_limits<std::size_t>::max();
namespace Impl {
template <std::size_t Extent>
class SpanSize
{
public:
using size_type = std::size_t;
public:
constexpr SpanSize () = default;
constexpr SpanSize ([[maybe_unused]] size_type size) noexcept
{
assert(Extent == Std::dynamic_extent || Extent == size);
}
template <class Iter>
constexpr SpanSize ([[maybe_unused]] Iter first, [[maybe_unused]] Iter last) noexcept
{
assert((std::distance(first,last) == Extent));
}
constexpr size_type size () const noexcept { return Extent; }
};
template <>
class SpanSize<Std::dynamic_extent>
{
public:
using size_type = std::size_t;
public:
constexpr SpanSize (size_type size = 0) noexcept
: size_(size)
{}
template <class Iter>
constexpr SpanSize (Iter first, Iter last) noexcept
: size_(std::distance(first,last))
{}
constexpr size_type size () const noexcept { return size_; }
private:
size_type size_;
};
template <class T>
struct TypeIdentity { using type = T; };
template <class T>
using TypeIdentity_t = typename TypeIdentity<T>::type;
} // end namespace Impl
/**
* \brief A contiguous sequence of elements with static or dynamic extent.
* \ingroup CxxUtilities
* \nosubgrouping
*
* The class template span describes an object that can refer to a contiguous sequence
* of objects with the first element of the sequence at position zero. A span can either
* have a static extent, in which case the number of elements in the sequence is known
* at compile-time and encoded in the type, or a dynamic extent.
*
* If a span has dynamic extent, a typical implementation holds two members: a pointer
* to `Element` and a size. A span with static extent may have only one member: a pointer
* to `Element`.
*
* The implementation is based on the C++ standard working draft
* <a href="https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/n4971.pdf">N4971</a> and
* the documentation provided in
* <a href="https://en.cppreference.com/w/cpp/container/span">cppreference</a>.
*
* \b Example:
* \code{.cpp}
std::vector v{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
// view data as contiguous memory representing 10 elements
auto s1 = Dune::Std::span(v.data(), 10);
// view data as contiguous memory with static size
auto s2 = Dune::Std::span<int,10>(v.data());
// write data using 2D view
for (std::size_t i = 0; i != s1.size(); i++)
s1[i] = 2*i;
* \endcode
*
* \tparam Element The element type; a complete object type that is not an abstract class type.
* \tparam Extent Specifies number of elements in the sequence, or `Std::dynamic_extent` if dynamic.
*
* \related Std::dynamic_extent
**/
template <class Element, std::size_t Extent = Std::dynamic_extent>
class span
: public Impl::SpanSize<Extent>
{
using base_type = Impl::SpanSize<Extent>; // base_type implements the member variable size()
static_assert(std::is_object_v<Element> && !std::is_abstract_v<Element>);
public:
using element_type = Element;
using value_type = std::remove_cv_t<element_type>;
using size_type = std::size_t;
using difference_type = std::ptrdiff_t;
using pointer = element_type*;
using reference = element_type&;
using const_reference = const element_type&;
using iterator = pointer;
using reverse_iterator = std::reverse_iterator<iterator>;
#if __cpp_lib_ranges_as_const >202311L
using const_iterator = std::const_iterator<iterator>;
using const_reverse_iterator = std::const_iterator<reverse_iterator>;
#else
using const_iterator = const iterator;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
#endif
static constexpr size_type extent = Extent;
public:
/// \name Span constructors
/// @{
/// \brief Default construct an empty span
template <std::size_t e = extent,
std::enable_if_t<(e == dynamic_extent || e == 0), int> = 0>
constexpr span () noexcept
: base_type{}
, data_{}
{}
/// \brief Constructs a span that is a view over the range `[first, first+size)`
template <class Iter,
class U = std::remove_reference_t<decltype(*std::declval<Iter>())>,
std::enable_if_t<std::is_convertible_v<U(*)[], element_type(*)[]>, int> = 0>
#if __cpp_conditional_explicit >= 201806L
explicit(extent != Std::dynamic_extent)
#endif
constexpr span (Iter first, size_type size)
: base_type(size)
, data_(Std::to_address(first))
{}
/// \brief Constructs a span that is a view over the range `[first, last)`
template <class Iter,
class U = std::remove_reference_t<decltype(*std::declval<Iter>())>,
std::enable_if_t<std::is_convertible_v<U(*)[], element_type(*)[]>, int> = 0>
#if __cpp_conditional_explicit >= 201806L
explicit(extent != Std::dynamic_extent)
#endif
constexpr span (Iter first, Iter last)
: base_type(first,last)
, data_(Std::to_address(first))
{}
/// \brief Constructs a span that is a view over the range `[range.begin(), range.end())`
template <class Range,
decltype(std::begin(std::declval<Range>()), std::end(std::declval<Range>()), bool{}) = true,
std::enable_if_t<not std::is_array_v<Range>, int> = 0>
#if __cpp_conditional_explicit >= 201806L
explicit(extent != Std::dynamic_extent)
#endif
constexpr span (Range& range)
: span(std::begin(range), std::end(range))
{}
/// \brief Constructs a span that is a view over the C-array
template <std::size_t N, std::size_t e = extent,
std::enable_if_t<(e == Std::dynamic_extent || e == N), int> = 0>
constexpr span (Impl::TypeIdentity_t<element_type> (&data)[N]) noexcept
: base_type(N)
, data_(data)
{}
/// \brief Constructs a span that is a view over the array
template <class T, size_t N, std::size_t e = extent,
std::enable_if_t<(e == Std::dynamic_extent || e == N), int> = 0,
std::enable_if_t<std::is_convertible_v<T(*)[], element_type(*)[]>, int> = 0>
constexpr span (std::array<T, N>& arr) noexcept
: base_type(N)
, data_(arr.data())
{}
/// \brief Constructs a span that is a view over the const array
template <class T, size_t N, std::size_t e = extent,
std::enable_if_t<(e == Std::dynamic_extent || e == N), int> = 0,
std::enable_if_t<std::is_convertible_v<const T(*)[], element_type(*)[]>, int> = 0>
constexpr span (const std::array<T, N>& arr) noexcept
: base_type(N)
, data_(arr.data())
{}
/// \brief Constructs a span that is a view over the initializer-list
template <class E = element_type,
std::enable_if_t<std::is_const_v<E>, int> = 0>
#if __cpp_conditional_explicit >= 201806L
explicit(extent != Std::dynamic_extent)
#endif
constexpr span (std::initializer_list<value_type> il)
: base_type(il.size())
, data_(il.begin())
{}
/// \brief Copy constructor
constexpr span (const span& other) noexcept = default;
/// \brief Converting copy constructor
template <class OtherElementType, std::size_t OtherExtent,
std::enable_if_t<(extent == Std::dynamic_extent || OtherExtent == Std::dynamic_extent || extent == OtherExtent), int> = 0,
std::enable_if_t<std::is_convertible_v<OtherElementType(*)[], element_type(*)[]>, int> = 0>
#if __cpp_conditional_explicit >= 201806L
explicit(extent != Std::dynamic_extent && OtherExtent == Std::dynamic_extent)
#endif
constexpr span (const span<OtherElementType, OtherExtent>& s) noexcept
: base_type(s.size())
, data_(s.data())
{}
/// \brief Copy assignment operator
constexpr span& operator= (const span& other) noexcept = default;
/// @}
/// \name Iterators
/// @{
/// \brief Returns an iterator to the beginning.
constexpr iterator begin () const noexcept { return data_; }
/// \brief Returns an iterator to the end.
constexpr iterator end () const noexcept { return data_ + size(); }
/// \brief Returns an iterator to the beginning.
constexpr const_iterator cbegin () const noexcept { return data_; }
/// \brief Returns an iterator to the end.
constexpr const_iterator cend () const noexcept { return data_ + size(); }
/// \brief Returns a reverse iterator starting at the end.
constexpr reverse_iterator rbegin() const noexcept { return reverse_iterator{end()}; }
/// \brief Returns a reverse iterator ending at the beginning.
constexpr reverse_iterator rend() const noexcept { return reverse_iterator{begin()}; }
/// \brief Returns a reverse iterator starting at the end.
constexpr const_reverse_iterator crbegin() const noexcept { return reverse_iterator{end()}; }
/// \brief Returns a reverse iterator ending at the beginning.
constexpr const_reverse_iterator crend() const noexcept { return reverse_iterator{begin()}; }
/// @}
/// \name Element and data access
/// @{
/// \brief Access the first element.
constexpr reference front () const
{
assert(not empty() && "front of empty span does not exist");
return data_[0];
}
/// \brief Access the last element.
constexpr reference back () const
{
assert(not empty() && "front of empty span does not exist");
return data_[size()-1];
}
/// \brief Access specified element with bounds checking.
constexpr reference at (size_type i) const
{
if (i >= size())
throw std::out_of_range("Index " + std::to_string(i) + " out of range.");
return data_[i];
}
/// \brief Access specified element.
constexpr reference operator[] (size_type i) const { return data_[i]; }
/// \brief Direct access to the underlying contiguous storage
constexpr pointer data () const noexcept { return data_; }
/// @}
/// \name Subspans
/// @{
/// \brief Obtains a subspan consisting of the first `Count` elements of the sequence
template <std::size_t Count>
constexpr span<element_type, Count> first () const
{
static_assert(Count <= Extent);
assert(Count <= size());
return span<element_type, Count>{data(), Count};
}
/// \brief Obtains a subspan consisting of the last `Count` elements of the sequence
template <std::size_t Count>
constexpr span<element_type, Count> last () const
{
static_assert(Count <= Extent);
assert(Count <= size());
return span<element_type, Count>{data()+ (size() - Count), Count};
}
private:
static constexpr std::size_t subspan_extent (std::size_t O, std::size_t C) noexcept
{
return (C != Std::dynamic_extent) ? C :
(Extent != Std::dynamic_extent) ? Extent - O : Std::dynamic_extent;
}
public:
/// \brief Obtains a subspan consisting of `Count` elements of the sequence starting at `Offset`.
/**
* \note If `Count == Std::dynamic_extent`, the subspan starting at `Offset` goes
* until the end of the current span.
*/
template <std::size_t Offset, std::size_t Count = Std::dynamic_extent>
constexpr span<element_type, subspan_extent(Offset,Count)> subspan () const
{
static_assert(Offset <= Extent && (Count == Std::dynamic_extent || Count <= Extent - Offset));
assert(Offset <= size() && (Count == Std::dynamic_extent || Count <= size() - Offset));
return span<element_type, subspan_extent(Offset,Count)>{
data() + Offset, Count != Std::dynamic_extent ? Count : size() - Offset};
}
/// \brief Obtains a subspan consisting of the first `count` elements of the sequence
constexpr span<element_type, Std::dynamic_extent> first (size_type count) const
{
assert(count <= size());
return span<element_type, Std::dynamic_extent>{data(), count};
}
/// \brief Obtains a subspan consisting of the last `count` elements of the sequence
constexpr span<element_type, Std::dynamic_extent> last (size_type count) const
{
assert(count <= size());
return span<element_type, Std::dynamic_extent>{data()+ (size() - count), count};
}
/// \brief Obtains a subspan consisting of `count` elements of the sequence starting at `offset`.
/**
* \note If `count == Std::dynamic_extent`, the subspan starting at `offset` goes
* until the end of the current span.
*/
constexpr span<element_type, Std::dynamic_extent> subspan (size_type offset, size_type count = Std::dynamic_extent) const
{
assert(offset <= size() && (count == Std::dynamic_extent || count <= size() - offset));
return span<element_type, Std::dynamic_extent>{
data() + offset, count == Std::dynamic_extent ? size() - offset : count};
}
/// @}
/// \name Size information
/// @{
/// \brief Returns the number of elements.
using base_type::size;
/// \brief Returns the size of the sequence in bytes.
constexpr size_type size_bytes () const noexcept { return size() * sizeof(element_type); }
/// \brief Checks if the sequence is empty.
[[nodiscard]] constexpr bool empty () const noexcept { return size() == 0; }
/// @}
private:
pointer data_;
};
// deduction guide
// @{
template <class T, std::size_t N>
span (T (&)[N])
-> span<T, N>;
template <class ElementType, class I, std::size_t Extent,
std::enable_if_t<std::is_convertible_v<I,std::size_t>, int> = 0>
span (ElementType*, std::integral_constant<I,Extent>)
-> span<ElementType, Extent>;
template <class ElementType, class I,
std::enable_if_t<std::is_integral_v<I>, int> = 0,
std::enable_if_t<std::is_convertible_v<I,std::size_t>, int> = 0>
span (ElementType*, I)
-> span<ElementType, Std::dynamic_extent>;
template <class Iter,
class Element = std::remove_reference_t<decltype(*std::declval<Iter>())>>
span (Iter,Iter)
-> span<Element, Std::dynamic_extent>;
template <class Range,
class First = decltype(std::begin(std::declval<Range>())),
class Last = decltype(std::end(std::declval<Range>())),
class Element = std::remove_reference_t<decltype(*std::declval<First>())>>
span (Range&)
-> span<Element, Std::dynamic_extent>;
template <class T, size_t N>
span (std::array<T, N>&) -> span<T, N>;
template <class T, size_t N>
span (const std::array<T, N>&) -> span<const T, N>;
// @}
} // end namespace Dune::Std
#endif // DUNE_COMMON_STD_SPAN_HH
|