File: fmatrixev.cc

package info (click to toggle)
dune-common 2.11.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,048 kB
  • sloc: cpp: 54,403; python: 4,136; sh: 1,657; makefile: 17
file content (265 lines) | stat: -rw-r--r-- 10,825 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
// SPDX-FileCopyrightInfo: Copyright © DUNE Project contributors, see file LICENSE.md in module root
// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
#ifndef DUNE_FMATRIXEIGENVALUES_CC
#define DUNE_FMATRIXEIGENVALUES_CC

#include <iostream>
#include <cmath>
#include <cassert>

#include <dune-common-config.hh>  // HAVE_LAPACK, LAPACK_NEEDS_UNDERLINE

#include <dune/common/exceptions.hh>
#include <dune/common/fmatrixev.hh>

#if HAVE_LAPACK

#ifdef LAPACK_NEEDS_UNDERLINE
  #define LAPACK_MANGLE(name,NAME) name##_
#else
  #define LAPACK_MANGLE(name,NAME) name
#endif

#define FC_FUNC LAPACK_MANGLE

// symmetric matrices
#define DSYEV_FORTRAN FC_FUNC (dsyev, DSYEV)
#define SSYEV_FORTRAN FC_FUNC (ssyev, SSYEV)

// nonsymmetric matrices
#define DGEEV_FORTRAN FC_FUNC (dgeev, DGEEV)
#define SGEEV_FORTRAN FC_FUNC (sgeev, SGEEV)

// dsyev declaration (in liblapack)
extern "C" {

  /*
   *
   **  purpose
   **  =======
   **
   **  xsyev computes all eigenvalues and, optionally, eigenvectors of a
   **  BASE DATA TYPE symmetric matrix a.
   **
   **  arguments
   **  =========
   **
   **  jobz    (input) char
   **          = 'n':  compute eigenvalues only;
   **          = 'v':  compute eigenvalues and eigenvectors.
   **
   **  uplo    (input) char
   **          = 'u':  upper triangle of a is stored;
   **          = 'l':  lower triangle of a is stored.
   **
   **  n       (input) long int
   **          the order of the matrix a.  n >= 0.
   **
   **  a       (input/output) BASE DATA TYPE array, dimension (lda, n)
   **          on entry, the symmetric matrix a.  if uplo = 'u', the
   **          leading n-by-n upper triangular part of a contains the
   **          upper triangular part of the matrix a.  if uplo = 'l',
   **          the leading n-by-n lower triangular part of a contains
   **          the lower triangular part of the matrix a.
   **          on exit, if jobz = 'v', then if info = 0, a contains the
   **          orthonormal eigenvectors of the matrix a.
   **          if jobz = 'n', then on exit the lower triangle (if uplo='l')
   **          or the upper triangle (if uplo='u') of a, including the
   **          diagonal, is destroyed.
   **
   **  lda     (input) long int
   **          the leading dimension of the array a.  lda >= max(1,n).
   **
   **  w       (output) BASE DATA TYPE array, dimension (n)
   **          if info = 0, the eigenvalues in ascending order.
   **
   **  work    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
   **           On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   **
   **  lwork   (input) INTEGER
   **          The length of the array WORK.  LWORK >= max(1,3*N-1).
   **          For optimal efficiency, LWORK >= (NB+2)*N,
   **          where NB is the blocksize for DSYTRD returned by ILAENV.
   **
   **          If LWORK = -1, then a workspace query is assumed; the routine
   **          only calculates the optimal size of the WORK array, returns
   **          this value as the first entry of the WORK array, and no error
   **          message related to LWORK is issued by XERBLA.
   **
   **
   **  info    (output) long int
   **          = 0:  successful exit
   **          < 0:  if info = -i, the i-th argument had an illegal value
   **          > 0:  if info = i, the algorithm failed to converge; i
   **                off-diagonal elements of an intermediate tridiagonal
   **                form did not converge to zero.
   **
   **/
  extern void DSYEV_FORTRAN(const char* jobz, const char* uplo, const long
                            int* n, double* a, const long int* lda, double* w,
                            double* work, const long int* lwork, long int* info);
  extern void SSYEV_FORTRAN(const char* jobz, const char* uplo, const long
                            int* n, float* a, const long int* lda, float* w,
                            float* work, const long int* lwork, long int* info);

  /*
   *
   **  purpose
   **  =======
   **
   **  xgeev computes for an N-by-N BASE DATA TYPE nonsymmetric matrix A, the
   **  eigenvalues and, optionally, the left and/or right eigenvectors.
   **
   **  The right eigenvector v(j) of A satisfies
   **                   A * v(j) = lambda(j) * v(j)
   **  where lambda(j) is its eigenvalue.
   **  The left eigenvector u(j) of A satisfies
   **                u(j)**T * A = lambda(j) * u(j)**T
   **  where u(j)**T denotes the transpose of u(j).
   **
   **  The computed eigenvectors are normalized to have Euclidean norm
   **  equal to 1 and largest component real.
   **
   **  arguments
   **  =========
   **
   **  jobvl   (input) char
   **          = 'n': left eigenvectors of a are not computed;
   **          = 'v': left eigenvectors of a are computed.
   **
   **  jobvr   (input) char
   **          = 'n': right eigenvectors of a are not computed;
   **          = 'v': right eigenvectors of a are computed.
   **
   **  n       (input) long int
   **          the order of the matrix v. v >= 0.
   **
   **  a       (input/output) BASE DATA TYPE array, dimension (lda,n)
   **          on entry, the n-by-n matrix a.
   **          on exit, a has been overwritten.
   **
   **  lda     (input) long int
   **          the leading dimension of the array a.  lda >= max(1,n).
   **
   **  wr      (output) BASE DATA TYPE array, dimension (n)
   **  wi      (output) BASE DATA TYPE array, dimension (n)
   **          wr and wi contain the real and imaginary parts,
   **          respectively, of the computed eigenvalues.  complex
   **          conjugate pairs of eigenvalues appear consecutively
   **          with the eigenvalue having the positive imaginary part
   **          first.
   **
   **  vl      (output) COMPLEX DATA TYPE array, dimension (ldvl,n)
   **          if jobvl = 'v', the left eigenvectors u(j) are stored one
   **          after another in the columns of vl, in the same order
   **          as their eigenvalues.
   **          if jobvl = 'n', vl is not referenced.
   **          if the j-th eigenvalue is real, then u(j) = vl(:,j),
   **          the j-th column of vl.
   **          if the j-th and (j+1)-st eigenvalues form a complex
   **          conjugate pair, then u(j) = vl(:,j) + i*vl(:,j+1) and
   **          u(j+1) = vl(:,j) - i*vl(:,j+1).
   **
   **  ldvl    (input) long int
   **          the leading dimension of the array vl.  ldvl >= 1; if
   **          jobvl = 'v', ldvl >= n.
   **
   **  vr      (output) COMPLEX DATA TYPE array, dimension (ldvr,n)
   **          if jobvr = 'v', the right eigenvectors v(j) are stored one
   **          after another in the columns of vr, in the same order
   **          as their eigenvalues.
   **          if jobvr = 'n', vr is not referenced.
   **          if the j-th eigenvalue is real, then v(j) = vr(:,j),
   **          the j-th column of vr.
   **          if the j-th and (j+1)-st eigenvalues form a complex
   **          conjugate pair, then v(j) = vr(:,j) + i*vr(:,j+1) and
   **          v(j+1) = vr(:,j) - i*vr(:,j+1).
   **
   **  ldvr    (input) long int
   **          the leading dimension of the array vr.  ldvr >= 1; if
   **          jobvr = 'v', ldvr >= n.
   **
   **  work    (workspace/output) BASE DATA TYPE array, dimension (max(1,lwork))
   **          on exit, if info = 0, work(1) returns the optimal lwork.
   **
   **  lwork   (input) long int
   **          the dimension of the array work.  lwork >= max(1,3*n), and
   **          if jobvl = 'v' or jobvr = 'v', lwork >= 4*n.  for good
   **          performance, lwork must generally be larger.
   **
   **          if lwork = -1, then a workspace query is assumed; the routine
   **          only calculates the optimal size of the work array, returns
   **          this value as the first entry of the work array, and no error
   **          message related to lwork is issued by xerbla.
   **
   **  info    (output) long int
   **          = 0:  successful exit
   **          < 0:  if info = -i, the i-th argument had an illegal value.
   **          > 0:  if info = i, the qr algorithm failed to compute all the
   **                eigenvalues, and no eigenvectors have been computed;
   **                elements i+1:n of wr and wi contain eigenvalues which
   **                have converged.
   **
   **/

  extern void DGEEV_FORTRAN(const char* jobvl, const char* jobvr, const long
                            int* n, double* a, const long int* lda, double* wr, double* wi, double* vl,
                            const long int* ldvl, double* vr, const long int* ldvr, double* work,
                            const long int* lwork, long int* info);
  extern void SGEEV_FORTRAN(const char* jobvl, const char* jobvr, const long
                            int* n, float* a, const long int* lda, float* wr, float* wi, float* vl,
                            const long int* ldvl, float* vr, const long int* ldvr, float* work,
                            const long int* lwork, long int* info);

} // end extern C

namespace Dune {

  namespace FMatrixHelp {

    void eigenValuesLapackCall(
      const char* jobz, const char* uplo, const long
      int* n, double* a, const long int* lda, double* w,
      double* work, const long int* lwork, long int* info)
    {
      // call LAPACK dsyev
      DSYEV_FORTRAN(jobz, uplo, n, a, lda, w, work, lwork, info);
    }

    void eigenValuesLapackCall(
      const char* jobz, const char* uplo, const long
      int* n, float* a, const long int* lda, float* w,
      float* work, const long int* lwork, long int* info)
    {
      // call LAPACK dsyev
      SSYEV_FORTRAN(jobz, uplo, n, a, lda, w, work, lwork, info);
    }

    void eigenValuesNonsymLapackCall(
      const char* jobvl, const char* jobvr, const long
      int* n, double* a, const long int* lda, double* wr, double* wi, double* vl,
      const long int* ldvl, double* vr, const long int* ldvr, double* work,
      const long int* lwork, long int* info)
    {
      // call LAPACK dgeev
      DGEEV_FORTRAN(jobvl, jobvr, n, a, lda, wr, wi, vl, ldvl, vr, ldvr,
                    work, lwork, info);
    }

    void eigenValuesNonsymLapackCall(
      const char* jobvl, const char* jobvr, const long
      int* n, float* a, const long int* lda, float* wr, float* wi, float* vl,
      const long int* ldvl, float* vr, const long int* ldvr, float* work,
      const long int* lwork, long int* info)
    {
      // call LAPACK dgeev
      SGEEV_FORTRAN(jobvl, jobvr, n, a, lda, wr, wi, vl, ldvl, vr, ldvr,
                    work, lwork, info);
    }
  } // end namespace FMatrixHelp
} // end namespace Dune

#endif // #if HAVE_LAPACK
#endif // #ifndef DUNE_FMATRIXEIGENVALUES_CC