File: fmatrixev.hh

package info (click to toggle)
dune-common 2.11.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,048 kB
  • sloc: cpp: 54,403; python: 4,136; sh: 1,657; makefile: 17
file content (644 lines) | stat: -rw-r--r-- 25,350 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
// SPDX-FileCopyrightInfo: Copyright © DUNE Project contributors, see file LICENSE.md in module root
// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
#ifndef DUNE_FMATRIXEIGENVALUES_HH
#define DUNE_FMATRIXEIGENVALUES_HH

/** \file
 * \brief Eigenvalue computations for the FieldMatrix class
 */

#include <algorithm>
#include <iostream>
#include <cmath>
#include <cassert>

#include <dune-common-config.hh>  // HAVE_LAPACK
#include <dune/common/exceptions.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <dune/common/math.hh>

namespace Dune {

  /**
     @addtogroup DenseMatVec
     @{
   */

  namespace FMatrixHelp {

#if HAVE_LAPACK
    // defined in fmatrixev.cc
    extern void eigenValuesLapackCall(
      const char* jobz, const char* uplo, const long
      int* n, double* a, const long int* lda, double* w,
      double* work, const long int* lwork, long int* info);

    extern void eigenValuesNonsymLapackCall(
      const char* jobvl, const char* jobvr, const long
      int* n, double* a, const long int* lda, double* wr, double* wi, double* vl,
      const long int* ldvl, double* vr, const long int* ldvr, double* work,
      const long int* lwork, long int* info);

    extern void eigenValuesLapackCall(
      const char* jobz, const char* uplo, const long
      int* n, float* a, const long int* lda, float* w,
      float* work, const long int* lwork, long int* info);

    extern void eigenValuesNonsymLapackCall(
      const char* jobvl, const char* jobvr, const long
      int* n, float* a, const long int* lda, float* wr, float* wi, float* vl,
      const long int* ldvl, float* vr, const long int* ldvr, float* work,
      const long int* lwork, long int* info);

#endif

    namespace Impl {
      //internal tag to activate/disable code for eigenvector calculation at compile time
      enum Jobs { OnlyEigenvalues=0, EigenvaluesEigenvectors=1 };

      //internal dummy used if only eigenvalues are to be calculated
      template<typename K, int dim>
      using EVDummy = FieldMatrix<K, dim, dim>;

      //compute the cross-product of two vectors
      template<typename K>
      inline FieldVector<K,3> crossProduct(const FieldVector<K,3>& vec0, const FieldVector<K,3>& vec1) {
        return {vec0[1]*vec1[2] - vec0[2]*vec1[1], vec0[2]*vec1[0] - vec0[0]*vec1[2], vec0[0]*vec1[1] - vec0[1]*vec1[0]};
      }

      template <typename K>
      static void eigenValues2dImpl(const FieldMatrix<K, 2, 2>& matrix,
                                    FieldVector<K, 2>& eigenvalues)
      {
        using std::sqrt;
        const K p = 0.5 * (matrix[0][0] + matrix [1][1]);
        const K p2 = p - matrix[1][1];
        K q = p2 * p2 + matrix[1][0] * matrix[0][1];
        if( q < 0 && q > -1e-14 ) q = 0;
        if (q < 0)
        {
          std::cout << matrix << std::endl;
          // Complex eigenvalues are either caused by non-symmetric matrices or by round-off errors
          DUNE_THROW(MathError, "Complex eigenvalue detected (which this implementation cannot handle).");
        }

        // get square root
        q = sqrt(q);

        // store eigenvalues in ascending order
        eigenvalues[0] = p - q;
        eigenvalues[1] = p + q;
      }

      /*
        This implementation was adapted from the pseudo-code (Python?) implementation found on
        http://en.wikipedia.org/wiki/Eigenvalue_algorithm  (retrieved late August 2014).
        Wikipedia claims to have taken it from
          Smith, Oliver K. (April 1961), Eigenvalues of a symmetric 3 × 3 matrix.,
          Communications of the ACM 4 (4): 168, doi:10.1145/355578.366316
      */
      template <typename K>
      static K eigenValues3dImpl(const FieldMatrix<K, 3, 3>& matrix,
                                FieldVector<K, 3>& eigenvalues)
      {
        using std::sqrt;
        using std::acos;
        using real_type = typename FieldTraits<K>::real_type;
        const K pi = MathematicalConstants<K>::pi();
        K p1 = matrix[0][1]*matrix[0][1] + matrix[0][2]*matrix[0][2] + matrix[1][2]*matrix[1][2];

        if (p1 <= std::numeric_limits<K>::epsilon()) {
          // A is diagonal.
          eigenvalues[0] = matrix[0][0];
          eigenvalues[1] = matrix[1][1];
          eigenvalues[2] = matrix[2][2];
          std::sort(eigenvalues.begin(), eigenvalues.end());

          return 0.0;
        }
        else
        {
          // q = trace(A)/3
          K q = 0;
          for (int i=0; i<3; i++)
            q += matrix[i][i] / 3.0;

          K p2 = (matrix[0][0] - q)*(matrix[0][0] - q) + (matrix[1][1] - q)*(matrix[1][1] - q) + (matrix[2][2] - q)*(matrix[2][2] - q) + 2.0 * p1;
          K p = sqrt(p2 / 6);
          // B = (1 / p) * (A - q * I);       // I is the identity matrix
          FieldMatrix<K,3,3> B;
          for (int i=0; i<3; i++)
            for (int j=0; j<3; j++)
              B[i][j] = (real_type(1.0)/p) * (matrix[i][j] - q*(i==j));

          K r = B.determinant() / 2.0;

          /*In exact arithmetic for a symmetric matrix  -1 <= r <= 1
          but computation error can leave it slightly outside this range.
          acos(z) function requires |z| <= 1, but will fail silently
          and return NaN if the input is larger than 1 in magnitude.
          Thus r is clamped to [-1,1].*/
          using std::clamp;
          r = clamp<K>(r, -1.0, 1.0);
          K phi = acos(r) / 3.0;

          // the eigenvalues satisfy eig[2] <= eig[1] <= eig[0]
          eigenvalues[2] = q + 2 * p * cos(phi);
          eigenvalues[0] = q + 2 * p * cos(phi + (2*pi/3));
          eigenvalues[1] = 3 * q - eigenvalues[0] - eigenvalues[2];     // since trace(matrix) = eig1 + eig2 + eig3

          return r;
        }
      }

      //see https://www.geometrictools.com/Documentation/RobustEigenSymmetric3x3.pdf
      //Robustly compute a right-handed orthonormal set {u, v, evec0}.
      template<typename K>
      void orthoComp(const FieldVector<K,3>& evec0, FieldVector<K,3>& u, FieldVector<K,3>& v) {
        using std::abs;
        if(abs(evec0[0]) > abs(evec0[1])) {
          //The component of maximum absolute value is either evec0[0] or evec0[2].
          FieldVector<K,2> temp = {evec0[0], evec0[2]};
          auto L = 1.0 / temp.two_norm();
          u = L * FieldVector<K,3>({-evec0[2], 0.0, evec0[0]});
        }
        else {
          //The component of maximum absolute value is either evec0[1] or evec0[2].
          FieldVector<K,2> temp = {evec0[1], evec0[2]};
          auto L = 1.0 / temp.two_norm();
          u = L * FieldVector<K,3>({0.0, evec0[2], -evec0[1]});
        }
        v = crossProduct(evec0, u);
      }

      //see https://www.geometrictools.com/Documentation/RobustEigenSymmetric3x3.pdf
      template<typename K>
      void eig0(const FieldMatrix<K,3,3>& matrix, K eval0, FieldVector<K,3>& evec0) {
        /* Compute a unit-length eigenvector for eigenvalue[i0].  The
        matrix is rank 2, so two of the rows are linearly independent.
        For a robust computation of the eigenvector, select the two
        rows whose cross product has largest length of all pairs of
        rows. */
        using Vector = FieldVector<K,3>;
        Vector row0 = {matrix[0][0]-eval0, matrix[0][1], matrix[0][2]};
        Vector row1 = {matrix[1][0], matrix[1][1]-eval0, matrix[1][2]};
        Vector row2 = {matrix[2][0], matrix[2][1], matrix[2][2]-eval0};

        Vector r0xr1 = crossProduct(row0, row1);
        Vector r0xr2 = crossProduct(row0, row2);
        Vector r1xr2 = crossProduct(row1, row2);
        auto d0 = r0xr1.two_norm();
        auto d1 = r0xr2.two_norm();
        auto d2 = r1xr2.two_norm();

        auto dmax = d0 ;
        int imax = 0;
        if(d1>dmax) {
          dmax = d1;
          imax = 1;
        }
        if(d2>dmax)
          imax = 2;

        if(imax == 0)
          evec0 = r0xr1 / d0;
        else if(imax == 1)
          evec0 = r0xr2 / d1;
        else
          evec0 = r1xr2 / d2;
      }

      //see https://www.geometrictools.com/Documentation/RobustEigenSymmetric3x3.pdf
      template<typename K>
      void eig1(const FieldMatrix<K,3,3>& matrix, const FieldVector<K,3>& evec0, FieldVector<K,3>& evec1, K eval1) {
        using Vector = FieldVector<K,3>;

        //Robustly compute a right-handed orthonormal set {u, v, evec0}.
        Vector u,v;
        orthoComp(evec0, u, v);

        /* Let e be eval1 and let E be a corresponding eigenvector which
        is a solution to the linear system (A - e*I)*E = 0.  The matrix
        (A - e*I) is 3x3, not invertible (so infinitely many
        solutions), and has rank 2 when eval1 and eval are different.
        It has rank 1 when eval1 and eval2 are equal.  Numerically, it
        is difficult to compute robustly the rank of a matrix.  Instead,
        the 3x3 linear system is reduced to a 2x2 system as follows.
        Define the 3x2 matrix J = [u,v] whose columns are the u and v
        computed previously.  Define the 2x1 vector X = J*E.  The 2x2
        system is 0 = M * X = (J^T * (A - e*I) * J) * X where J^T is
        the transpose of J and M = J^T * (A - e*I) * J is a 2x2 matrix.
        The system may be written as
            +-                        -++-  -+       +-  -+
            | U^T*A*U - e  U^T*A*V     || x0 | = e * | x0 |
            | V^T*A*U      V^T*A*V - e || x1 |       | x1 |
            +-                        -++   -+       +-  -+
        where X has row entries x0 and x1. */

        Vector Au, Av;
        matrix.mv(u, Au);
        matrix.mv(v, Av);

        auto m00 = u.dot(Au) - eval1;
        auto m01 = u.dot(Av);
        auto m11 = v.dot(Av) - eval1;

        /* For robustness, choose the largest-length row of M to compute
        the eigenvector.  The 2-tuple of coefficients of U and V in the
        assignments to eigenvector[1] lies on a circle, and U and V are
        unit length and perpendicular, so eigenvector[1] is unit length
        (within numerical tolerance). */
        using std::abs, std::sqrt, std::max;
        auto absM00 = abs(m00);
        auto absM01 = abs(m01);
        auto absM11 = abs(m11);
        if(absM00 >= absM11) {
          auto maxAbsComp = max(absM00, absM01);
          if(maxAbsComp > 0.0) {
            if(absM00 >= absM01) {
              m01 /= m00;
              m00 = 1.0 / sqrt(1.0 + m01*m01);
              m01 *= m00;
            }
            else {
              m00 /= m01;
              m01 = 1.0 / sqrt(1.0 + m00*m00);
              m00 *= m01;
            }
            evec1 = m01*u - m00*v;
          }
          else
            evec1 = u;
        }
        else {
          auto maxAbsComp = max(absM11, absM01);
          if(maxAbsComp > 0.0) {
            if(absM11 >= absM01) {
              m01 /= m11;
              m11 = 1.0 / sqrt(1.0 + m01*m01);
              m01 *= m11;
            }
            else {
              m11 /= m01;
              m01 = 1.0 / sqrt(1.0 + m11*m11);
              m11 *= m01;
            }
            evec1 = m11*u - m01*v;
          }
          else
            evec1 = u;
        }
      }

      // 1d specialization
      template<Jobs Tag, typename K>
      static void eigenValuesVectorsImpl(const FieldMatrix<K, 1, 1>& matrix,
                                     FieldVector<K, 1>& eigenValues,
                                     FieldMatrix<K, 1, 1>& eigenVectors)
      {
        eigenValues[0] = matrix[0][0];
        if constexpr(Tag==EigenvaluesEigenvectors)
          eigenVectors[0] = {1.0};
      }


      // 2d specialization
      template <Jobs Tag, typename K>
      static void eigenValuesVectorsImpl(const FieldMatrix<K, 2, 2>& matrix,
                                     FieldVector<K, 2>& eigenValues,
                                     FieldMatrix<K, 2, 2>& eigenVectors)
      {
        // Compute eigen values
        Impl::eigenValues2dImpl(matrix, eigenValues);

        // Compute eigenvectors by exploiting the Cayley–Hamilton theorem.
        // If λ_1, λ_2 are the eigenvalues, then (A - λ_1I )(A - λ_2I ) = (A - λ_2I )(A - λ_1I ) = 0,
        // so the columns of (A - λ_2I ) are annihilated by (A - λ_1I ) and vice versa.
        // Assuming neither matrix is zero, the columns of each must include eigenvectors
        // for the other eigenvalue. (If either matrix is zero, then A is a multiple of the
        // identity and any non-zero vector is an eigenvector.)
        // From: https://en.wikipedia.org/wiki/Eigenvalue_algorithm#2x2_matrices
        if constexpr(Tag==EigenvaluesEigenvectors) {

          // Special casing for multiples of the identity
          FieldMatrix<K,2,2> temp = matrix;
          temp[0][0] -= eigenValues[0];
          temp[1][1] -= eigenValues[0];
          if(temp.infinity_norm() <= 1e-14) {
            eigenVectors[0] = {1.0, 0.0};
            eigenVectors[1] = {0.0, 1.0};
          }
          else {
            // The columns of A - λ_2I are eigenvectors for λ_1, or zero.
            // Take the column with the larger norm to avoid zero columns.
            FieldVector<K,2> ev0 = {matrix[0][0]-eigenValues[1], matrix[1][0]};
            FieldVector<K,2> ev1 = {matrix[0][1], matrix[1][1]-eigenValues[1]};
            eigenVectors[0] = (ev0.two_norm2() >= ev1.two_norm2()) ? ev0/ev0.two_norm() : ev1/ev1.two_norm();

            // The columns of A - λ_1I are eigenvectors for λ_2, or zero.
            // Take the column with the larger norm to avoid zero columns.
            ev0 = {matrix[0][0]-eigenValues[0], matrix[1][0]};
            ev1 = {matrix[0][1], matrix[1][1]-eigenValues[0]};
            eigenVectors[1] = (ev0.two_norm2() >= ev1.two_norm2()) ? ev0/ev0.two_norm() : ev1/ev1.two_norm();
          }
        }
      }

      // 3d specialization
      template <Jobs Tag, typename K>
      static void eigenValuesVectorsImpl(const FieldMatrix<K, 3, 3>& matrix,
                                     FieldVector<K, 3>& eigenValues,
                                     FieldMatrix<K, 3, 3>& eigenVectors)
      {
        using Vector = FieldVector<K,3>;
        using Matrix = FieldMatrix<K,3,3>;

        //compute eigenvalues
        /* Precondition the matrix by factoring out the maximum absolute
        value of the components.  This guards against floating-point
        overflow when computing the eigenvalues.*/
        using std::isnormal;
        K maxAbsElement = (isnormal(matrix.infinity_norm())) ? matrix.infinity_norm() : K(1.0);
        Matrix scaledMatrix = matrix / maxAbsElement;
        K r = Impl::eigenValues3dImpl(scaledMatrix, eigenValues);

        if constexpr(Tag==EigenvaluesEigenvectors) {
          K offDiagNorm = Vector{scaledMatrix[0][1],scaledMatrix[0][2],scaledMatrix[1][2]}.two_norm2();
          if (offDiagNorm <= std::numeric_limits<K>::epsilon())
          {
            eigenValues = {scaledMatrix[0][0], scaledMatrix[1][1], scaledMatrix[2][2]};
            eigenVectors = {{1.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, 1.0}};

            // Use bubble sort to jointly sort eigenvalues and eigenvectors
            // such that eigenvalues are ascending
            if (eigenValues[0] > eigenValues[1])
            {
              std::swap(eigenValues[0], eigenValues[1]);
              std::swap(eigenVectors[0], eigenVectors[1]);
            }
            if (eigenValues[1] > eigenValues[2])
            {
              std::swap(eigenValues[1], eigenValues[2]);
              std::swap(eigenVectors[1], eigenVectors[2]);
            }
            if (eigenValues[0] > eigenValues[1])
            {
              std::swap(eigenValues[0], eigenValues[1]);
              std::swap(eigenVectors[0], eigenVectors[1]);
            }
          }
          else {
            /*Compute the eigenvectors so that the set
            [evec[0], evec[1], evec[2]] is right handed and
            orthonormal. */

            Matrix evec(0.0);
            Vector eval(eigenValues);
            if(r >= 0) {
              Impl::eig0(scaledMatrix, eval[2], evec[2]);
              Impl::eig1(scaledMatrix, evec[2], evec[1], eval[1]);
              evec[0] = Impl::crossProduct(evec[1], evec[2]);
            }
            else {
              Impl::eig0(scaledMatrix, eval[0], evec[0]);
              Impl::eig1(scaledMatrix, evec[0], evec[1], eval[1]);
              evec[2] = Impl::crossProduct(evec[0], evec[1]);
            }
            //sort eval/evec-pairs in ascending order
            using EVPair = std::pair<K, Vector>;
            std::vector<EVPair> pairs;
            for(std::size_t i=0; i<=2; ++i)
              pairs.push_back(EVPair(eval[i], evec[i]));
            auto comp = [](EVPair x, EVPair y){ return x.first < y.first; };
                                       std::sort(pairs.begin(), pairs.end(), comp);
            for(std::size_t i=0; i<=2; ++i){
              eigenValues[i] = pairs[i].first;
              eigenVectors[i] = pairs[i].second;
            }
          }
        }
        //The preconditioning scaled the matrix, which scales the eigenvalues. Revert the scaling.
        eigenValues *= maxAbsElement;
      }

      // forwarding to LAPACK with corresponding tag
      template <Jobs Tag, int dim, typename K>
      static void eigenValuesVectorsLapackImpl(const FieldMatrix<K, dim, dim>& matrix,
                                               FieldVector<K, dim>& eigenValues,
                                               FieldMatrix<K, dim, dim>& eigenVectors)
      {
        {
#if HAVE_LAPACK
          /*Lapack uses a proprietary tag to determine whether both eigenvalues and
            -vectors ('v') or only eigenvalues ('n') should be calculated */
          const char jobz = "nv"[Tag];

          const long int N = dim ;
          const char uplo = 'u'; // use upper triangular matrix

          // length of matrix vector, LWORK >= max(1,3*N-1)
          const long int lwork = 3*N -1 ;

          constexpr bool isKLapackType = std::is_same_v<K,double> || std::is_same_v<K,float>;
          using LapackNumType = std::conditional_t<isKLapackType, K, double>;

          // matrix to put into dsyev
          LapackNumType matrixVector[dim * dim];

          // copy matrix
          int row = 0;
          for(int i=0; i<dim; ++i)
          {
            for(int j=0; j<dim; ++j, ++row)
            {
              matrixVector[ row ] = matrix[ i ][ j ];
            }
          }

          // working memory
          LapackNumType workSpace[lwork];

          // return value information
          long int info = 0;
          LapackNumType* ev;
          if constexpr (isKLapackType){
            ev = &eigenValues[0];
          }else{
            ev = new LapackNumType[dim];
          }

          // call LAPACK routine (see fmatrixev.cc)
          eigenValuesLapackCall(&jobz, &uplo, &N, &matrixVector[0], &N,
                                ev, &workSpace[0], &lwork, &info);

          if constexpr (!isKLapackType){
              for(size_t i=0;i<dim;++i)
                eigenValues[i] = ev[i];
              delete[] ev;
          }

          // restore eigenvectors matrix
          if (Tag==Jobs::EigenvaluesEigenvectors){
            row = 0;
            for(int i=0; i<dim; ++i)
            {
              for(int j=0; j<dim; ++j, ++row)
              {
                eigenVectors[ i ][ j ] = matrixVector[ row ];
              }
            }
          }

          if( info != 0 )
          {
            std::cerr << "For matrix " << matrix << " eigenvalue calculation failed! " << std::endl;
            DUNE_THROW(InvalidStateException,"eigenValues: Eigenvalue calculation failed!");
          }
#else
          DUNE_THROW(NotImplemented,"LAPACK not found!");
#endif
        }
      }

      // generic specialization
      template <Jobs Tag, int dim, typename K>
      static void eigenValuesVectorsImpl(const FieldMatrix<K, dim, dim>& matrix,
                                         FieldVector<K, dim>& eigenValues,
                                         FieldMatrix<K, dim, dim>& eigenVectors)
      {
        eigenValuesVectorsLapackImpl<Tag>(matrix,eigenValues,eigenVectors);
      }
    } //namespace Impl

    /** \brief calculates the eigenvalues of a symmetric field matrix
        \param[in]  matrix matrix eigenvalues are calculated for
        \param[out] eigenValues FieldVector that contains eigenvalues in
                    ascending order

        \note specializations for dim=1,2,3 exist, for dim>3 LAPACK::dsyev is used
     */
    template <int dim, typename K>
    static void eigenValues(const FieldMatrix<K, dim, dim>& matrix,
                            FieldVector<K ,dim>& eigenValues)
    {
      Impl::EVDummy<K,dim> dummy;
      Impl::eigenValuesVectorsImpl<Impl::Jobs::OnlyEigenvalues>(matrix, eigenValues, dummy);
    }

    /** \brief calculates the eigenvalues and eigenvectors of a symmetric field matrix
        \param[in]  matrix matrix eigenvalues are calculated for
        \param[out] eigenValues FieldVector that contains eigenvalues in
                    ascending order
        \param[out] eigenVectors FieldMatrix that contains the eigenvectors

        \note specializations for dim=1,2,3 exist, for dim>3 LAPACK::dsyev is used
     */
    template <int dim, typename K>
    static void eigenValuesVectors(const FieldMatrix<K, dim, dim>& matrix,
                                   FieldVector<K ,dim>& eigenValues,
                                   FieldMatrix<K, dim, dim>& eigenVectors)
    {
      Impl::eigenValuesVectorsImpl<Impl::Jobs::EigenvaluesEigenvectors>(matrix, eigenValues, eigenVectors);
    }

    /** \brief calculates the eigenvalues of a symmetric field matrix
        \param[in]  matrix matrix eigenvalues are calculated for
        \param[out] eigenValues FieldVector that contains eigenvalues in
                    ascending order

        \note LAPACK::dsyev is used to calculate the eigenvalues
     */
    template <int dim, typename K>
    static void eigenValuesLapack(const FieldMatrix<K, dim, dim>& matrix,
                                         FieldVector<K, dim>& eigenValues)
    {
      Impl::EVDummy<K,dim> dummy;
      Impl::eigenValuesVectorsLapackImpl<Impl::Jobs::EigenvaluesEigenvectors>(matrix, eigenValues, dummy);
    }

    /** \brief calculates the eigenvalues and -vectors of a symmetric field matrix
        \param[in]  matrix matrix eigenvalues are calculated for
        \param[out] eigenValues FieldVector that contains eigenvalues in
                    ascending order
        \param[out] eigenVectors FieldMatrix that contains the eigenvectors

        \note LAPACK::dsyev is used to calculate the eigenvalues and -vectors
     */
    template <int dim, typename K>
    static void eigenValuesVectorsLapack(const FieldMatrix<K, dim, dim>& matrix,
                                         FieldVector<K, dim>& eigenValues,
                                         FieldMatrix<K, dim, dim>& eigenVectors)
    {
      Impl::eigenValuesVectorsLapackImpl<Impl::Jobs::EigenvaluesEigenvectors>(matrix, eigenValues, eigenVectors);
    }

    /** \brief calculates the eigenvalues of a non-symmetric field matrix
        \param[in]  matrix matrix eigenvalues are calculated for
        \param[out] eigenValues FieldVector that contains eigenvalues in
                    ascending order

        \note LAPACK::dgeev is used to calculate the eigenvalues
     */
    template <int dim, typename K, class C>
    static void eigenValuesNonSym(const FieldMatrix<K, dim, dim>& matrix,
                                  FieldVector<C, dim>& eigenValues)
    {
#if HAVE_LAPACK
      {
        const long int N = dim ;
        const char jobvl = 'n';
        const char jobvr = 'n';

        constexpr bool isKLapackType = std::is_same_v<K,double> || std::is_same_v<K,float>;
        using LapackNumType = std::conditional_t<isKLapackType, K, double>;

        // matrix to put into dgeev
        LapackNumType matrixVector[dim * dim];

        // copy matrix
        int row = 0;
        for(int i=0; i<dim; ++i)
        {
          for(int j=0; j<dim; ++j, ++row)
          {
            matrixVector[ row ] = matrix[ i ][ j ];
          }
        }

        // working memory
        LapackNumType eigenR[dim];
        LapackNumType eigenI[dim];
        LapackNumType work[3*dim];

        // return value information
        long int info = 0;
        const long int lwork = 3*dim;

        // call LAPACK routine (see fmatrixev_ext.cc)
        eigenValuesNonsymLapackCall(&jobvl, &jobvr, &N, &matrixVector[0], &N,
                                    &eigenR[0], &eigenI[0], nullptr, &N, nullptr, &N, &work[0],
                                    &lwork, &info);

        if( info != 0 )
        {
          std::cerr << "For matrix " << matrix << " eigenvalue calculation failed! " << std::endl;
          DUNE_THROW(InvalidStateException,"eigenValues: Eigenvalue calculation failed!");
        }
        for (int i=0; i<N; ++i) {
          eigenValues[i].real = eigenR[i];
          eigenValues[i].imag = eigenI[i];
        }
      }
#else
      DUNE_THROW(NotImplemented,"LAPACK not found!");
#endif
    }
  } // end namespace FMatrixHelp

  /** @} end documentation */

} // end namespace Dune
#endif