1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
|
// SPDX-FileCopyrightInfo: Copyright © DUNE Project contributors, see file LICENSE.md in module root
// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
#ifndef DUNE_COMMON_SIMD_HH
#define DUNE_COMMON_SIMD_HH
#warning dune/common/simd.hh is deprecated.
#warning Use the new infrastructure from dune/common/simd/simd.h instead.
/**
\file
\brief Abstractions for support of dedicated SIMD data types
Libraries like Vc (https://github.com/VcDevel/Vc) add high-level
data types for SIMD (or vectorization) support in C++. Most of
these operations mimic the behavior of a numerical data type. Some
boolean operations can not be implemented in a compatible way to
trivial data types.
This header contains additional abstractions to help writing code
that works with trivial numerical data types (like double) and Vc
vectorization data types.
See also the conditional.hh and range_utils.hh headers.
\deprecated Use the newer simd architecture from dune/common/simd/simd.hh
instead.
*/
#include <cassert>
#include <cstddef>
#include <type_traits>
#include <utility>
#include <dune/common/conditional.hh>
#include <dune/common/debugalign.hh>
#include <dune/common/rangeutilities.hh>
#if HAVE_VC
// include Vc part of new simd interface to provide compatibility for
// functionality that has been switched over.
#include <dune/common/simd/vc.hh>
#endif
#include <dune/common/typetraits.hh>
#include <dune/common/vc.hh>
namespace Dune
{
#if HAVE_VC
namespace VcImpl {
//! A reference-like proxy for elements of random-access vectors.
/**
* This is necessary because Vc's lane-access operation return a proxy
* that cannot constructed by non-Vc code (i.e. code that isn't
* explicitly declared `friend`). This means in particular that there
* is no copy/move constructor, meaning we cannot return such proxies
* from our own functions, such as `lane()`. To work around this, we
* define our own proxy class which internally holds a reference to the
* vector and a lane index.
*/
template<class V>
class Proxy
{
static_assert(std::is_same<V, std::decay_t<V> >::value, "Class Proxy "
"may only be instantiated with unqualified types");
public:
using value_type = typename V::value_type;
private:
static_assert(std::is_arithmetic<value_type>::value,
"Only arithmetic types are supported");
V &vec_;
std::size_t idx_;
public:
Proxy(std::size_t idx, V &vec)
: vec_(vec), idx_(idx)
{ }
operator value_type() const { return vec_[idx_]; }
// postfix operators
template<class T = value_type,
class = std::enable_if_t<!std::is_same<T, bool>::value> >
value_type operator++(int) { return vec_[idx_]++; }
template<class T = value_type,
class = std::enable_if_t<!std::is_same<T, bool>::value> >
value_type operator--(int) { return vec_[idx_]--; }
// unary (prefix) operators
template<class T = value_type,
class = std::enable_if_t<!std::is_same<T, bool>::value> >
Proxy &operator++() { ++(vec_[idx_]); return *this; }
template<class T = value_type,
class = std::enable_if_t<!std::is_same<T, bool>::value> >
Proxy &operator--() { --(vec_[idx_]); return *this; }
decltype(auto) operator!() const { return !(vec_[idx_]); }
decltype(auto) operator+() const { return +(vec_[idx_]); }
decltype(auto) operator-() const { return -(vec_[idx_]); }
template<class T = value_type,
class = std::enable_if_t<std::is_integral<T>::value> >
decltype(auto) operator~() const { return ~(vec_[idx_]); }
// binary operators
#define DUNE_SIMD_VC_BINARY_OP(OP) \
template<class T> \
auto operator OP(T &&o) const \
-> decltype(vec_[idx_] OP valueCast(std::forward<T>(o))) \
{ \
return vec_[idx_] OP valueCast(std::forward<T>(o)); \
} \
static_assert(true, "Require semicolon to unconfuse editors")
DUNE_SIMD_VC_BINARY_OP(*);
DUNE_SIMD_VC_BINARY_OP(/);
DUNE_SIMD_VC_BINARY_OP(%);
DUNE_SIMD_VC_BINARY_OP(+);
DUNE_SIMD_VC_BINARY_OP(-);
DUNE_SIMD_VC_BINARY_OP(<<);
DUNE_SIMD_VC_BINARY_OP(>>);
DUNE_SIMD_VC_BINARY_OP(<);
DUNE_SIMD_VC_BINARY_OP(>);
DUNE_SIMD_VC_BINARY_OP(<=);
DUNE_SIMD_VC_BINARY_OP(>=);
DUNE_SIMD_VC_BINARY_OP(==);
DUNE_SIMD_VC_BINARY_OP(!=);
DUNE_SIMD_VC_BINARY_OP(&);
DUNE_SIMD_VC_BINARY_OP(^);
DUNE_SIMD_VC_BINARY_OP(|);
DUNE_SIMD_VC_BINARY_OP(&&);
DUNE_SIMD_VC_BINARY_OP(||);
#undef DUNE_SIMD_VC_BINARY_OP
#define DUNE_SIMD_VC_ASSIGNMENT(OP) \
template<class T> \
auto operator OP(T &&o) \
-> std::enable_if_t<AlwaysTrue<decltype( \
vec_[idx_] OP valueCast(std::forward<T>(o)) \
)>::value, Proxy&> \
{ \
vec_[idx_] OP valueCast(std::forward<T>(o)); \
return *this; \
} \
static_assert(true, "Require semicolon to unconfuse editors")
DUNE_SIMD_VC_ASSIGNMENT(=);
DUNE_SIMD_VC_ASSIGNMENT(*=);
DUNE_SIMD_VC_ASSIGNMENT(/=);
DUNE_SIMD_VC_ASSIGNMENT(%=);
DUNE_SIMD_VC_ASSIGNMENT(+=);
DUNE_SIMD_VC_ASSIGNMENT(-=);
DUNE_SIMD_VC_ASSIGNMENT(<<=);
DUNE_SIMD_VC_ASSIGNMENT(>>=);
DUNE_SIMD_VC_ASSIGNMENT(&=);
DUNE_SIMD_VC_ASSIGNMENT(^=);
DUNE_SIMD_VC_ASSIGNMENT(|=);
#undef DUNE_SIMD_VC_ASSIGNMENT
// swap on proxies swaps the proxied vector entries. As such, it
// applies to rvalues of proxies too, not just lvalues
template<class V1, class V2>
friend void swap(Proxy<V1>, Proxy<V2>);
template<class T>
friend void swap(Proxy p1, T& s2)
{
// don't use swap() ourselves -- not supported by Vc 1.3.0 (but is
// supported by Vc 1.3.2)
T tmp = p1.vec_[p1.idx_];
p1.vec_[p1.idx_] = s2;
s2 = tmp;
}
template<class T>
friend void swap(T& s1, Proxy p2)
{
T tmp = s1;
s1 = p2.vec_[p2.idx_];
p2.vec_[p2.idx_] = tmp;
}
};
template<class V1, class V2>
void swap(Proxy<V1> p1, Proxy<V2> p2)
{
typename V1::value_type tmp = p1.vec_[p1.idx_];
p1.vec_[p1.idx_] = p2.vec_[p2.idx_];
p2.vec_[p2.idx_] = tmp;
}
} // namespace VcImpl
#endif // HAVE_VC
template<typename T>
struct SimdScalarTypeTraits
{
using type = T;
};
template<typename T>
using SimdScalar = typename SimdScalarTypeTraits<T>::type;
#if HAVE_VC
/*
Add Vc specializations for the SimdScalarTypeTraits trais class
*/
template<typename T, typename A>
struct SimdScalarTypeTraits< Vc::Vector<T,A> >
{
using type = T;
};
template<typename T, std::size_t N, typename V, std::size_t M>
struct SimdScalarTypeTraits< Vc::SimdArray<T,N,V,M> >
{
using type = T;
};
#endif // HAVE_VC
//! deduce the underlying scalar data type of an AlignedNumber
template<typename T, std::size_t align>
struct SimdScalarTypeTraits< AlignedNumber<T,align> >
{
using type = T;
};
template<typename V, typename = void>
struct SimdIndexTypeTraits {
using type = std::size_t;
};
//! An simd vector of indices corresponding to a simd vector V
/**
* lanes(T()) == lanes(SimdIndex<T>()) holds.
*
* \note The size of the elements of a SimdIndex isn't very well-defined.
* Be careful.
*/
template<typename V>
using SimdIndex = typename SimdIndexTypeTraits<V>::type;
#if HAVE_VC
template<typename T, typename A>
struct SimdIndexTypeTraits<Vc::Vector<T, A> > {
using type = typename Vc::Vector<T, A>::index_type;
};
template<typename T, std::size_t n, typename V>
struct SimdIndexTypeTraits<Vc::SimdArray<T, n, V> > {
using type = typename Vc::SimdArray<T, n, V>::index_type;
};
#endif // HAVE_VC
template<typename V, typename = void>
struct SimdMaskTypeTraits {
using type = bool;
};
//! A simd vector of truth values corresponding to a simd vector V
/**
* lanes(T()) == lanes(SimdMask<T>()) holds.
*/
template<typename V>
using SimdMask = typename SimdMaskTypeTraits<V>::type;
#if HAVE_VC
template<typename T, typename A>
struct SimdMaskTypeTraits<Vc::Vector<T, A> > {
using type = typename Vc::Vector<T, A>::mask_type;
};
template<typename T, std::size_t n, typename V>
struct SimdMaskTypeTraits<Vc::SimdArray<T, n, V> > {
using type = typename Vc::SimdArray<T, n, V>::mask_type;
};
#endif // HAVE_VC
#if HAVE_VC
/*
Add Vc specializations for cond(), see conditional.hh
*/
template<typename T, typename A>
Vc::Vector<T,A> cond(const Vc::Mask<T,A> & b,
const Vc::Vector<T,A> & v1,
const Vc::Vector<T,A> & v2)
{
return std::move(Vc::iif(b, v1, v2));
}
template<typename T, std::size_t N, typename V, std::size_t M>
Vc::SimdArray<T,N,V,M> cond(const typename Vc::SimdArray<T,N,V,M>::mask_type & b,
const Vc::SimdArray<T,N,V,M> & v1,
const Vc::SimdArray<T,N,V,M> & v2)
{
return std::move(Vc::iif(b, v1, v2));
}
#endif // HAVE_VC
#if HAVE_VC
/*
Add Vc specializations for several boolean operations, see rangeutitlities.hh:
max_value, min_value, any_true, all_true
*/
template<typename T, typename A>
T max_value(const Vc::Vector<T,A> & v)
{
return v.max();
}
template<typename T, std::size_t N, typename V, std::size_t M>
double max_value(const Vc::SimdArray<T,N,V,M> & v)
{
return v.max();
}
template<typename T, typename A>
T min_value(const Vc::Vector<T,A> & v)
{
return v.min();
}
template<typename T, std::size_t N, typename V, std::size_t M>
double min_value(const Vc::SimdArray<T,N,V,M> & v)
{
return v.min();
}
template<typename T, typename A>
bool any_true(const Vc::Mask<T,A> & v)
{
return Vc::any_of(v);
}
template<typename T, std::size_t N, typename V, std::size_t M>
bool any_true(const Vc::SimdMaskArray<T,N,V,M> & v)
{
return Vc::any_of(v);
}
template<typename T, typename A>
bool all_true(const Vc::Mask<T,A> & v)
{
return Vc::all_of(v);
}
template<typename T, std::size_t N, typename V, std::size_t M>
bool all_true(const Vc::SimdMaskArray<T,N,V,M> & v)
{
return Vc::all_of(v);
}
#endif // HAVE_VC
//! get the number of lanes of a simd vector (scalar version)
template<class T>
std::size_t lanes(const T &) { return 1; }
//! access a lane of a simd vector (scalar version)
template<class T>
T lane(std::size_t l, const T &v)
{
assert(l == 0);
return v;
}
//! access a lane of a simd vector (scalar version)
template<class T>
T &lane(std::size_t l, T &v)
{
assert(l == 0);
return v;
}
#if HAVE_VC
template<class T, class A>
std::size_t lanes(const Vc::Vector<T, A> &)
{
return Vc::Vector<T, A>::size();
}
template<class T, class A>
T lane(std::size_t l, const Vc::Vector<T, A> &v)
{
assert(l < lanes(v));
return v[l];
}
template<class T, class A>
auto lane(std::size_t l, Vc::Vector<T, A> &v)
{
assert(l < lanes(v));
return VcImpl::Proxy<Vc::Vector<T, A> >{l, v};
}
template<class T, std::size_t n, class V>
std::size_t lanes(const Vc::SimdArray<T, n, V> &)
{
return n;
}
template<class T, std::size_t n, class V>
T lane(std::size_t l, const Vc::SimdArray<T, n, V> &v)
{
assert(l < n);
return v[l];
}
template<class T, std::size_t n, class V>
auto lane(std::size_t l, Vc::SimdArray<T, n, V> &v)
{
assert(l < n);
return VcImpl::Proxy<Vc::SimdArray<T, n, V> >{l, v};
}
template<class T, std::size_t n, class V>
std::size_t lanes(const Vc::SimdMaskArray<T, n, V> &)
{
return n;
}
template<class T, std::size_t n, class V>
bool lane(std::size_t l, const Vc::SimdMaskArray<T, n, V> &v)
{
assert(l < n);
return v[l];
}
template<class T, std::size_t n, class V>
auto lane(std::size_t l, Vc::SimdMaskArray<T, n, V> &v)
{
assert(l < n);
return VcImpl::Proxy<Vc::SimdMaskArray<T, n, V> >{l, v};
}
#endif // HAVE_VC
//! masked Simd assignment (scalar version)
/**
* Assign \c src to \c dest for those lanes where \c mask is true.
*/
template<class T>
void assign(T &dst, const T &src, bool mask)
{
if(mask) dst = src;
}
#if HAVE_VC
/*
Add Vc specializations for masked assignment
*/
template<class T, class A>
void assign(Vc::Vector<T, A> &dst, const Vc::Vector<T, A> &src,
typename Vc::Vector<T, A>::mask_type mask)
{
dst(mask) = src;
}
template<class T, std::size_t n, class V>
void assign(Vc::SimdArray<T, n, V> &dst, const Vc::SimdArray<T, n, V> &src,
typename Vc::SimdArray<T, n, V>::mask_type mask)
{
dst(mask) = src;
}
#endif // HAVE_VC
template<class T>
void swap(T &v1, T &v2, bool mask)
{
using std::swap;
if(mask) swap(v1, v2);
}
#if HAVE_VC
/*
Add Vc specializations for masked swap
*/
template<class T, class A>
void swap(Vc::Vector<T, A> &v1, Vc::Vector<T, A> &v2,
typename Vc::Vector<T, A>::mask_type mask)
{
auto tmp = v1;
v1(mask) = v2;
v2(mask) = tmp;
}
template<class T, std::size_t n, class V>
void swap(Vc::SimdArray<T, n, V> &v1, Vc::SimdArray<T, n, V> &v2,
typename Vc::SimdArray<T, n, V>::mask_type mask)
{
auto tmp = v1;
v1(mask) = v2;
v2(mask) = tmp;
}
#endif // HAVE_VC
} // end namespace Dune
#endif // DUNE_COMMON_SIMD_HH
|