File: fvector.hh

package info (click to toggle)
dune-common 2.11.0-1~exp2
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 6,056 kB
  • sloc: cpp: 54,404; python: 4,136; sh: 1,657; makefile: 17
file content (482 lines) | stat: -rw-r--r-- 14,313 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
// SPDX-FileCopyrightInfo: Copyright © DUNE Project contributors, see file LICENSE.md in module root
// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
#ifndef DUNE_COMMON_FVECTOR_HH
#define DUNE_COMMON_FVECTOR_HH

#include <algorithm>
#include <array>
#include <cmath>
#include <concepts>
#include <cstdlib>
#include <cstring>
#include <type_traits>
#include <utility>
#include <initializer_list>

#include <dune/common/boundschecking.hh>
#include <dune/common/densevector.hh>
#include <dune/common/filledarray.hh>
#include <dune/common/ftraits.hh>
#include <dune/common/math.hh>
#include <dune/common/promotiontraits.hh>
#include <dune/common/typetraits.hh>
#include <dune/common/typeutilities.hh>
#include <dune/common/concepts/number.hh>
#include <dune/common/std/algorithm.hh>
#include <dune/common/std/compare.hh>

namespace Dune {

  /** @addtogroup DenseMatVec
      @{
   */

  /*! \file
   * \brief Implements a vector constructed from a given type
     representing a field and a compile-time given size.
   */

  template< class K, int SIZE > class FieldVector;
  template< class K, int SIZE >
  struct DenseMatVecTraits< FieldVector<K,SIZE> >
  {
    typedef FieldVector<K,SIZE> derived_type;
    typedef std::array<K,SIZE> container_type;
    typedef K value_type;
    typedef typename container_type::size_type size_type;
  };

  template< class K, int SIZE >
  struct FieldTraits< FieldVector<K,SIZE> >
  {
    typedef typename FieldTraits<K>::field_type field_type;
    typedef typename FieldTraits<K>::real_type real_type;
  };

  /**
   * @brief TMP to check the size of a DenseVectors statically, if possible.
   *
   * If the implementation type of C is  a FieldVector, we statically check
   * whether its dimension is SIZE.
   * @tparam C The implementation of the other DenseVector
   * @tparam SIZE The size we need assume.
   */
  template<typename C, int SIZE>
  struct IsFieldVectorSizeCorrect
  {
    /**
     * \brief True if C is not of type FieldVector or its dimension
     * is not equal SIZE.
     */
    constexpr static bool value = true;
  };

  template<typename T, int SIZE>
  struct IsFieldVectorSizeCorrect<FieldVector<T,SIZE>,SIZE>
  {
    constexpr static bool value = true;
  };

  template<typename T, int SIZE, int SIZE1>
  struct IsFieldVectorSizeCorrect<FieldVector<T,SIZE1>,SIZE>
  {
    constexpr static bool value = false;
  };


  /** \brief vector space out of a tensor product of fields.
   *
   * \tparam K    the field type (use float, double, complex, etc)
   * \tparam SIZE number of components.
   */
  template< class K, int SIZE >
  class FieldVector :
    public DenseVector< FieldVector<K,SIZE> >
  {
    using Base = DenseVector< FieldVector<K,SIZE> >;

    //! The container storage
    std::array<K,SIZE> _data;

  public:

    //! The size of this vector.
    static constexpr int dimension = SIZE;

    //! The type used for the index access and size operation
    using size_type = typename Base::size_type;

    //! The type of the elements stored in the vector
    using value_type = typename Base::value_type;

    //! The type used for references to the vector entries
    using reference = value_type&;

    //! The type used for const references to the vector entries
    using const_reference = const value_type&;

  public:

    //! Default constructor, making value-initialized vector with all components set to zero
    constexpr FieldVector ()
        noexcept(std::is_nothrow_default_constructible_v<K>)
      : _data{}
    {}

    //! Constructor with a given value initializing all entries to this value
    explicit(SIZE != 1)
    constexpr FieldVector (const value_type& value) noexcept
      : _data{filledArray<SIZE>(value)}
    {}

    //! Constructor with a given scalar initializing all entries to this value
    template<Concept::Number S>
      requires (std::constructible_from<K,S>)
    explicit(SIZE != 1)
    constexpr FieldVector (const S& scalar)
        noexcept(std::is_nothrow_constructible_v<K,S>)
      : _data{filledArray<SIZE,K>(K(scalar))}
    {}

    //! Construct from a std::initializer_list of values
    constexpr FieldVector (const std::initializer_list<K>& l)
      : _data{}
    {
      assert(l.size() == size());
      for (size_type i = 0; i < size(); ++i)
        _data[i] = std::data(l)[i];
    }

    //! Constructor from another dense vector if the elements are assignable to K
    template<class V>
      requires (IsFieldVectorSizeCorrect<V,SIZE>::value &&
        std::is_assignable_v<K&, decltype(std::declval<const V&>()[0])>)
    constexpr FieldVector (const DenseVector<V>& x)
    {
      assert(x.size() == size());
      for (size_type i = 0; i < size(); ++i)
        _data[i] = x[i];
    }

    //! Converting constructor from FieldVector with different element type
    template<class OtherK>
      requires (std::is_assignable_v<K&, const OtherK&>)
    explicit constexpr FieldVector (const FieldVector<OtherK, SIZE>& x)
        noexcept(std::is_nothrow_assignable_v<K&, const OtherK&>)
    {
      for (size_type i = 0; i < size(); ++i)
        _data[i] = x[i];
    }

    //! Copy constructor with default behavior
    constexpr FieldVector (const FieldVector&) = default;


    //! Assignment from another dense vector
    template<class V>
      requires (IsFieldVectorSizeCorrect<V,SIZE>::value &&
        std::is_assignable_v<K&, decltype(std::declval<const V&>()[0])>)
    constexpr FieldVector& operator= (const DenseVector<V>& x)
    {
      assert(x.size() == size());
      for (size_type i = 0; i < size(); ++i)
        _data[i] = x[i];
      return *this;
    }

    //! Assignment operator from scalar
    template<Concept::Number S>
      requires std::constructible_from<K,S>
    constexpr FieldVector& operator= (const S& scalar)
        noexcept(std::is_nothrow_constructible_v<K,S>)
    {
      _data.fill(K(scalar));
      return *this;
    }

    //! Converting assignment operator from FieldVector with different element type
    template<class OtherK>
      requires (std::is_assignable_v<K&, const OtherK&>)
    constexpr FieldVector& operator= (const FieldVector<OtherK, SIZE>& x)
        noexcept(std::is_nothrow_assignable_v<K&, const OtherK&>)
    {
      for (size_type i = 0; i < size(); ++i)
        _data[i] = x[i];
      return *this;
    }

    //! Copy assignment operator with default behavior
    constexpr FieldVector& operator= (const FieldVector&) = default;


    /// \name Capacity
    /// @{

    //! Obtain the number of elements stored in the vector
    static constexpr size_type size () noexcept { return SIZE; }

    /// @}


    /// \name Element access
    /// @{

    /**
     * \brief Return a reference to the `i`th element.
     * \throw RangeError if index `i` is out of range `[0,SIZE)` (only checked if DUNE_CHECK_BOUNDS is defined).
     */
    constexpr reference operator[] (size_type i)
    {
      DUNE_ASSERT_BOUNDS(i < size());
      return _data[i];
    }

    /**
     * \brief Return a (const) reference to the `i`th element.
     * \throw RangeError if index `i` is out of range `[0,SIZE)` (only checked if DUNE_CHECK_BOUNDS is defined).
     */
    constexpr const_reference operator[] (size_type i) const
    {
      DUNE_ASSERT_BOUNDS(i < size());
      return _data[i];
    }

    //! Return pointer to underlying array
    constexpr K* data () noexcept
    {
      return _data.data();
    }

    //! Return pointer to underlying array
    constexpr const K* data () const noexcept
    {
      return _data.data();
    }

    //! Conversion operator
    constexpr operator const_reference () const noexcept
        requires(SIZE == 1)
    {
      return _data[0];
    }

    //! Conversion operator
    constexpr operator reference () noexcept
        requires(SIZE == 1)
    {
      return _data[0];
    }

    /// @}


    /// \name Comparison operators
    /// @{

    //! comparing FieldVectors<1> with scalar for equality
    template<Concept::Number S>
    friend constexpr bool operator== (const FieldVector& a, const S& b) noexcept
        requires(SIZE == 1)
    {
      return a._data[0] == b;
    }

    //! comparing FieldVectors<1> with scalar for equality
    template<Concept::Number S>
    friend constexpr bool operator== (const S& a, const FieldVector& b) noexcept
        requires(SIZE == 1)
    {
      return a == b._data[0];
    }

    //! three-way comparison of FieldVectors
    template<class T>
      requires (Std::three_way_comparable_with<K,T>)
    friend constexpr auto operator<=> (const FieldVector& a, const FieldVector<T,SIZE>& b) noexcept
    {
#if __cpp_lib_three_way_comparison
      return a._data <=> b._data;
#else
      return Std::lexicographical_compare_three_way(a.begin(), a.end(), b.begin(), b.end());
#endif
    }

    //! three-way comparison of FieldVectors<1> with scalar
    template<Concept::Number S>
    friend constexpr auto operator<=> (const FieldVector& a, const S& b) noexcept
        requires(SIZE == 1)
    {
      return a._data[0] <=> b;
    }

    //! three-way comparison of FieldVectors<1> with scalar
    template<Concept::Number S>
    friend constexpr auto operator<=> (const S& a, const FieldVector& b) noexcept
        requires(SIZE == 1)
    {
      return a <=> b._data[0];
    }

    /// @}


    /// \name Vector space operations
    /// @{

    //! Vector space multiplication with scalar
    template<Concept::Number S>
    friend constexpr auto operator* (const FieldVector& a, const S& b) noexcept
    {
      using ResultValueType = typename PromotionTraits<K,S>::PromotedType;
      FieldVector<ResultValueType,dimension> result;
      for (size_type i = 0; i < size(); ++i)
        result[i] = a[i] * b;
      return result;
    }

    //! Vector space multiplication with scalar
    template<Concept::Number S>
    friend constexpr auto operator* (const S& a, const FieldVector& b) noexcept
    {
      using ResultValueType = typename PromotionTraits<K,S>::PromotedType;
      FieldVector<ResultValueType,dimension> result;
      for (size_type i = 0; i < size(); ++i)
        result[i] = a * b[i];
      return result;
    }

    //! Vector space division by scalar
    template<Concept::Number S>
    friend constexpr auto operator/ (const FieldVector& a, const S& b) noexcept
    {
      using ResultValueType = typename PromotionTraits<K,S>::PromotedType;
      FieldVector<ResultValueType,dimension> result;
      for (size_type i = 0; i < size(); ++i)
        result[i] = a[i] / b;
      return result;
    }

    //! Binary division, when using FieldVector<K,1> like K
    template<Concept::Number S>
    friend constexpr FieldVector operator/ (const S& a, const FieldVector& b) noexcept
        requires(SIZE == 1)
    {
      return FieldVector{a / b[0]};
    }

    //! Binary addition, when using FieldVector<K,1> like K
    template<Concept::Number S>
    friend constexpr auto operator+ (const FieldVector& a, const S& b) noexcept
        requires(SIZE == 1)
    {
      using ResultValueType = typename PromotionTraits<K,S>::PromotedType;
      return FieldVector<ResultValueType,dimension>{a[0] + b};
    }

    //! Binary addition, when using FieldVector<K,1> like K
    template<Concept::Number S>
    friend constexpr auto operator+ (const S& a, const FieldVector& b) noexcept
        requires(SIZE == 1)
    {
      using ResultValueType = typename PromotionTraits<K,S>::PromotedType;
      return FieldVector<ResultValueType,dimension>{a + b[0]};
    }

    //! Binary subtraction, when using FieldVector<K,1> like K
    template<Concept::Number S>
    friend constexpr auto operator- (const FieldVector& a, const S& b) noexcept
        requires(SIZE == 1)
    {
      using ResultValueType = typename PromotionTraits<K,S>::PromotedType;
      return FieldVector<ResultValueType,dimension>{a[0] - b};
    }

    //! Binary subtraction, when using FieldVector<K,1> like K
    template<Concept::Number S>
    friend constexpr auto operator- (const S& a, const FieldVector& b) noexcept
        requires(SIZE == 1)
    {
      using ResultValueType = typename PromotionTraits<K,S>::PromotedType;
      return FieldVector<ResultValueType,dimension>{a - b[0]};
    }

    /// @}
  };

  /** \brief Read a FieldVector from an input stream
   *  \relates FieldVector
   *
   *  \note This operator is STL compliant, i.e., the content of v is only
   *        changed if the read operation is successful.
   *
   *  \param[in]  in  std :: istream to read from
   *  \param[out] v   FieldVector to be read
   *
   *  \returns the input stream (in)
   */
  template<class K, int SIZE>
  std::istream& operator>> (std::istream& in, FieldVector<K, SIZE>& v)
  {
    FieldVector<K, SIZE> w;
    for (int i = 0; i < SIZE; ++i)
      in >> w[i];
    if (in)
      v = w;
    return in;
  }

  /* Overloads for common classification functions */
  namespace MathOverloads {

    //! Returns whether all entries are finite
    template<class K, int SIZE>
    auto isFinite (const FieldVector<K,SIZE>& b, PriorityTag<2>, ADLTag)
    {
      bool out = true;
      for (int i = 0; i < SIZE; ++i) {
        out &= Dune::isFinite(b[i]);
      }
      return out;
    }

    //! Returns whether any entry is infinite
    template<class K, int SIZE>
    bool isInf (const FieldVector<K,SIZE>& b, PriorityTag<2>, ADLTag)
    {
      bool out = false;
      for (int i = 0; i < SIZE; ++i) {
        out |= Dune::isInf(b[i]);
      }
      return out;
    }

    //! Returns whether any entry is NaN
    template<class K, int SIZE,
      std::enable_if_t<HasNaN<K>::value, int> = 0>
    bool isNaN (const FieldVector<K,SIZE>& b, PriorityTag<2>, ADLTag)
    {
      bool out = false;
      for (int i = 0; i < SIZE; ++i) {
        out |= Dune::isNaN(b[i]);
      }
      return out;
    }

    //! Returns true if either b or c is NaN
    template<class K,
      std::enable_if_t<HasNaN<K>::value, int> = 0>
    bool isUnordered (const FieldVector<K,1>& b, const FieldVector<K,1>& c,
                      PriorityTag<2>, ADLTag)
    {
      return Dune::isUnordered(b[0],c[0]);
    }

  } // end namespace MathOverloads

  /** @} end documentation */

} // end namespace Dune

#endif // DUNE_COMMON_FVECTOR_HH