File: test.hh

package info (click to toggle)
dune-common 2.11.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,048 kB
  • sloc: cpp: 54,403; python: 4,136; sh: 1,657; makefile: 17
file content (2024 lines) | stat: -rw-r--r-- 79,509 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
// SPDX-FileCopyrightInfo: Copyright © DUNE Project contributors, see file LICENSE.md in module root
// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
#ifndef DUNE_COMMON_SIMD_TEST_HH
#define DUNE_COMMON_SIMD_TEST_HH

/** @file
 *  @brief Common tests for simd abstraction implementations
 *
 * This file is an interface header and may be included without restrictions.
 */

#include <algorithm>
#include <cstddef>
#include <iostream>
#include <sstream>
#include <string>
#include <type_traits>
#include <typeindex>
#include <typeinfo>
#include <unordered_set>
#include <utility>

#include <dune/common/classname.hh>
#include <dune/common/hybridutilities.hh>
#include <dune/common/rangeutilities.hh>
#include <dune/common/simd/io.hh>
#include <dune/common/simd/loop.hh>
#include <dune/common/simd/simd.hh>
#include <dune/common/std/type_traits.hh>
#include <dune/common/typelist.hh>
#include <dune/common/typetraits.hh>

namespace Dune {
  namespace Simd {

    namespace Impl {

      template<class T, class SFINAE = void>
      struct LessThenComparable : std::false_type {};
      template<class T>
      struct LessThenComparable<T, std::void_t<decltype(std::declval<T>()
                                                   < std::declval<T>())> > :
        std::true_type
      {};

      template<class Dst, class Src>
      struct CopyConstHelper
      {
        using type = Dst;
      };
      template<class Dst, class Src>
      struct CopyConstHelper<Dst, const Src>
      {
        using type = std::add_const_t<Dst>;
      };

      template<class Dst, class Src>
      struct CopyVolatileHelper
      {
        using type = Dst;
      };
      template<class Dst, class Src>
      struct CopyVolatileHelper<Dst, volatile Src>
      {
        using type = std::add_volatile_t<Dst>;
      };

      template<class Dst, class Src>
      struct CopyReferenceHelper
      {
        using type = Dst;
      };
      template<class Dst, class Src>
      struct CopyReferenceHelper<Dst, Src&>
      {
        using type = std::add_lvalue_reference_t<Dst>;
      };

      template<class Dst, class Src>
      struct CopyReferenceHelper<Dst, Src&&>
      {
        using type = std::add_rvalue_reference_t<Dst>;
      };

      template<class Dst, class Src>
      using CopyRefQual = typename CopyReferenceHelper<
        typename CopyVolatileHelper<
          typename CopyConstHelper<
            std::decay_t<Dst>,
            std::remove_reference_t<Src>
            >::type,
          std::remove_reference_t<Src>
          >::type,
        Src
        >::type;

      template<class Mark, class Types,
               class Indices =
                 std::make_index_sequence<TypeListSize<Types>::value - 1> >
      struct RemoveEnd;
      template<class Mark, class Types, std::size_t... I>
      struct RemoveEnd<Mark, Types, std::index_sequence<I...>>
      {
        using Back = TypeListEntry_t<TypeListSize<Types>::value - 1, Types>;
        static_assert(std::is_same<Mark, Back>::value,
                      "TypeList not terminated by proper EndMark");
        using type = TypeList<TypeListEntry_t<I, Types>...>;
      };

      template<class T, class List, class = void>
      struct TypeInList;

      template<class T>
      struct TypeInList<T, TypeList<> > : std::false_type {};

      template<class T, class... Rest>
      struct TypeInList<T, TypeList<T, Rest...> > : std::true_type {};

      template<class T, class Head, class... Rest>
      struct TypeInList<T, TypeList<Head, Rest...>,
                        std::enable_if_t<!std::is_same<T, Head>::value> > :
        TypeInList<T, TypeList<Rest...> >::type
      {};

      template<class T>
      struct IsLoop : std::false_type {};
      template<class T, std::size_t S>
      struct IsLoop<LoopSIMD<T, S> > : std::true_type {};

      // used inside static_assert to trick the compiler into printing a list
      // of types:
      //
      //   static_assert(debugTypes<V>(std::bool_constant<condition>{}), "msg");
      //
      // Should include what the type `V` expands to in the error message.
      template<class...>
      constexpr bool debugTypes(std::true_type) { return true; }
      template<class... Types>
      [[deprecated]]
      constexpr bool debugTypes(std::false_type) { return false; }

    } // namespace Impl

    //! final element marker for `RebindList`
    struct EndMark {};
    //! A list of types with the final element removed
    /**
     * This is `TypeList<NoEndTypes..>`, where `NoEndTypes...` is `Types...`
     * with the final element removed.  The final element in `Types...` is
     * required to be `EndMark`.
     *
     * This is useful to construct type lists in generated source files, since
     * you don't need to avoid generating a trailing `,` in the list -- just
     * terminate it with `EndMark`.
     */
    template<class... Types>
    using RebindList =
      typename Impl::RemoveEnd<EndMark, TypeList<Types...> >::type;

    //! check whether a type is an instance of LoopSIMD
    template<class T>
    using IsLoop = typename Impl::IsLoop<T>::type;

    class UnitTest {
      bool good_ = true;
      std::ostream &log_ = std::cerr;
      // records the types for which checks have started running to avoid
      // infinite recursion
      std::unordered_set<std::type_index> seen_;

      ////////////////////////////////////////////////////////////////////////
      //
      //  Helper functions
      //

      void complain(const char *file, int line, const char *func,
                    const char *expr);

      void complain(const char *file, int line, const char *func,
                    const std::string &opname, const char *expr);

      // This macro is defined only within this file, do not use anywhere
      // else.  Doing the actual printing in an external function dramatically
      // reduces memory use during compilation.  Defined in such a way that
      // the call will only happen for failed checks.
#define DUNE_SIMD_CHECK(expr)                                           \
      ((expr) ? void() : complain(__FILE__, __LINE__, __func__, #expr))

      // the function using this macro must define a way to compute the
      // operator name in DUNE_SIMD_OPNAME
#define DUNE_SIMD_CHECK_OP(expr)                                \
      ((expr) ? void() : complain(__FILE__, __LINE__, __func__, \
                                  DUNE_SIMD_OPNAME, #expr))

      // "cast" into a prvalue
      template<class T>
      static std::decay_t<T> prvalue(T &&t)
      {
        return std::forward<T>(t);
      }

      // whether the vector is 42 in all lanes
      template<class V>
      static bool is42(const V &v)
      {
        bool good = true;

        for(std::size_t l = 0; l < lanes(v); ++l)
          // need to cast in case we have a mask type
          good &= (lane(l, v) == Scalar<V>(42));

        return good;
      }

      // make a vector that contains the sequence { 1, 2, ... }
      template<class V>
      static V make123()
      {
        // initialize to avoid undefined behaviour if assigning to lane()
        // involves lvalue-to-rvalue conversions, e.g. due to bitmask
        // operations.  Avoid using broadcast<V>() for initialization to avoid
        // test interdependencies.
        V vec(Scalar<V>(0));
        for(std::size_t l = 0; l < lanes(vec); ++l)
          lane(l, vec) = l + 1;
        return vec;
      }

      // whether the vector contains the sequence { 1, 2, ... }
      template<class V>
      static bool is123(const V &v)
      {
        bool good = true;

        for(std::size_t l = 0; l < lanes(v); ++l)
          // need to cast in case we have a mask type
          good &= (lane(l, v) == Scalar<V>(l+1));

        return good;
      }

      template<class V>
      static V leftVector()
      {
        // Avoid using broadcast<V>() for initialization to avoid test
        // interdependencies.
        V res(Scalar<V>(0));
        for(std::size_t l = 0; l < lanes(res); ++l)
          lane(l, res) = Scalar<V>(l+1);
        return res;
      }

      template<class V>
      static V rightVector()
      {
        // Avoid using broadcast<V>() for initialization to avoid test
        // interdependencies.
        V res(Scalar<V>(0));
        for(std::size_t l = 0; l < lanes(res); ++l)
          // do not exceed number of bits in char (for shifts)
          // avoid 0 (for / and %)
          lane(l, res) = Scalar<V>((l)%7+1);
        return res;
      }

      template<class T>
      static T leftScalar()
      {
        return T(42);
      }

      template<class T>
      static T rightScalar()
      {
        // do not exceed number of bits in char (for shifts)
        // avoid 0 (for / and %)
        return T(5);
      }

      template<class Dst, class Src>
      using CopyRefQual = Impl::CopyRefQual<Dst, Src>;

      // test whether the Op supports the operation on scalars.  We do not use
      // `lane()` to obtain the scalars, because that might return a proxy
      // object, and we are interested in what exactly the scalar type can do,
      // no a proxy that might have more overloads than needed.  In addition,
      // `lane()` may not preserve `const` and reference qualifiers.
      template<class Op, class... Vectors>
      using ScalarResult =
        decltype(std::declval<Op>().
                 scalar(std::declval<CopyRefQual<Scalar<Vectors>,
                                                 Vectors> >()...));

      //////////////////////////////////////////////////////////////////////
      //
      // Check associated types
      //

      template<class V>
      void checkScalar()
      {
        // check that the type Scalar<V> exists
        using T = Scalar<V>;

        static_assert(std::is_same<T, std::decay_t<T> >::value, "Scalar types "
                      "must not be references, and must not include "
                      "cv-qualifiers");
        [[maybe_unused]] T a{};
      }

      template<class V>
      [[deprecated("Warning: please include bool in the Rebinds for "
                          "simd type V, as Masks are not checked otherwise.")]]
      void warnMissingMaskRebind(std::true_type) {}
      template<class V>
      void warnMissingMaskRebind(std::false_type) {}

      template<class V, class Rebinds, template<class> class RebindPrune,
               template<class> class RebindAccept, class Recurse>
      void checkRebindOf(Recurse recurse)
      {
        Hybrid::forEach(Rebinds{}, [this,recurse](auto target) {
            using T = typename decltype(target)::type;

            // check that the rebound type exists
            using W = Rebind<T, V>;
            log_ << "Type " << className<V>() << " rebound to "
                 << className<T>() << " is " << className<W>() << std::endl;

            static_assert(std::is_same<W, std::decay_t<W> >::value, "Rebound "
                          "types must not be references, and must not include "
                          "cv-qualifiers");
            static_assert(lanes<V>() == lanes<W>(), "Rebound types must have "
                          "the same number of lanes as the original vector "
                          "types");
            static_assert(std::is_same<T, Scalar<W> >::value, "Rebound types "
                          "must have the bound-to scalar type");

            if constexpr (RebindPrune<W>{}) {
              log_ << "Pruning check of Simd type " << className<W>()
                   << std::endl;
            }
            else {
              using Impl::debugTypes;
              static_assert(debugTypes<T, V, W>(RebindAccept<W>{}),
                            "Rebind<T, V> is W, but that is not accepted "
                            "by RebindAccept");
              recurse(MetaType<W>{});
            }
          });

        static_assert(std::is_same<Rebind<Scalar<V>, V>, V>::value, "A type "
                      "rebound to its own scalar type must be the same type "
                      "as the original type");
        static_assert(std::is_same<Rebind<bool, V>, Mask<V> >::value, "A type "
                      "rebound to bool must be the mask type for that type");

        constexpr bool hasBool = Impl::TypeInList<bool, Rebinds>::value;
        warnMissingMaskRebind<V>(std::bool_constant<!hasBool>{});
      }

      //////////////////////////////////////////////////////////////////////
      //
      //  Fundamental checks
      //

      template<class V>
      void checkLanes()
      {
        // check lanes
        static_assert(std::is_same<std::size_t, decltype(lanes<V>())>::value,
                      "return type of lanes<V>() should be std::size_t");
        static_assert(std::is_same<std::size_t, decltype(lanes(V{}))>::value,
                      "return type of lanes(V{}) should be std::size_t");

        // the result of lanes<V>() must be constexpr
        [[maybe_unused]] constexpr auto size = lanes<V>();
        // but the result of lanes(vec) does not need to be constexpr
        DUNE_SIMD_CHECK(lanes<V>() == lanes(V{}));
      }

      template<class V>
      void checkDefaultConstruct()
      {
        { [[maybe_unused]] V vec;      }
        { [[maybe_unused]] V vec{};    }
        { [[maybe_unused]] V vec = {}; }
      }

      template<class V>
      void checkLane()
      {
        // Avoid using broadcast<V>() for initialization to avoid test
        // interdependencies.
        V vec(Scalar<V>(0));
        // check lane() on mutable lvalues
        for(std::size_t l = 0; l < lanes(vec); ++l)
          lane(l, vec) = l + 1;
        for(std::size_t l = 0; l < lanes(vec); ++l)
          DUNE_SIMD_CHECK(lane(l, vec) == Scalar<V>(l + 1));
        using MLRes = decltype(lane(0, vec));
        static_assert(std::is_same<MLRes, Scalar<V>&>::value ||
                      std::is_same<MLRes, std::decay_t<MLRes> >::value,
                      "Result of lane() on a mutable lvalue vector must "
                      "either be a mutable reference to a scalar of that "
                      "vector or a proxy object (which itself may not be a "
                      "reference nor const).");

        // check lane() on const lvalues
        const V &vec2 = vec;
        for(std::size_t l = 0; l < lanes(vec); ++l)
          DUNE_SIMD_CHECK(lane(l, vec2) == Scalar<V>(l + 1));
        using CLRes = decltype(lane(0, vec2));
        static_assert(std::is_same<CLRes, const Scalar<V>&>::value ||
                      std::is_same<CLRes, std::decay_t<CLRes> >::value,
                      "Result of lane() on a const lvalue vector must "
                      "either be a const lvalue reference to a scalar of that "
                      "vector or a proxy object (which itself may not be a "
                      "reference nor const).");
        static_assert(!std::is_assignable<CLRes, Scalar<V> >::value,
                      "Result of lane() on a const lvalue vector must not be "
                      "assignable from a scalar.");

        // check lane() on rvalues
        for(std::size_t l = 0; l < lanes(vec); ++l)
          DUNE_SIMD_CHECK(lane(l, prvalue(vec)) == Scalar<V>(l + 1));
        using RRes = decltype(lane(0, prvalue(vec)));
        // TODO: do we really want to allow Scalar<V>&& here?  If we allow it,
        // then `auto &&res = lane(0, vec*vec);` creates a dangling reference,
        // and the scalar (and even the vector types) are small enough to be
        // passed in registers anyway.  On the other hand, the only comparable
        // accessor function in the standard library that I can think of is
        // std::get(), and that does return an rvalue reference in this
        // situation.  However, that cannot assume anything about the size of
        // the returned types.
        static_assert(std::is_same<RRes, Scalar<V>  >::value ||
                      std::is_same<RRes, Scalar<V>&&>::value,
                      "Result of lane() on a rvalue vector V must be "
                      "Scalar<V> or Scalar<V>&&.");
        // Can't assert non-assignable, fails for any typical class,
        // e.g. std::complex<>.  Would need to return const Scalar<V> or const
        // Scalar<V>&&, which would inhibit moving from the return value.
        // static_assert(!std::is_assignable<RRes, Scalar<V> >::value,
        //               "Result of lane() on a rvalue vector must not be "
        //               "assignable from a scalar.");
      }

      // check non-default constructors
      template<class V>
      void checkCopyMoveConstruct()
      {
        // elided copy/move constructors
        { V vec   (make123<V>()); DUNE_SIMD_CHECK(is123(vec)); }
        { V vec =  make123<V>() ; DUNE_SIMD_CHECK(is123(vec)); }
        { V vec   {make123<V>()}; DUNE_SIMD_CHECK(is123(vec)); }
        { V vec = {make123<V>()}; DUNE_SIMD_CHECK(is123(vec)); }

        // copy constructors
        {       V ref(make123<V>());     V vec   (ref);
          DUNE_SIMD_CHECK(is123(vec)); DUNE_SIMD_CHECK(is123(ref)); }
        {       V ref(make123<V>());     V vec =  ref ;
          DUNE_SIMD_CHECK(is123(vec)); DUNE_SIMD_CHECK(is123(ref)); }
        {       V ref(make123<V>());     V vec   {ref};
          DUNE_SIMD_CHECK(is123(vec)); DUNE_SIMD_CHECK(is123(ref)); }
        {       V ref(make123<V>());     V vec = {ref};
          DUNE_SIMD_CHECK(is123(vec)); DUNE_SIMD_CHECK(is123(ref)); }
        { const V ref(make123<V>());     V vec   (ref);
          DUNE_SIMD_CHECK(is123(vec)); }
        { const V ref(make123<V>());     V vec =  ref ;
          DUNE_SIMD_CHECK(is123(vec)); }
        { const V ref(make123<V>());     V vec   {ref};
          DUNE_SIMD_CHECK(is123(vec)); }
        { const V ref(make123<V>());     V vec = {ref};
          DUNE_SIMD_CHECK(is123(vec)); }

        // move constructors
        { V ref(make123<V>());           V vec   (std::move(ref));
          DUNE_SIMD_CHECK(is123(vec)); }
        { V ref(make123<V>());           V vec =  std::move(ref) ;
          DUNE_SIMD_CHECK(is123(vec)); }
        { V ref(make123<V>());           V vec   {std::move(ref)};
          DUNE_SIMD_CHECK(is123(vec)); }
        { V ref(make123<V>());           V vec = {std::move(ref)};
          DUNE_SIMD_CHECK(is123(vec)); }
      }

      template<class V>
      void checkBroadcastVectorConstruct()
      {
        // broadcast copy constructors
        {       Scalar<V> ref = 42;      V vec   (ref);
          DUNE_SIMD_CHECK(is42(vec)); DUNE_SIMD_CHECK(ref == Scalar<V>(42)); }
        {       Scalar<V> ref = 42;      V vec =  ref ;
          DUNE_SIMD_CHECK(is42(vec)); DUNE_SIMD_CHECK(ref == Scalar<V>(42)); }
        // {       Scalar<V> ref = 42;      V vec   {ref};
        //   DUNE_SIMD_CHECK(is42(vec)); DUNE_SIMD_CHECK(ref == Scalar<V>(42)); }
        // {       Scalar<V> ref = 42;      V vec = {ref};
        //   DUNE_SIMD_CHECK(is42(vec)); DUNE_SIMD_CHECK(ref == Scalar<V>(42)); }
        { const Scalar<V> ref = 42;      V vec   (ref);
          DUNE_SIMD_CHECK(is42(vec)); }
        { const Scalar<V> ref = 42;      V vec =  ref ;
          DUNE_SIMD_CHECK(is42(vec)); }
        // { const Scalar<V> ref = 42;      V vec   {ref};
        //   DUNE_SIMD_CHECK(is42(vec)); }
        // { const Scalar<V> ref = 42;      V vec = {ref};
        //   DUNE_SIMD_CHECK(is42(vec)); }

        // broadcast move constructors
        { Scalar<V> ref = 42;            V vec   (std::move(ref));
          DUNE_SIMD_CHECK(is42(vec)); }
        { Scalar<V> ref = 42;            V vec =  std::move(ref) ;
          DUNE_SIMD_CHECK(is42(vec)); }
        // { Scalar<V> ref = 42;            V vec   {std::move(ref)};
        //   DUNE_SIMD_CHECK(is42(vec)); }
        // { Scalar<V> ref = 42;            V vec = {std::move(ref)};
        //   DUNE_SIMD_CHECK(is42(vec)); }
      }

      template<class V>
      void checkBroadcastMaskConstruct()
      {
        // broadcast copy constructors
        {       Scalar<V> ref = 42;      V vec   (ref);
          DUNE_SIMD_CHECK(is42(vec)); DUNE_SIMD_CHECK(ref == Scalar<V>(42)); }
        // {       Scalar<V> ref = 42;      V vec =  ref ;
        //   DUNE_SIMD_CHECK(is42(vec)); DUNE_SIMD_CHECK(ref == Scalar<V>(42)); }
        {       Scalar<V> ref = 42;      V vec   {ref};
          DUNE_SIMD_CHECK(is42(vec)); DUNE_SIMD_CHECK(ref == Scalar<V>(42)); }
        // {       Scalar<V> ref = 42;      V vec = {ref};
        //   DUNE_SIMD_CHECK(is42(vec)); DUNE_SIMD_CHECK(ref == Scalar<V>(42)); }
        { const Scalar<V> ref = 42;      V vec   (ref);
          DUNE_SIMD_CHECK(is42(vec)); }
        // { const Scalar<V> ref = 42;      V vec =  ref ;
        //   DUNE_SIMD_CHECK(is42(vec)); }
        { const Scalar<V> ref = 42;      V vec   {ref};
          DUNE_SIMD_CHECK(is42(vec)); }
        // { const Scalar<V> ref = 42;      V vec = {ref};
        //   DUNE_SIMD_CHECK(is42(vec)); }

        // broadcast move constructors
        { Scalar<V> ref = 42;            V vec   (std::move(ref));
          DUNE_SIMD_CHECK(is42(vec)); }
        // { Scalar<V> ref = 42;            V vec =  std::move(ref) ;
        //   DUNE_SIMD_CHECK(is42(vec)); }
        { Scalar<V> ref = 42;            V vec   {std::move(ref)};
          DUNE_SIMD_CHECK(is42(vec)); }
        // { Scalar<V> ref = 42;            V vec = {std::move(ref)};
        //   DUNE_SIMD_CHECK(is42(vec)); }
      }

      // check the implCast function
      template<class FromV, class ToV>
      void checkImplCast()
      {
        { // lvalue arg
          FromV fromVec = make123<FromV>();
          auto toVec = implCast<ToV>(fromVec);
          static_assert(std::is_same<decltype(toVec), ToV>::value,
                        "Unexpected result type for implCast<ToV>(FromV&)");
          DUNE_SIMD_CHECK(is123(fromVec));
          DUNE_SIMD_CHECK(is123(toVec));
        }

        { // const lvalue arg
          const FromV fromVec = make123<FromV>();
          auto toVec = implCast<ToV>(fromVec);
          static_assert(std::is_same<decltype(toVec), ToV>::value,
                        "Unexpected result type for implCast<ToV>(const "
                        "FromV&)");
          DUNE_SIMD_CHECK(is123(toVec));
        }

        { // rvalue arg
          auto toVec = implCast<ToV>(make123<FromV>());
          static_assert(std::is_same<decltype(toVec), ToV>::value,
                        "Unexpected result type for implCast<ToV>(FromV&&)");
          DUNE_SIMD_CHECK(is123(toVec));
        }
      }

      // check the implCast function
      template<class V>
      void checkImplCast()
      {
        // check against LoopSIMD
        using LoopV = Dune::LoopSIMD<Scalar<V>, lanes<V>()>;

        checkImplCast<V, V>();
        checkImplCast<V, LoopV>();
        checkImplCast<LoopV, V>();
      }

      // check the broadcast function
      template<class V>
      void checkBroadcast()
      {
        // broadcast function
        { // lvalue arg
          Scalar<V> ref = 42;
          auto vec = broadcast<V>(ref);
          static_assert(std::is_same<decltype(vec), V>::value,
                        "Unexpected result type for broadcast<V>()");
          DUNE_SIMD_CHECK(is42(vec));
          DUNE_SIMD_CHECK(ref == Scalar<V>(42));
        }

        { // const lvalue arg
          const Scalar<V> ref = 42;
          auto vec = broadcast<V>(ref);
          static_assert(std::is_same<decltype(vec), V>::value,
                        "Unexpected result type for broadcast<V>()");
          DUNE_SIMD_CHECK(is42(vec));
        }

        { // rvalue arg
          auto vec = broadcast<V>(Scalar<V>(42));
          static_assert(std::is_same<decltype(vec), V>::value,
                        "Unexpected result type for broadcast<V>()");
          DUNE_SIMD_CHECK(is42(vec));
        }

        { // int arg
          auto vec = broadcast<V>(42);
          static_assert(std::is_same<decltype(vec), V>::value,
                        "Unexpected result type for broadcast<V>()");
          DUNE_SIMD_CHECK(is42(vec));
        }

        { // double arg
          auto vec = broadcast<V>(42.0);
          static_assert(std::is_same<decltype(vec), V>::value,
                        "Unexpected result type for broadcast<V>()");
          DUNE_SIMD_CHECK(is42(vec));
        }
      }

      template<class V>
      void checkBracedAssign()
      {
        // copy assignment
        { V ref = make123<V>();       V vec; vec = {ref};
          DUNE_SIMD_CHECK(is123(vec)); DUNE_SIMD_CHECK(is123(ref)); }
        { const V ref = make123<V>(); V vec; vec = {ref};
          DUNE_SIMD_CHECK(is123(vec)); DUNE_SIMD_CHECK(is123(ref)); }

        // move assignment
        { V vec; vec = {make123<V>()}; DUNE_SIMD_CHECK(is123(vec)); }
      }

      template<class V>
      void checkBracedBroadcastAssign()
      {
        // nothing works here
        // // broadcast copy assignment
        // { Scalar<V> ref = 42;       V vec; vec = {ref};
        //   DUNE_SIMD_CHECK(is42(vec)); DUNE_SIMD_CHECK(ref == Scalar<V>(42)); }
        // { const Scalar<V> ref = 42; V vec; vec = {ref};
        //   DUNE_SIMD_CHECK(is42(vec)); }

        // // broadcast move assignment
        // { Scalar<V> ref = 42; V vec; vec = {std::move(ref)};
        //   DUNE_SIMD_CHECK(is42(vec)); }
      }

      //////////////////////////////////////////////////////////////////////
      //
      // checks for unary operators
      //

#define DUNE_SIMD_POSTFIX_OP(NAME, SYMBOL)              \
      struct OpPostfix##NAME                            \
      {                                                 \
        template<class V>                               \
        auto operator()(V&& v) const                    \
          -> decltype(std::forward<V>(v) SYMBOL)        \
        {                                               \
          return std::forward<V>(v) SYMBOL;             \
        }                                               \
      }

#define DUNE_SIMD_PREFIX_OP(NAME, SYMBOL)               \
      struct OpPrefix##NAME                             \
      {                                                 \
        template<class V>                               \
        auto operator()(V&& v) const                    \
          -> decltype(SYMBOL std::forward<V>(v))        \
        {                                               \
          return SYMBOL std::forward<V>(v);             \
        }                                               \
      }

      DUNE_SIMD_POSTFIX_OP(Decrement,        -- );
      DUNE_SIMD_POSTFIX_OP(Increment,        ++ );

      DUNE_SIMD_PREFIX_OP (Decrement,        -- );
      DUNE_SIMD_PREFIX_OP (Increment,        ++ );

      DUNE_SIMD_PREFIX_OP (Plus,             +  );
      DUNE_SIMD_PREFIX_OP (Minus,            -  );
      DUNE_SIMD_PREFIX_OP (LogicNot,         !  );
      // Do not warn about ~ being applied to bool.  (1) Yes, doing that is
      // weird, but we do want to test the weird stuff too.  (2) It avoids
      // running into <https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82040> on
      // g++-7.0 through 7.2.  Also, ignore -Wpragmas to not warn about an
      // unknown -Wbool-operation on compilers that do not know that option.
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpragmas"
#pragma GCC diagnostic ignored "-Wunknown-warning-option" // clang 6.0.1
#pragma GCC diagnostic ignored "-Wbool-operation"
      DUNE_SIMD_PREFIX_OP (BitNot,           ~  );
#pragma GCC diagnostic pop

#undef DUNE_SIMD_POSTFIX_OP
#undef DUNE_SIMD_PREFIX_OP

      template<class V, class Op>
      std::enable_if_t<
        IsCallable<Op(decltype(lane(0, std::declval<V>())))>::value>
      checkUnaryOpV(Op op)
      {
#define DUNE_SIMD_OPNAME (className<Op(V)>())
        // arguments
        auto val = leftVector<std::decay_t<V>>();

        // copy the arguments in case V is a references
        auto arg = val;
        auto &&result = op(static_cast<V>(arg));
        using T = Scalar<std::decay_t<decltype(result)> >;
        for(std::size_t l = 0; l < lanes(val); ++l)
        {
          // `op` might promote the argument.  This is a problem if the
          // argument of the operation on the right of the `==` is
          // e.g. `(unsigned short)1` and the operation is e.g. unary `-`.
          // Then the argument is promoted to `int` before applying the
          // negation, and the result is `(int)-1`.  However, the left side of
          // the `==` is still `(unsigned short)-1`, which typically is the
          // same as `(unsigned short)65535`.  The `==` promotes the left side
          // before comparing, so that becomes `(int)65535`.  It will then
          // compare `(int)65535` and `(int)-1` and rightly declare them to be
          // not equal.

          // To work around this, we explicitly convert the right side of the
          // `==` to the scalar type before comparing.
          DUNE_SIMD_CHECK_OP
            (lane(l, result)
               == static_cast<T>(op(lane(l, static_cast<V>(val)))));
        }
        // op might modify val, verify that any such modification also happens
        // in the vector case
        for(std::size_t l = 0; l < lanes<std::decay_t<V> >(); ++l)
          DUNE_SIMD_CHECK_OP(lane(l, val) == lane(l, arg));
#undef DUNE_SIMD_OPNAME
      }

      template<class V, class Op>
      std::enable_if_t<
        not IsCallable<Op(decltype(lane(0, std::declval<V>())))>::value>
      checkUnaryOpV(Op op)
      {
        // log_ << "No " << className<Op(decltype(lane(0, std::declval<V>())))>()
        //      << std::endl
        //      << " ==> Not checking " << className<Op(V)>() << std::endl;
      }

      template<class V, class Op>
      void checkUnaryOpsV(Op op)
      {
        checkUnaryOpV<V&>(op);
        checkUnaryOpV<const V&>(op);
        checkUnaryOpV<V&&>(op);
      }

      //////////////////////////////////////////////////////////////////////
      //
      // checks for binary operators
      //

      // The operators contain an `operator()`, which will be invoked for both
      // scalar and vector arguments.  The function `scalar()` is used the
      // test whether the scalar types support the operation (via
      // `ScalarResult`).  The difference is that `scalar()` should only ever
      // receive `const`-ref-qualified version of `Scalar<V>`, while the
      // `operator()` may also be called with proxies representing scalars.
#define DUNE_SIMD_INFIX_OP(NAME, SYMBOL)                                \
      struct OpInfix##NAME                                              \
      {                                                                 \
        template<class V1, class V2>                                    \
        decltype(auto) operator()(V1&& v1, V2&& v2) const               \
        {                                                               \
          return std::forward<V1>(v1) SYMBOL std::forward<V2>(v2);      \
        }                                                               \
        template<class S1, class S2>                                    \
        auto scalar(S1&& s1, S2&& s2) const                             \
          -> decltype(std::forward<S1>(s1) SYMBOL std::forward<S2>(s2)); \
      }

      // for assign ops, accept only non-const lvalue arguments for scalars.
      // This is needed for class scalars (e.g. std::complex) because
      // non-const class rvalues are actually usually assignable.  Though that
      // assignment happens to a temporary, and thus is lost.  Except that the
      // tests would bind the result of the assignment to a reference.  And
      // because that result is returned from a function by reference, even
      // though it is a temporary passed as an argument to that function,
      // accessing the result later is undefined behaviour.
#define DUNE_SIMD_ASSIGN_OP(NAME, SYMBOL)                               \
      struct OpInfix##NAME                                              \
      {                                                                 \
        template<class V1, class V2>                                    \
        decltype(auto) operator()(V1&& v1, V2&& v2) const               \
        {                                                               \
          return std::forward<V1>(v1) SYMBOL std::forward<V2>(v2);      \
        }                                                               \
        template<class S1, class S2>                                    \
        auto scalar(S1& s1, S2&& s2) const                              \
          -> decltype(s1 SYMBOL std::forward<S2>(s2));                  \
      }

#define DUNE_SIMD_REPL_OP(NAME, REPLFN, SYMBOL)                         \
      struct OpInfix##NAME                                              \
      {                                                                 \
        template<class V1, class V2>                                    \
        decltype(auto) operator()(V1&& v1, V2&& v2) const               \
        {                                                               \
          return Simd::REPLFN(std::forward<V1>(v1), std::forward<V2>(v2)); \
        }                                                               \
        template<class S1, class S2>                                    \
        auto scalar(S1&& s1, S2&& s2) const                             \
          -> decltype(std::forward<S1>(s1) SYMBOL std::forward<S2>(s2)); \
      }

      DUNE_SIMD_INFIX_OP(Mul,              *  );
      DUNE_SIMD_INFIX_OP(Div,              /  );
      DUNE_SIMD_INFIX_OP(Remainder,        %  );

      DUNE_SIMD_INFIX_OP(Plus,             +  );
      DUNE_SIMD_INFIX_OP(Minus,            -  );

      DUNE_SIMD_INFIX_OP(LeftShift,        << );
      DUNE_SIMD_INFIX_OP(RightShift,       >> );

      DUNE_SIMD_INFIX_OP(Less,             <  );
      DUNE_SIMD_INFIX_OP(Greater,          >  );
      DUNE_SIMD_INFIX_OP(LessEqual,        <= );
      DUNE_SIMD_INFIX_OP(GreaterEqual,     >= );

      DUNE_SIMD_INFIX_OP(Equal,            == );
      DUNE_SIMD_INFIX_OP(NotEqual,         != );

      DUNE_SIMD_INFIX_OP(BitAnd,           &  );
      DUNE_SIMD_INFIX_OP(BitXor,           ^  );
      DUNE_SIMD_INFIX_OP(BitOr,            |  );

      // Those are not supported in any meaningful way by vectorclass
      // We need to test replacement functions maskAnd() and maskOr() instead.
      DUNE_SIMD_REPL_OP(LogicAnd, maskAnd, && );
      DUNE_SIMD_REPL_OP(LogicOr,  maskOr,  || );

      DUNE_SIMD_ASSIGN_OP(Assign,           =  );
      DUNE_SIMD_ASSIGN_OP(AssignMul,        *= );
      DUNE_SIMD_ASSIGN_OP(AssignDiv,        /= );
      DUNE_SIMD_ASSIGN_OP(AssignRemainder,  %= );
      DUNE_SIMD_ASSIGN_OP(AssignPlus,       += );
      DUNE_SIMD_ASSIGN_OP(AssignMinus,      -= );
      DUNE_SIMD_ASSIGN_OP(AssignLeftShift,  <<=);
      DUNE_SIMD_ASSIGN_OP(AssignRightShift, >>=);
      DUNE_SIMD_ASSIGN_OP(AssignAnd,        &= );
      DUNE_SIMD_ASSIGN_OP(AssignXor,        ^= );
      DUNE_SIMD_ASSIGN_OP(AssignOr,         |= );

#undef DUNE_SIMD_INFIX_OP
#undef DUNE_SIMD_REPL_OP
#undef DUNE_SIMD_ASSIGN_OP

      // just used as a tag
      struct OpInfixComma {};

      template<class T1, class T2>
      void checkCommaOp(const std::decay_t<T1> &val1,
                        const std::decay_t<T2> &val2)
      {
#define DUNE_SIMD_OPNAME (className<OpInfixComma(T1, T2)>())
        static_assert(std::is_same<decltype((std::declval<T1>(),
                                             std::declval<T2>())), T2>::value,
                      "Type and value category of the comma operator must "
                      "match that of the second operand");

        // copy the arguments in case T1 or T2 are references
        auto arg1 = val1;
        auto arg2 = val2;
        // Do not warn that the left side of the comma operator is unused.
        // Seems to work for g++-4.9 and clang++-3.8.  Appears to be harmless
        // for icpc (14 and 17), and icpc does not seem to issue a warning
        // anyway.
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-value"
        auto &&result = (static_cast<T1>(arg1),
                         static_cast<T2>(arg2));
#pragma GCC diagnostic pop
        if(std::is_reference<T2>::value)
        {
          // comma should return the same object as the second argument for
          // lvalues and xvalues
          DUNE_SIMD_CHECK_OP(&result == &arg2);
          // it should not modify any arguments
          DUNE_SIMD_CHECK_OP(allTrue(val1 == arg1));
          DUNE_SIMD_CHECK_OP(allTrue(val2 == arg2));
        }
        else
        {
          // comma should return the same value as the second argument for
          // prvalues
          DUNE_SIMD_CHECK_OP(allTrue(result == arg2));
          // it should not modify any arguments
          DUNE_SIMD_CHECK_OP(allTrue(val1 == arg1));
          // second argument is a prvalue, any modifications happen to a
          // temporary and we can't detect them
        }
#undef DUNE_SIMD_OPNAME
      }

      //////////////////////////////////////////////////////////////////////
      //
      // checks for vector-vector binary operations
      //

      // We check the following candidate operation
      //
      //   vopres = vop1 @ vop2
      //
      // against the reference operation
      //
      //   arefres[l] = aref1[l] @ aref2[l]  foreach l
      //
      // v... variables are simd-vectors and a... variables are arrays.  The
      // operation may modify the operands, but if is does the modification
      // needs to happen in both the candidate and the reference.
      //
      // We do the following checks:
      // 1.  lanes(vopres)   == lanes(vop1)
      // 2.  lane(l, vopres) == arefres[l]  foreach l
      // 3.  lane(l, vop1)   == aref1[l]    foreach l
      // 4.  lane(l, vop2)   == aref2[l]    foreach l
      template<class V1, class V2, class Op>
      std::enable_if_t<Std::is_detected_v<ScalarResult, Op, V1, V2> >
      checkBinaryOpVV(MetaType<V1>, MetaType<V2>, Op op)
      {
#define DUNE_SIMD_OPNAME (className<Op(V1, V2)>())
        static_assert(std::is_same<std::decay_t<V1>, std::decay_t<V2> >::value,
                      "Internal testsystem error: called with two types that "
                      "don't decay to the same thing");

        // reference arguments
        auto vref1 = leftVector<std::decay_t<V1>>();
        auto vref2 = rightVector<std::decay_t<V2>>();

        // candidate arguments
        auto vop1 = vref1;
        auto vop2 = vref2;

        // candidate operation
        auto &&vopres = op(static_cast<V1>(vop1), static_cast<V2>(vop2));
        using VR = decltype(vopres);

        // check 1.  lanes(vopres)   == lanes(vop1)
        static_assert(lanes<std::decay_t<VR> >() == lanes<std::decay_t<V1> >(),
                      "The result must have the same number of lanes as the "
                      "operands.");

        // do the reference operation, and simultaneously
        // check 2.  lane(l, vopres) == arefres[l]  foreach l
        using T = Scalar<std::decay_t<VR> >;
        for(auto l : range(lanes(vopres)))
        {
          // see the lengthy comment in `checkUnaryOpV()` as to why the
          // `static_cast` around the `op()` is necessary
          DUNE_SIMD_CHECK_OP
            (lane(l, vopres)
               == static_cast<T>(op(lane(l, static_cast<V1>(vref1)),
                                    lane(l, static_cast<V2>(vref2)))));
        }

        // check 3.  lane(l, vop1)   == aref1[l]    foreach l
        for(auto l : range(lanes(vop1)))
          DUNE_SIMD_CHECK_OP(lane(l, vop1) == lane(l, vref1));

        // check 4.  lane(l, vop2)   == aref2[l]    foreach l
        for(auto l : range(lanes(vop2)))
          DUNE_SIMD_CHECK_OP(lane(l, vop2) == lane(l, vref2));

#undef DUNE_SIMD_OPNAME
      }

      template<class V1, class V2, class Op>
      std::enable_if_t<!Std::is_detected_v<ScalarResult, Op, V1, V2> >
      checkBinaryOpVV(MetaType<V1>, MetaType<V2>, Op op)
      {
        // log_ << "No " << className<Op(decltype(lane(0, std::declval<V1>())),
        //                               decltype(lane(0, std::declval<V2>())))>()
        //      << std::endl
        //      << " ==> Not checking " << className<Op(V1, V2)>() << std::endl;
      }

      template<class V1, class V2>
      void checkBinaryOpVV(MetaType<V1>, MetaType<V2>, OpInfixComma)
      {
        static_assert(std::is_same<std::decay_t<V1>, std::decay_t<V2> >::value,
                      "Internal testsystem error: called with two types that "
                      "don't decay to the same thing");

        checkCommaOp<V1, V2>(leftVector<std::decay_t<V1>>(),
                             rightVector<std::decay_t<V2>>());
      }

      //////////////////////////////////////////////////////////////////////
      //
      // checks for vector-scalar binary operations
      //

      // We check the following candidate operation
      //
      //   vopres = vop1 @ sop2
      //
      // against the reference operation
      //
      //   arefres[l] = aref1[l] @ sref2  foreach l
      //
      // v... variables are simd-vectors, a... variables are arrays, and
      // s... variables are scalars.  The operation may modify the left
      // operand, but if is does the modifications needs to happen in both the
      // candidate and the reference.
      //
      // We do the following checks:
      // 1.  lanes(vopres)   == lanes(vop1)
      // 2.  lane(l, vopres) == arefres[l]  foreach l
      // 3.  lane(l, vop1)   == aref1[l]    foreach l
      // 4.  sop2  is never modified
      // 5.  sref2 is never modified
      //
      // In fact, if the property "sref2 is never modified" is violated that
      // means the operation is unsuitable for an automatic broadcast of the
      // second operand and should not be checked.  There are no operations in
      // the standard where the second operand is modified like this, but
      // there are operations where the first operand is modified -- and this
      // check is used for those ops as well by exchanging the first and second
      // argument below.

      template<class V1, class T2, class Op>
      std::enable_if_t<Std::is_detected_v<ScalarResult, Op, V1, T2> >
      checkBinaryOpVS(MetaType<V1>, MetaType<T2>, Op op)
      {
#define DUNE_SIMD_OPNAME (className<Op(V1, T2)>())
        static_assert(std::is_same<Scalar<std::decay_t<V1> >,
                      std::decay_t<T2> >::value,
                      "Internal testsystem error: called with a scalar that "
                      "does not match the vector type.");

        // initial values
        auto sinit2 = rightScalar<std::decay_t<T2>>();

        // reference arguments
        auto vref1 = leftVector<std::decay_t<V1>>();
        auto sref2 = sinit2;

        // candidate arguments
        auto vop1 = vref1;
        auto sop2 = sref2;

        // candidate operation
        auto &&vopres = op(static_cast<V1>(vop1), static_cast<T2>(sop2));
        using VR = decltype(vopres);

        // check 1.  lanes(vopres)   == lanes(vop1)
        static_assert(lanes<std::decay_t<VR> >() == lanes<std::decay_t<V1> >(),
                      "The result must have the same number of lanes as the "
                      "operands.");

        // check 4.  sop2  is never modified
        DUNE_SIMD_CHECK_OP(sop2 == sinit2);

        // do the reference operation, and simultaneously check 2. and 5.
        using T = Scalar<std::decay_t<decltype(vopres)> >;
        for(auto l : range(lanes(vopres)))
        {
          // check 2.  lane(l, vopres) == arefres[l]  foreach l
          // see the lengthy comment in `checkUnaryOpV()` as to why the
          // `static_cast` around the `op()` is necessary
          DUNE_SIMD_CHECK_OP
            (lane(l, vopres)
               == static_cast<T>(op(lane(l, static_cast<V1>(vref1)),
                                            static_cast<T2>(sref2) )));
          // check 5.  sref2 is never modified
          DUNE_SIMD_CHECK_OP(sref2 == sinit2);
        }

        // check 3.  lane(l, vop1)   == aref1[l]    foreach l
        for(auto l : range(lanes(vop1)))
          DUNE_SIMD_CHECK_OP(lane(l, vop1) == lane(l, vref1));

#undef DUNE_SIMD_OPNAME
      }

      template<class V1, class T2, class Op>
      std::enable_if_t<!Std::is_detected_v<ScalarResult, Op, V1, T2> >
      checkBinaryOpVS(MetaType<V1>, MetaType<T2>, Op op)
      {
        // log_ << "No "
        //      << className<Op(decltype(lane(0, std::declval<V1>())), T2)>()
        //      << std::endl
        //      << " ==> Not checking " << className<Op(V1, T2)>() << std::endl;
      }

      template<class V1, class T2>
      void checkBinaryOpVS(MetaType<V1>, MetaType<T2>, OpInfixComma)
      {
        static_assert(std::is_same<Scalar<std::decay_t<V1> >,
                      std::decay_t<T2> >::value,
                      "Internal testsystem error: called with a scalar that "
                      "does not match the vector type.");

        checkCommaOp<V1, T2>(leftVector<std::decay_t<V1>>(),
                             rightScalar<std::decay_t<T2>>());
      }

      //////////////////////////////////////////////////////////////////////
      //
      // cross-check scalar-vector binary operations against vector-vector
      //

      // We check the following candidate operation
      //
      //   vopres = vop1 @ vop2,    where vop2 = broadcast(sref2)
      //
      // against the reference operation
      //
      //   vrefres = vref1 @ sref2
      //
      // v... variables are simd-vectors, a... variables are arrays, and
      // s... variables are scalars.
      //
      // We could check the following properties
      // 1.  lanes(vopres)   == lanes(vop1)
      // 2.  lane(l, vopres) == lane(l, vrefres)  foreach l
      // 3.  lane(l, vop1)   == lane(l, vref1)    foreach l
      // but these are given by checking the operation against the scalar
      // operation in the vector@vector and vector@scalar cases above.
      //
      // The only thing left to check is:
      // 4.  lane(l, vop2)  foreach l  is never modified

      template<class V1, class T2, class Op>
      std::enable_if_t<Std::is_detected_v<ScalarResult, Op, V1, T2> >
      checkBinaryOpVVAgainstVS(MetaType<V1>, MetaType<T2>, Op op)
      {
#define DUNE_SIMD_OPNAME (className<Op(V1, T2)>())
        static_assert(std::is_same<Scalar<std::decay_t<V1> >,
                      std::decay_t<T2> >::value,
                      "Internal testsystem error: called with a scalar that "
                      "does not match the vector type.");

        // initial values
        auto sinit2 = rightScalar<std::decay_t<T2>>();

        // reference arguments
        auto vop1 = leftVector<std::decay_t<V1>>();
        using V2 = CopyRefQual<V1, T2>;
        std::decay_t<V2> vop2(sinit2);

        // candidate operation
        op(static_cast<V1>(vop1), static_cast<V2>(vop2));

        // 4.  lane(l, vop2)  foreach l  is never modified
        for(auto l : range(lanes(vop2)))
          DUNE_SIMD_CHECK_OP(lane(l, vop2) == sinit2);

#undef DUNE_SIMD_OPNAME
      }

      template<class V1, class T2, class Op>
      std::enable_if_t<!Std::is_detected_v<ScalarResult, Op, V1, T2> >
      checkBinaryOpVVAgainstVS(MetaType<V1>, MetaType<T2>, Op op)
      {
        // log_ << "No "
        //      << className<Op(decltype(lane(0, std::declval<V1>())), T2)>()
        //      << std::endl
        //      << " ==> Not checking " << className<Op(V1, T2)>() << std::endl;
      }

      template<class V1, class T2>
      void checkBinaryOpVVAgainstVS(MetaType<V1>, MetaType<T2>, OpInfixComma)
      { }

      //////////////////////////////////////////////////////////////////////
      //
      // checks for vector-proxy binary operations
      //

      // We check the following candidate operation
      //
      //   vopres = vop1 @ pop2
      //
      // against the reference operation
      //
      //   arefres[l] = aref1[l] @ sref2  foreach l
      //
      // v... variables are simd-vectors, a... variables are arrays,
      // p... variables are proxies of simd-vector entries and s... variables
      // are scalars.  The operation may modify the left operand, but if is
      // does the modifications needs to happen in both the candidate and the
      // reference.
      //
      // We do the following checks:
      // 1.  lanes(vopres)   == lanes(vop1)
      // 2.  lane(l, vopres) == arefres[l]  foreach l
      // 3.  lane(l, vop1)   == aref1[l]    foreach l
      // 4.  pop2  is never modified
      // 5.  sref2 is never modified
      //
      // In fact, if the property "sref2 is never modified" is violated that
      // means the operation is unsuitable for an automatic broadcast of the
      // second operand and should not be checked.  There are no operations in
      // the standard where the second operand is modified like this, but
      // there are operations where the first operand is modified -- and this
      // check is used for those ops as well by exchanging the first and second
      // argument below.

      template<class V1, class V2, class Op>
      std::enable_if_t<Std::is_detected_v<ScalarResult, Op, V1, V2> >
      checkBinaryOpVP(MetaType<V1>, MetaType<V2>, Op op)
      {
        using P2 = decltype(lane(0, std::declval<V2>()));
        using T2 = CopyRefQual<Scalar<V2>, V2>;
#define DUNE_SIMD_OPNAME (className<Op(V1, P2)>())
        static_assert(std::is_same<Scalar<V1>, Scalar<V2> >::value,
                      "Internal testsystem error: called with two vector "
                      "types whose scalar types don't match.");

        // initial values
        auto sinit2 = rightScalar<Scalar<V2>>();

        // reference arguments
        auto vref1 = leftVector<std::decay_t<V1>>();
        auto sref2 = sinit2;

        // candidate arguments
        auto vop1 = vref1;
        auto vop2 = std::decay_t<V2>(Scalar<V2>(0));
        lane(0, vop2) = sref2; // pop2 is just a name for `lane(0, vop2)`

        // candidate operation
        auto &&vopres =
          op(static_cast<V1>(vop1), lane(0, static_cast<V2>(vop2)));
        using VR = decltype(vopres);

        // check 1.  lanes(vopres)   == lanes(vop1)
        static_assert(lanes<std::decay_t<VR> >() == lanes<std::decay_t<V1> >(),
                      "The result must have the same number of lanes as the "
                      "operands.");

        // check 4.  pop2  is never modified
        DUNE_SIMD_CHECK_OP(lane(0, vop2) == sinit2);

        // do the reference operation, and simultaneously check 2. and 5.
        using T = Scalar<decltype(vopres)>;
        for(auto l : range(lanes(vopres)))
        {
          // check 2.  lane(l, vopres) == arefres[l]  foreach l
          // see the lengthy comment in `checkUnaryOpV()` as to why the
          // `static_cast` around the `op()` is necessary
          DUNE_SIMD_CHECK_OP
            (lane(l, vopres)
               == static_cast<T>(op(lane(l, static_cast<V1>(vref1)),
                                            static_cast<T2>(sref2) )));
          // check 5.  sref2 is never modified
          DUNE_SIMD_CHECK_OP(sref2 == sinit2);
        }

        // check 3.  lane(l, vop1)   == aref1[l]    foreach l
        for(auto l : range(lanes(vop1)))
          DUNE_SIMD_CHECK_OP(lane(l, vop1) == lane(l, vref1));

#undef DUNE_SIMD_OPNAME
      }

      template<class V1, class V2, class Op>
      std::enable_if_t<!Std::is_detected_v<ScalarResult, Op, V1, V2> >
      checkBinaryOpVP(MetaType<V1>, MetaType<V2>, Op op)
      {
        // log_ << "No "
        //      << className<Op(decltype(lane(0, std::declval<V1>())), T2)>()
        //      << std::endl
        //      << " ==> Not checking " << className<Op(V1, T2)>() << std::endl;
      }

      template<class V1, class V2>
      void checkBinaryOpVP(MetaType<V1>, MetaType<V2>, OpInfixComma)
      {
        // Don't really know how to check comma operator for proxies
      }

      //////////////////////////////////////////////////////////////////////
      //
      // checks for (scalar/proxy)-vector binary operations
      //

      template<class Op>
      struct OpInfixSwappedArgs
      {
        Op orig;

        template<class V1, class V2>
        decltype(auto) operator()(V1&& v1, V2&& v2) const
        {
          return orig(std::forward<V2>(v2), std::forward<V1>(v1));
        }
        template<class S1, class S2>
        auto scalar(S1&& s1, S2&& s2) const
          -> decltype(orig.scalar(std::forward<S2>(s2), std::forward<S1>(s1)));
      };

      template<class T1, class V2, class Op>
      void checkBinaryOpSV(MetaType<T1> t1, MetaType<V2> v2, Op op)
      {
        checkBinaryOpVS(v2, t1, OpInfixSwappedArgs<Op>{op});
      }

      template<class T1, class V2>
      void checkBinaryOpSV(MetaType<T1>, MetaType<V2>, OpInfixComma)
      {
        static_assert(std::is_same<std::decay_t<T1>,
                      Scalar<std::decay_t<V2> > >::value,
                      "Internal testsystem error: called with a scalar that "
                      "does not match the vector type.");

        checkCommaOp<T1, V2>(leftScalar<std::decay_t<T1>>(),
                             rightVector<std::decay_t<V2>>());
      }

      template<class V1, class V2, class Op>
      void checkBinaryOpPV(MetaType<V1> v1, MetaType<V2> v2, Op op)
      {
        checkBinaryOpVP(v2, v1, OpInfixSwappedArgs<Op>{op});
      }

      template<class V1, class V2>
      void checkBinaryOpPV(MetaType<V1>, MetaType<V2>, OpInfixComma)
      {
        // Don't really know how to check comma operator for proxies
      }

      //////////////////////////////////////////////////////////////////////
      //
      // cross-check scalar-vector binary operations against vector-vector
      //

      // We check the following candidate operation
      //
      //   vopres = vop1 @ vop2,    where vop2 = broadcast(sref2)
      //
      // against the reference operation
      //
      //   vrefres = vref1 @ sref2
      //
      // v... variables are simd-vectors, a... variables are arrays, and
      // s... variables are scalars.
      //
      // We could check the following properties
      // 1.  lanes(vopres)   == lanes(vop1)
      // 2.  lane(l, vopres) == lane(l, vrefres)  foreach l
      // 3.  lane(l, vop1)   == lane(l, vref1)    foreach l
      // but these are given by checking the operation against the scalar
      // operation in the vector@vector and vector@scalar cases above.
      //
      // The only thing left to check is:
      // 4.  lane(l, vop2)  foreach l  is never modified

      template<class T1, class V2, class Op>
      void checkBinaryOpVVAgainstSV(MetaType<T1> t1, MetaType<V2> v2, Op op)
      {
        checkBinaryOpVVAgainstVS(v2, t1, OpInfixSwappedArgs<Op>{op});
      }

      template<class V1, class T2>
      void checkBinaryOpVVAgainstSV(MetaType<V1>, MetaType<T2>, OpInfixComma)
      { }

      //////////////////////////////////////////////////////////////////////
      //
      //  Invoke the checks for all combinations
      //

      template<class T1, class T2, bool condition, class Checker>
      void checkBinaryRefQual(Checker checker)
      {
        if constexpr (condition) {
          Hybrid::forEach(TypeList<T1&, const T1&, T1&&>{}, [=] (auto t1) {
            Hybrid::forEach(TypeList<T2&, const T2&, T2&&>{}, [=] (auto t2) {
              checker(t1, t2);
            });
          });
        }
      }

      template<class V, class Checker>
      void checkBinaryOps(Checker checker)
      {
        using std::bool_constant;

        constexpr bool isMask = std::is_same<Scalar<V>, bool>::value;

        constexpr bool do_   = false;
        constexpr bool do_SV = true;
        constexpr bool do_VV = true;
        constexpr bool do_VS = true;

#define DUNE_SIMD_DO(M1, M2, M3, V1, V2, V3, NAME)              \
        checker(bool_constant<isMask ? do_##M1 : do_##V1>{},    \
                bool_constant<isMask ? do_##M2 : do_##V2>{},    \
                bool_constant<isMask ? do_##M3 : do_##V3>{},    \
                Op##NAME{})

        //             (Mask      , Vector    , Name                 );

        DUNE_SIMD_DO(  ,   ,   , SV, VV, VS, InfixMul             );
        DUNE_SIMD_DO(  ,   ,   , SV, VV, VS, InfixDiv             );
        DUNE_SIMD_DO(  ,   ,   , SV, VV, VS, InfixRemainder       );

        DUNE_SIMD_DO(  ,   ,   , SV, VV, VS, InfixPlus            );
        DUNE_SIMD_DO(  ,   ,   , SV, VV, VS, InfixMinus           );

        DUNE_SIMD_DO(  ,   ,   ,   , VV, VS, InfixLeftShift       );
        DUNE_SIMD_DO(  ,   ,   ,   , VV, VS, InfixRightShift      );

        DUNE_SIMD_DO(  ,   ,   , SV, VV, VS, InfixLess            );
        DUNE_SIMD_DO(  ,   ,   , SV, VV, VS, InfixGreater         );
        DUNE_SIMD_DO(  ,   ,   , SV, VV, VS, InfixLessEqual       );
        DUNE_SIMD_DO(  ,   ,   , SV, VV, VS, InfixGreaterEqual    );

        DUNE_SIMD_DO(  ,   ,   , SV, VV, VS, InfixEqual           );
        DUNE_SIMD_DO(  ,   ,   , SV, VV, VS, InfixNotEqual        );

        DUNE_SIMD_DO(  , VV,   , SV, VV, VS, InfixBitAnd          );
        DUNE_SIMD_DO(  , VV,   , SV, VV, VS, InfixBitXor          );
        DUNE_SIMD_DO(  , VV,   , SV, VV, VS, InfixBitOr           );

        DUNE_SIMD_DO(SV, VV, VS, SV, VV, VS, InfixLogicAnd        );
        DUNE_SIMD_DO(SV, VV, VS, SV, VV, VS, InfixLogicOr         );

        DUNE_SIMD_DO(  , VV,   ,   , VV, VS, InfixAssign          );
        DUNE_SIMD_DO(  ,   ,   ,   , VV, VS, InfixAssignMul       );
        DUNE_SIMD_DO(  ,   ,   ,   , VV, VS, InfixAssignDiv       );
        DUNE_SIMD_DO(  ,   ,   ,   , VV, VS, InfixAssignRemainder );
        DUNE_SIMD_DO(  ,   ,   ,   , VV, VS, InfixAssignPlus      );
        DUNE_SIMD_DO(  ,   ,   ,   , VV, VS, InfixAssignMinus     );
        DUNE_SIMD_DO(  ,   ,   ,   , VV, VS, InfixAssignLeftShift );
        DUNE_SIMD_DO(  ,   ,   ,   , VV, VS, InfixAssignRightShift);
        DUNE_SIMD_DO(  , VV,   ,   , VV, VS, InfixAssignAnd       );
        DUNE_SIMD_DO(  , VV,   ,   , VV, VS, InfixAssignXor       );
        DUNE_SIMD_DO(  , VV,   ,   , VV, VS, InfixAssignOr        );

        DUNE_SIMD_DO(SV, VV, VS, SV,   , VS, InfixComma           );

#undef DUNE_SIMD_DO
      }

      //////////////////////////////////////////////////////////////////////
      //
      // SIMD interface functions
      //

      template<class V>
      void checkAutoCopy()
      {
        using RValueResult = decltype(autoCopy(lane(0, std::declval<V>())));
        static_assert(std::is_same<RValueResult, Scalar<V> >::value,
                      "Result of autoCopy() must always be Scalar<V>");

        using MutableLValueResult =
          decltype(autoCopy(lane(0, std::declval<V&>())));
        static_assert(std::is_same<MutableLValueResult, Scalar<V> >::value,
                      "Result of autoCopy() must always be Scalar<V>");

        using ConstLValueResult =
          decltype(autoCopy(lane(0, std::declval<const V&>())));
        static_assert(std::is_same<ConstLValueResult, Scalar<V> >::value,
                      "Result of autoCopy() must always be Scalar<V>");

        V vec = make123<V>();
        for(std::size_t l = 0; l < lanes(vec); ++l)
          DUNE_SIMD_CHECK(autoCopy(lane(l, vec)) == Scalar<V>(l+1));
      }

      // may only be called for mask types
      template<class M>
      void checkBoolReductions()
      {
        M trueVec(true);

        // mutable lvalue
        DUNE_SIMD_CHECK(allTrue (static_cast<M&>(trueVec)) == true);
        DUNE_SIMD_CHECK(anyTrue (static_cast<M&>(trueVec)) == true);
        DUNE_SIMD_CHECK(allFalse(static_cast<M&>(trueVec)) == false);
        DUNE_SIMD_CHECK(anyFalse(static_cast<M&>(trueVec)) == false);

        // const lvalue
        DUNE_SIMD_CHECK(allTrue (static_cast<const M&>(trueVec)) == true);
        DUNE_SIMD_CHECK(anyTrue (static_cast<const M&>(trueVec)) == true);
        DUNE_SIMD_CHECK(allFalse(static_cast<const M&>(trueVec)) == false);
        DUNE_SIMD_CHECK(anyFalse(static_cast<const M&>(trueVec)) == false);

        // rvalue
        DUNE_SIMD_CHECK(allTrue (M(true)) == true);
        DUNE_SIMD_CHECK(anyTrue (M(true)) == true);
        DUNE_SIMD_CHECK(allFalse(M(true)) == false);
        DUNE_SIMD_CHECK(anyFalse(M(true)) == false);

        M falseVec(false);

        // mutable lvalue
        DUNE_SIMD_CHECK(allTrue (static_cast<M&>(falseVec)) == false);
        DUNE_SIMD_CHECK(anyTrue (static_cast<M&>(falseVec)) == false);
        DUNE_SIMD_CHECK(allFalse(static_cast<M&>(falseVec)) == true);
        DUNE_SIMD_CHECK(anyFalse(static_cast<M&>(falseVec)) == true);

        // const lvalue
        DUNE_SIMD_CHECK(allTrue (static_cast<const M&>(falseVec)) == false);
        DUNE_SIMD_CHECK(anyTrue (static_cast<const M&>(falseVec)) == false);
        DUNE_SIMD_CHECK(allFalse(static_cast<const M&>(falseVec)) == true);
        DUNE_SIMD_CHECK(anyFalse(static_cast<const M&>(falseVec)) == true);

        // rvalue
        DUNE_SIMD_CHECK(allTrue (M(false)) == false);
        DUNE_SIMD_CHECK(anyTrue (M(false)) == false);
        DUNE_SIMD_CHECK(allFalse(M(false)) == true);
        DUNE_SIMD_CHECK(anyFalse(M(false)) == true);

        auto mixedVec = broadcast<M>(0);
        for(std::size_t l = 0; l < lanes(mixedVec); ++l)
          lane(l, mixedVec) = (l % 2);

        // mutable lvalue
        DUNE_SIMD_CHECK
          (allTrue (static_cast<M&>(mixedVec)) == false);
        DUNE_SIMD_CHECK
          (anyTrue (static_cast<M&>(mixedVec)) == (lanes<M>() > 1));
        DUNE_SIMD_CHECK
          (allFalse(static_cast<M&>(mixedVec)) == (lanes<M>() == 1));
        DUNE_SIMD_CHECK
          (anyFalse(static_cast<M&>(mixedVec)) == true);

        // const lvalue
        DUNE_SIMD_CHECK
          (allTrue (static_cast<const M&>(mixedVec)) == false);
        DUNE_SIMD_CHECK
          (anyTrue (static_cast<const M&>(mixedVec)) == (lanes<M>() > 1));
        DUNE_SIMD_CHECK
          (allFalse(static_cast<const M&>(mixedVec)) == (lanes<M>() == 1));
        DUNE_SIMD_CHECK
          (anyFalse(static_cast<const M&>(mixedVec)) == true);

        // rvalue
        DUNE_SIMD_CHECK(allTrue (M(mixedVec)) == false);
        DUNE_SIMD_CHECK(anyTrue (M(mixedVec)) == (lanes<M>() > 1));
        DUNE_SIMD_CHECK(allFalse(M(mixedVec)) == (lanes<M>() == 1));
        DUNE_SIMD_CHECK(anyFalse(M(mixedVec)) == true);
      }

      template<class V>
      void checkCond()
      {
        using M = Mask<V>;

        static_assert
          (std::is_same<decltype(cond(std::declval<M>(), std::declval<V>(),
                                      std::declval<V>())), V>::value,
           "The result of cond(M, V, V) should have exactly the type V");

        static_assert
          (std::is_same<decltype(cond(std::declval<const M&>(),
                                      std::declval<const V&>(),
                                      std::declval<const V&>())), V>::value,
           "The result of cond(const M&, const V&, const V&) should have "
           "exactly the type V");

        static_assert
          (std::is_same<decltype(cond(std::declval<M&>(), std::declval<V&>(),
                                      std::declval<V&>())), V>::value,
           "The result of cond(M&, V&, V&) should have exactly the type V");

        V vec1 = leftVector<V>();
        V vec2 = rightVector<V>();

        DUNE_SIMD_CHECK(allTrue(cond(M(true),  vec1, vec2) == vec1));
        DUNE_SIMD_CHECK(allTrue(cond(M(false), vec1, vec2) == vec2));

        auto mixedResult = broadcast<V>(0);
        auto mixedMask = broadcast<M>(false);
        for(std::size_t l = 0; l < lanes(mixedMask); ++l)
        {
          lane(l, mixedMask  ) = (l % 2);
          lane(l, mixedResult) = lane(l, (l % 2) ? vec1 : vec2);
        }

        DUNE_SIMD_CHECK(allTrue(cond(mixedMask, vec1, vec2) == mixedResult));
      }

      template<class V>
      void checkBoolCond()
      {
        static_assert
          (std::is_same<decltype(cond(std::declval<bool>(), std::declval<V>(),
                                      std::declval<V>())), V>::value,
           "The result of cond(bool, V, V) should have exactly the type V");

        static_assert
          (std::is_same<decltype(cond(std::declval<const bool&>(),
                                      std::declval<const V&>(),
                                      std::declval<const V&>())), V>::value,
           "The result of cond(const bool&, const V&, const V&) should have "
           "exactly the type V");

        static_assert
          (std::is_same<decltype(cond(std::declval<bool&>(),
                                      std::declval<V&>(),
                                      std::declval<V&>())), V>::value,
           "The result of cond(bool&, V&, V&) should have exactly the type V");

        V vec1 = leftVector<V>();
        V vec2 = rightVector<V>();

        DUNE_SIMD_CHECK(allTrue(cond(true,  vec1, vec2) == vec1));
        DUNE_SIMD_CHECK(allTrue(cond(false, vec1, vec2) == vec2));
      }

      template<class V>
      std::enable_if_t<!Impl::LessThenComparable<Scalar<V> >::value>
      checkHorizontalMinMax() {}

      template<class V>
      std::enable_if_t<Impl::LessThenComparable<Scalar<V> >::value>
      checkHorizontalMinMax()
      {
        static_assert
          (std::is_same<decltype(max(std::declval<V>())), Scalar<V> >::value,
           "The result of max(V) should be exactly Scalar<V>");

        static_assert
          (std::is_same<decltype(min(std::declval<V>())), Scalar<V> >::value,
           "The result of min(V) should be exactly Scalar<V>");

        static_assert
          (std::is_same<decltype(max(std::declval<V&>())), Scalar<V> >::value,
           "The result of max(V) should be exactly Scalar<V>");

        static_assert
          (std::is_same<decltype(min(std::declval<V&>())), Scalar<V> >::value,
           "The result of min(V) should be exactly Scalar<V>");

        const V vec1 = leftVector<V>();

        DUNE_SIMD_CHECK(max(vec1) == Scalar<V>(lanes(vec1)));
        DUNE_SIMD_CHECK(min(vec1) == Scalar<V>(1));
      }

      template<class V>
      std::enable_if_t<!Impl::LessThenComparable<Scalar<V> >::value>
      checkBinaryMinMax() {}

      template<class V>
      std::enable_if_t<Impl::LessThenComparable<Scalar<V> >::value>
      checkBinaryMinMax()
      {
        using std::max;
        using std::min;

        static_assert
          (std::is_same<decltype(Simd::max(std::declval<V>(),
                                           std::declval<V>())), V>::value,
           "The result of Simd::max(V, V) should be exactly V");
        static_assert
          (std::is_same<decltype(Simd::min(std::declval<V>(),
                                           std::declval<V>())), V>::value,
           "The result of Simd::min(V, V) should be exactly V");

        static_assert
          (std::is_same<decltype(Simd::max(std::declval<V&>(),
                                           std::declval<V&>())), V>::value,
           "The result of Simd::max(V&, V&) should be exactly V");
        static_assert
          (std::is_same<decltype(Simd::min(std::declval<V&>(),
                                           std::declval<V&>())), V>::value,
           "The result of Simd::min(V&, V&) should be exactly V");

        const V arg1 = leftVector<V>();
        const V arg2 = rightVector<V>();

        V maxExp(Scalar<V>(0)), minExp(Scalar<V>(0));
        for(auto l : range(lanes<V>()))
        {
          lane(l, maxExp) = max(lane(l, arg1), lane(l, arg2));
          lane(l, minExp) = min(lane(l, arg1), lane(l, arg2));
        }

        DUNE_SIMD_CHECK(allTrue(maxExp == Simd::max(arg1, arg2)));
        DUNE_SIMD_CHECK(allTrue(minExp == Simd::min(arg1, arg2)));
      }

      template<class V>
      void checkIO()
      {
        const V vec1 = leftVector<V>();

        std::string reference;
        {
          const char *sep = "";
          for(auto l : range(lanes(vec1)))
          {
            std::ostringstream stream;
            stream << lane(l, vec1);

            reference += sep;
            reference += stream.str();
            sep = ", ";
          }
        }

        {
          std::ostringstream stream;
          stream << io(vec1);
          if(lanes(vec1) == 1)
            DUNE_SIMD_CHECK(stream.str() == reference);
          else
            DUNE_SIMD_CHECK(stream.str() == "<" + reference + ">");
        }

        {
          std::ostringstream stream;
          stream << vio(vec1);
          DUNE_SIMD_CHECK(stream.str() == "<" + reference + ">");
        }
      }

#undef DUNE_SIMD_CHECK

    public:
      /**
       * @name Test instantiation points
       *
       * These functions should not be called directly, but serve as explicit
       * instantiation points to keep memory usage bounded during compilation.
       * There should be an explicit instantiation declaration (`extern
       * template ...`) in the the overall header of your unit test for each
       * type that is tested (possibly implicitly tested due to recursive
       * checks).  Similarly, there should be an explicit instantiation
       * definition (`template ...`) in a separate translation unit.  Ideally,
       * there should be one translation unit per explicit instantiation
       * definition, otherwise each of them will contribute to the overall
       * memory used during compilation.
       *
       * If explicitly instantiating the top-level instantiation point
       * `checkType()` is not sufficient, there are further instantiation
       * points for improved granularity.  The hierarchy of instantiation
       * points is:
       * - `checkType()`
       *   - `checkNonOps()`
       *   - `checkUnaryOps()`
       *   - `checkBinaryOps()`
       *     - `checkBinaryOpsVectorVector()`
       *     - `checkBinaryOpsScalarVector()`
       *     - `checkBinaryOpsVectorScalar()`
       *     - `checkBinaryOpsProxyVector()`
       *     - `checkBinaryOpsVectorProxy()`
       *
       * Each instantiation point in the hierarchy implicitly instantiates its
       * descendants, unless there are explicit instantiation declarations for
       * them.  However, for future-proofing it can make sense to explicitly
       * instantiate nodes in the hierarchy even if all their children are
       * already explicitly instantiated.  This will limit the impact of
       * instantiation points added in the future.
       *
       * For an example of how to do the instantiations, look at
       * `standardtest`, there is cmake machinery to support you.
       *
       * Background: The compiler can use a lot of memory when compiling a
       * unit test for many Simd vector types.  E.g. for standardtest.cc,
       * which tests all the fundamental arithmetic types plus \c
       * std::complex, g++ 4.9.2 (-g -O0 -Wall on x86_64 GNU/Linux) used
       * ~6GByte.
       *
       * One mitigation was to explicitly instantiate \c checkVector() (a
       * previous, now obsolete incarnation of this instantiation machinery)
       * for the types that are tested.  Still after doing that,
       * standardtest.cc needed ~1.5GByte during compilation, which is more
       * than the compilation units that actually instantiated \c
       * checkVector() (which clocked in at maximum at around 800MB, depending
       * on how many instantiations they contained).
       *
       * The second mitigation was to define \c checkVector() outside of the
       * class.  I have no idea why this helped, but it made compilation use
       * less than ~100MByte.  (Yes, functions defined inside the class are
       * implicitly \c inline, but the function is a template so it has inline
       * semantics even when defined outside of the class.  And I tried \c
       * __attribute__((__noinline__)), which had no effect on memory
       * consumption.)
       *
       * @{
       */
      template<class V> void checkType();
      template<class V> void checkNonOps();
      template<class V> void checkUnaryOps();
      template<class V> void checkBinaryOps();
      template<class V> void checkBinaryOpsVectorVector();
      template<class V> void checkBinaryOpsScalarVector();
      template<class V> void checkBinaryOpsVectorScalar();
      template<class V> void checkBinaryOpsProxyVector();
      template<class V> void checkBinaryOpsVectorProxy();
      /** @} Group Test instantiation points */

      //! run unit tests for simd vector type V
      /**
       * This function will also ensure that `check<W>()` is run, for any type
       * `W = Rebind<R, V>` where `R` is in `Rebinds`, and
       * `RebindPrune<W>::value == false`.  No test will be run twice for a
       * given type.
       *
       * If the result of `Rebind` is not pruned by `RebindPrune`, it will be
       * passed to `RebindAccept`.  If that rejects the type, a static
       * assertion will trigger.
       *
       * \tparam Rebinds      A list of types, usually in the form of a
       *                      `TypeList`.
       * \tparam RebindPrune  A type predicate determining whether to run
       *                      `check()` for types obtained from `Rebinds`.
       * \tparam RebindAccept A type predicate determining whether a type is
       *                      acceptable as the result of a `Rebind`.
       */
      template<class V, class Rebinds,
               template<class> class RebindPrune = IsLoop,
               template<class> class RebindAccept = Dune::AlwaysTrue>
      void check() {
        // check whether the test for this type already started
        if(seen_.emplace(typeid (V)).second == false)
        {
          // type already seen, nothing to do
          return;
        }

        // do these first so everything that appears after "Checking SIMD type
        // ..." really pertains to that type
        auto recurse = [this](auto w) {
          using W = typename decltype(w)::type;
          this->template check<W, Rebinds, RebindPrune, RebindAccept>();
        };
        checkRebindOf<V, Rebinds, RebindPrune, RebindAccept>(recurse);

        checkType<V>();
      }

      //! whether all tests succeeded
      bool good() const
      {
        return good_;
      }

    }; // class UnitTest

    template<class V> void UnitTest::checkType()
    {
      static_assert(std::is_same<V, std::decay_t<V> >::value, "Simd types "
                    "must not be references, and must not include "
                    "cv-qualifiers");

      log_ << "Checking SIMD type " << className<V>() << std::endl;

      checkNonOps<V>();
      checkUnaryOps<V>();
      checkBinaryOps<V>();
    }
    template<class V> void UnitTest::checkNonOps()
    {
      constexpr auto isMask = typename std::is_same<Scalar<V>, bool>::type{};

      checkLanes<V>();
      checkScalar<V>();

      checkDefaultConstruct<V>();
      checkLane<V>();
      checkCopyMoveConstruct<V>();
      checkImplCast<V>();
      checkBroadcast<V>();
      if constexpr (isMask)
        this->template checkBroadcastMaskConstruct<V>();
      else
        this->template checkBroadcastVectorConstruct<V>();
      checkBracedAssign<V>();
      checkBracedBroadcastAssign<V>();

      checkAutoCopy<V>();
      checkCond<V>();
      checkBoolCond<V>();

      if constexpr (isMask)
        this->template checkBoolReductions<V>();
      // checkBoolReductions() is not applicable for non-masks

      checkHorizontalMinMax<V>();
      checkBinaryMinMax<V>();
      checkIO<V>();
    }
    template<class V> void UnitTest::checkUnaryOps()
    {
      if constexpr (std::is_same_v<Scalar<V>, bool>) {
        // check mask
        auto check = [this](auto op) {
          this->template checkUnaryOpsV<V>(op);
        };

        // postfix
        // check(OpPostfixDecrement{});
        // clang deprecation warning if bool++ is tested
        // check(OpPostfixIncrement{});

        // prefix
        // check(OpPrefixDecrement{});
        // clang deprecation warning if ++bool is tested
        // check(OpPrefixIncrement{});

        // check(OpPrefixPlus{});
        // check(OpPrefixMinus{});
        check(OpPrefixLogicNot{});
        // check(OpPrefixBitNot{});
      }
      else {
        // check vector
        auto check = [this](auto op) {
          this->template checkUnaryOpsV<V>(op);
        };

        // postfix
        // check(OpPostfixDecrement{});
        // check(OpPostfixIncrement{});

        // prefix
        // check(OpPrefixDecrement{});
        // check(OpPrefixIncrement{});

        // check(OpPrefixPlus{});
        check(OpPrefixMinus{});
        check(OpPrefixLogicNot{});
        check(OpPrefixBitNot{});
      }
    }
    template<class V> void UnitTest::checkBinaryOps()
    {
      checkBinaryOpsVectorVector<V>();
      checkBinaryOpsScalarVector<V>();
      checkBinaryOpsVectorScalar<V>();
      checkBinaryOpsProxyVector<V>();
      checkBinaryOpsVectorProxy<V>();
    }
    template<class V> void UnitTest::checkBinaryOpsVectorVector()
    {
      auto checker = [this](auto doSV, auto doVV, auto doVS, auto op) {
        auto check = [this,op](auto t1, auto t2) {
          this->checkBinaryOpVV(t1, t2, op);
        };
        this->checkBinaryRefQual<V, V, doVV>(check);
      };
      checkBinaryOps<V>(checker);
    }
    template<class V> void UnitTest::checkBinaryOpsScalarVector()
    {
      auto checker = [this](auto doSV, auto doVV, auto doVS, auto op) {
        auto check = [this,op](auto t1, auto t2) {
          this->checkBinaryOpSV(t1, t2, op);
        };
        this->checkBinaryRefQual<Scalar<V>, V, doSV>(check);

        auto crossCheck = [this,op](auto t1, auto t2) {
          this->checkBinaryOpVVAgainstSV(t1, t2, op);
        };
        this->checkBinaryRefQual<Scalar<V>, V, doSV && doVV>(crossCheck);
      };
      checkBinaryOps<V>(checker);
    }
    template<class V> void UnitTest::checkBinaryOpsVectorScalar()
    {
      auto checker = [this](auto doSV, auto doVV, auto doVS, auto op) {
        auto check = [this,op](auto t1, auto t2) {
          this->checkBinaryOpVS(t1, t2, op);
        };
        this->checkBinaryRefQual<V, Scalar<V>, doVS>(check);

        auto crossCheck = [this,op](auto t1, auto t2) {
          this->checkBinaryOpVVAgainstVS(t1, t2, op);
        };
        this->checkBinaryRefQual<V, Scalar<V>, doVV && doVS>(crossCheck);
      };
      checkBinaryOps<V>(checker);
    }
    template<class V> void UnitTest::checkBinaryOpsProxyVector()
    {
      auto checker = [this](auto doSV, auto doVV, auto doVS, auto op) {
        auto check = [this,op](auto t1, auto t2) {
          this->checkBinaryOpPV(t1, t2, op);
        };
        this->checkBinaryRefQual<V, V, doSV>(check);
      };
      checkBinaryOps<V>(checker);
    }
    template<class V> void UnitTest::checkBinaryOpsVectorProxy()
    {
      auto checker = [this](auto doSV, auto doVV, auto doVS, auto op) {
        auto check = [this,op](auto t1, auto t2) {
          this->checkBinaryOpVP(t1, t2, op);
        };
        this->checkBinaryRefQual<V, V, doVS>(check);
      };
      checkBinaryOps<V>(checker);
    }

  } // namespace Simd
} // namespace Dune

#endif // DUNE_COMMON_SIMD_TEST_HH