1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
|
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
// SPDX-FileCopyrightInfo: Copyright © DUNE Project contributors, see file LICENSE.md in module root
// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
#ifndef DUNE_COMMON_FVECTOR_HH
#define DUNE_COMMON_FVECTOR_HH
#include <algorithm>
#include <array>
#include <cmath>
#include <concepts>
#include <cstdlib>
#include <cstring>
#include <type_traits>
#include <utility>
#include <initializer_list>
#include <dune/common/boundschecking.hh>
#include <dune/common/densevector.hh>
#include <dune/common/filledarray.hh>
#include <dune/common/ftraits.hh>
#include <dune/common/math.hh>
#include <dune/common/promotiontraits.hh>
#include <dune/common/typetraits.hh>
#include <dune/common/typeutilities.hh>
#include <dune/common/concepts/number.hh>
#include <dune/common/std/algorithm.hh>
#include <dune/common/std/compare.hh>
namespace Dune {
/** @addtogroup DenseMatVec
@{
*/
/*! \file
* \brief Implements a vector constructed from a given type
representing a field and a compile-time given size.
*/
template< class K, int SIZE > class FieldVector;
template< class K, int SIZE >
struct DenseMatVecTraits< FieldVector<K,SIZE> >
{
typedef FieldVector<K,SIZE> derived_type;
typedef std::array<K,SIZE> container_type;
typedef K value_type;
typedef typename container_type::size_type size_type;
};
template< class K, int SIZE >
struct FieldTraits< FieldVector<K,SIZE> >
{
typedef typename FieldTraits<K>::field_type field_type;
typedef typename FieldTraits<K>::real_type real_type;
};
/**
* @brief TMP to check the size of a DenseVectors statically, if possible.
*
* If the implementation type of C is a FieldVector, we statically check
* whether its dimension is SIZE.
* @tparam C The implementation of the other DenseVector
* @tparam SIZE The size we need assume.
*/
template<typename C, int SIZE>
struct IsFieldVectorSizeCorrect
{
/**
* \brief True if C is not of type FieldVector or its dimension
* is not equal SIZE.
*/
constexpr static bool value = true;
};
template<typename T, int SIZE>
struct IsFieldVectorSizeCorrect<FieldVector<T,SIZE>,SIZE>
{
constexpr static bool value = true;
};
template<typename T, int SIZE, int SIZE1>
struct IsFieldVectorSizeCorrect<FieldVector<T,SIZE1>,SIZE>
{
constexpr static bool value = false;
};
/** \brief vector space out of a tensor product of fields.
*
* \tparam K the field type (use float, double, complex, etc)
* \tparam SIZE number of components.
*/
template< class K, int SIZE >
class FieldVector :
public DenseVector< FieldVector<K,SIZE> >
{
using Base = DenseVector< FieldVector<K,SIZE> >;
//! The container storage
std::array<K,SIZE> _data;
public:
//! The size of this vector.
static constexpr int dimension = SIZE;
//! The type used for the index access and size operation
using size_type = typename Base::size_type;
//! The type of the elements stored in the vector
using value_type = typename Base::value_type;
//! The type used for references to the vector entries
using reference = value_type&;
//! The type used for const references to the vector entries
using const_reference = const value_type&;
public:
//! Default constructor, making value-initialized vector with all components set to zero
constexpr FieldVector ()
noexcept(std::is_nothrow_default_constructible_v<K>)
: _data{}
{}
//! Constructor with a given value initializing all entries to this value
explicit(SIZE != 1)
constexpr FieldVector (const value_type& value) noexcept
: _data{filledArray<SIZE>(value)}
{}
//! Constructor with a given scalar initializing all entries to this value
template<Concept::Number S>
requires (std::constructible_from<K,S>)
explicit(SIZE != 1)
constexpr FieldVector (const S& scalar)
noexcept(std::is_nothrow_constructible_v<K,S>)
: _data{filledArray<SIZE,K>(K(scalar))}
{}
//! Construct from a std::initializer_list of values
constexpr FieldVector (const std::initializer_list<K>& l)
: _data{}
{
assert(l.size() == size());
for (size_type i = 0; i < size(); ++i)
_data[i] = std::data(l)[i];
}
//! Constructor from another dense vector if the elements are assignable to K
template<class V>
requires (IsFieldVectorSizeCorrect<V,SIZE>::value &&
std::is_assignable_v<K&, decltype(std::declval<const V&>()[0])>)
constexpr FieldVector (const DenseVector<V>& x)
{
assert(x.size() == size());
for (size_type i = 0; i < size(); ++i)
_data[i] = x[i];
}
//! Converting constructor from FieldVector with different element type
template<class OtherK>
requires (std::is_assignable_v<K&, const OtherK&>)
explicit constexpr FieldVector (const FieldVector<OtherK, SIZE>& x)
noexcept(std::is_nothrow_assignable_v<K&, const OtherK&>)
{
for (size_type i = 0; i < size(); ++i)
_data[i] = x[i];
}
//! Copy constructor with default behavior
constexpr FieldVector (const FieldVector&) = default;
//! Assignment from another dense vector
template<class V>
requires (IsFieldVectorSizeCorrect<V,SIZE>::value &&
std::is_assignable_v<K&, decltype(std::declval<const V&>()[0])>)
constexpr FieldVector& operator= (const DenseVector<V>& x)
{
assert(x.size() == size());
for (size_type i = 0; i < size(); ++i)
_data[i] = x[i];
return *this;
}
//! Assignment operator from scalar
template<Concept::Number S>
requires std::constructible_from<K,S>
constexpr FieldVector& operator= (const S& scalar)
noexcept(std::is_nothrow_constructible_v<K,S>)
{
_data.fill(K(scalar));
return *this;
}
//! Converting assignment operator from FieldVector with different element type
template<class OtherK>
requires (std::is_assignable_v<K&, const OtherK&>)
constexpr FieldVector& operator= (const FieldVector<OtherK, SIZE>& x)
noexcept(std::is_nothrow_assignable_v<K&, const OtherK&>)
{
for (size_type i = 0; i < size(); ++i)
_data[i] = x[i];
return *this;
}
//! Copy assignment operator with default behavior
constexpr FieldVector& operator= (const FieldVector&) = default;
/// \name Capacity
/// @{
//! Obtain the number of elements stored in the vector
static constexpr size_type size () noexcept { return SIZE; }
/// @}
/// \name Element access
/// @{
/**
* \brief Return a reference to the `i`th element.
* \throw RangeError if index `i` is out of range `[0,SIZE)` (only checked if DUNE_CHECK_BOUNDS is defined).
*/
constexpr reference operator[] (size_type i)
{
DUNE_ASSERT_BOUNDS(i < size());
return _data[i];
}
/**
* \brief Return a (const) reference to the `i`th element.
* \throw RangeError if index `i` is out of range `[0,SIZE)` (only checked if DUNE_CHECK_BOUNDS is defined).
*/
constexpr const_reference operator[] (size_type i) const
{
DUNE_ASSERT_BOUNDS(i < size());
return _data[i];
}
//! Return pointer to underlying array
constexpr K* data () noexcept
{
return _data.data();
}
//! Return pointer to underlying array
constexpr const K* data () const noexcept
{
return _data.data();
}
//! Conversion operator
constexpr operator const_reference () const noexcept
requires(SIZE == 1)
{
return _data[0];
}
//! Conversion operator
constexpr operator reference () noexcept
requires(SIZE == 1)
{
return _data[0];
}
/// @}
/// \name Comparison operators
/// @{
//! comparing FieldVectors<1> with scalar for equality
template<Concept::Number S>
friend constexpr bool operator== (const FieldVector& a, const S& b) noexcept
requires(SIZE == 1)
{
return a._data[0] == b;
}
//! comparing FieldVectors<1> with scalar for equality
template<Concept::Number S>
friend constexpr bool operator== (const S& a, const FieldVector& b) noexcept
requires(SIZE == 1)
{
return a == b._data[0];
}
//! three-way comparison of FieldVectors
template<class T>
requires (Std::three_way_comparable_with<K,T>)
friend constexpr auto operator<=> (const FieldVector& a, const FieldVector<T,SIZE>& b) noexcept
{
#if __cpp_lib_three_way_comparison
return a._data <=> b._data;
#else
return Std::lexicographical_compare_three_way(a.begin(), a.end(), b.begin(), b.end());
#endif
}
//! three-way comparison of FieldVectors<1> with scalar
template<Concept::Number S>
friend constexpr auto operator<=> (const FieldVector& a, const S& b) noexcept
requires(SIZE == 1)
{
return a._data[0] <=> b;
}
//! three-way comparison of FieldVectors<1> with scalar
template<Concept::Number S>
friend constexpr auto operator<=> (const S& a, const FieldVector& b) noexcept
requires(SIZE == 1)
{
return a <=> b._data[0];
}
/// @}
/// \name Vector space operations
/// @{
//! Vector space multiplication with scalar
template<Concept::Number S>
friend constexpr auto operator* (const FieldVector& a, const S& b) noexcept
{
using ResultValueType = typename PromotionTraits<K,S>::PromotedType;
FieldVector<ResultValueType,dimension> result;
for (size_type i = 0; i < size(); ++i)
result[i] = a[i] * b;
return result;
}
//! Vector space multiplication with scalar
template<Concept::Number S>
friend constexpr auto operator* (const S& a, const FieldVector& b) noexcept
{
using ResultValueType = typename PromotionTraits<K,S>::PromotedType;
FieldVector<ResultValueType,dimension> result;
for (size_type i = 0; i < size(); ++i)
result[i] = a * b[i];
return result;
}
//! Vector space division by scalar
template<Concept::Number S>
friend constexpr auto operator/ (const FieldVector& a, const S& b) noexcept
{
using ResultValueType = typename PromotionTraits<K,S>::PromotedType;
FieldVector<ResultValueType,dimension> result;
for (size_type i = 0; i < size(); ++i)
result[i] = a[i] / b;
return result;
}
//! Binary division, when using FieldVector<K,1> like K
template<Concept::Number S>
friend constexpr FieldVector operator/ (const S& a, const FieldVector& b) noexcept
requires(SIZE == 1)
{
return FieldVector{a / b[0]};
}
//! Binary addition, when using FieldVector<K,1> like K
template<Concept::Number S>
friend constexpr auto operator+ (const FieldVector& a, const S& b) noexcept
requires(SIZE == 1)
{
using ResultValueType = typename PromotionTraits<K,S>::PromotedType;
return FieldVector<ResultValueType,dimension>{a[0] + b};
}
//! Binary addition, when using FieldVector<K,1> like K
template<Concept::Number S>
friend constexpr auto operator+ (const S& a, const FieldVector& b) noexcept
requires(SIZE == 1)
{
using ResultValueType = typename PromotionTraits<K,S>::PromotedType;
return FieldVector<ResultValueType,dimension>{a + b[0]};
}
//! Binary subtraction, when using FieldVector<K,1> like K
template<Concept::Number S>
friend constexpr auto operator- (const FieldVector& a, const S& b) noexcept
requires(SIZE == 1)
{
using ResultValueType = typename PromotionTraits<K,S>::PromotedType;
return FieldVector<ResultValueType,dimension>{a[0] - b};
}
//! Binary subtraction, when using FieldVector<K,1> like K
template<Concept::Number S>
friend constexpr auto operator- (const S& a, const FieldVector& b) noexcept
requires(SIZE == 1)
{
using ResultValueType = typename PromotionTraits<K,S>::PromotedType;
return FieldVector<ResultValueType,dimension>{a - b[0]};
}
/// @}
};
/** \brief Read a FieldVector from an input stream
* \relates FieldVector
*
* \note This operator is STL compliant, i.e., the content of v is only
* changed if the read operation is successful.
*
* \param[in] in std :: istream to read from
* \param[out] v FieldVector to be read
*
* \returns the input stream (in)
*/
template<class K, int SIZE>
std::istream& operator>> (std::istream& in, FieldVector<K, SIZE>& v)
{
FieldVector<K, SIZE> w;
for (int i = 0; i < SIZE; ++i)
in >> w[i];
if (in)
v = w;
return in;
}
/* Overloads for common classification functions */
namespace MathOverloads {
//! Returns whether all entries are finite
template<class K, int SIZE>
auto isFinite (const FieldVector<K,SIZE>& b, PriorityTag<2>, ADLTag)
{
bool out = true;
for (int i = 0; i < SIZE; ++i) {
out &= Dune::isFinite(b[i]);
}
return out;
}
//! Returns whether any entry is infinite
template<class K, int SIZE>
bool isInf (const FieldVector<K,SIZE>& b, PriorityTag<2>, ADLTag)
{
bool out = false;
for (int i = 0; i < SIZE; ++i) {
out |= Dune::isInf(b[i]);
}
return out;
}
//! Returns whether any entry is NaN
template<class K, int SIZE,
std::enable_if_t<HasNaN<K>::value, int> = 0>
bool isNaN (const FieldVector<K,SIZE>& b, PriorityTag<2>, ADLTag)
{
bool out = false;
for (int i = 0; i < SIZE; ++i) {
out |= Dune::isNaN(b[i]);
}
return out;
}
//! Returns true if either b or c is NaN
template<class K,
std::enable_if_t<HasNaN<K>::value, int> = 0>
bool isUnordered (const FieldVector<K,1>& b, const FieldVector<K,1>& c,
PriorityTag<2>, ADLTag)
{
return Dune::isUnordered(b[0],c[0]);
}
} // end namespace MathOverloads
/** @} end documentation */
} // end namespace Dune
#endif // DUNE_COMMON_FVECTOR_HH
|