1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
|
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
// SPDX-FileCopyrightText: Copyright © DUNE Project contributors, see file AUTHORS.md
// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception OR LGPL-3.0-or-later
#ifndef DUNE_FUNCTIONS_FUNCTIONSPACEBASES_ISTLVECTORBACKEND_HH
#define DUNE_FUNCTIONS_FUNCTIONSPACEBASES_ISTLVECTORBACKEND_HH
#include <cstddef>
#include <utility>
#include <type_traits>
#include <dune/common/std/type_traits.hh>
#include <dune/common/indices.hh>
#include <dune/common/hybridutilities.hh>
#include <dune/common/concept.hh>
#include <dune/functions/common/indexaccess.hh>
#include <dune/functions/functionspacebases/concepts.hh>
namespace Dune {
namespace Functions {
namespace Impl {
template<class V,
std::enable_if_t<not Dune::models<Imp::Concept::HasStaticIndexAccess, V>() , int> = 0>
auto fieldTypes(V&& /*v*/)
{
return TypeList<V>{};
}
template<class V,
std::enable_if_t<Dune::models<Imp::Concept::HasStaticIndexAccess, V>(), int> = 0>
auto fieldTypes(V&& v)
{
if constexpr (Dune::models<Imp::Concept::HasDynamicIndexAccess<std::size_t>, V>())
return fieldTypes(v[std::size_t{0}]);
else
{
auto indexRange = typename decltype(range(Hybrid::size(v)))::integer_sequence();
return unpackIntegerSequence([&](auto... i) {
return uniqueTypeList(std::tuple_cat(fieldTypes(v[i])...));
}, indexRange);
}
}
} // namespace Impl
/**
* \brief Generate list of field types in container
*
* This generates a Dune::TypeList of the field types
* in the given container type. To determine the field
* types, operator[] is called as often as passible with
* std::size_t or Dune::index_constant arguments. The return
* types obtained if no more operator[] call is available
* are returned as Dune::TypeList. Notice that possible duplicate
* entries are removed. However, const and reference qualifiers
* are deliberately preserved.
*/
template<class V>
constexpr auto fieldTypes()
{
return decltype(Impl::fieldTypes(std::declval<V>())){};
}
/**
* \brief Check if container has a unique field type
*
* This returns if fieldTypes<V>() has exactly one entry.
*/
template<class V>
constexpr bool hasUniqueFieldType()
{
return std::tuple_size_v<std::decay_t<decltype(fieldTypes<V>())>> ==1;
}
namespace Impl {
/*
* \brief A wrapper providing multi-index access to vector entries
*
* The wrapped vector type should be an istl like random
* access container providing operator[] and size() methods.
* For classical containers this should support indices
* of type std::size_t. For multi-type containers indices
* of the form Dune::index_constant<i> should be supported
* while size() should be a static constexpr method.
*
* When resolving multi-indices the backend appends indices
* using operator[] as long as the result is not a scalar.
* If this exhausts the digits of the multi-index, additional
* zero`s are appended.
*
* \tparam V Type of the raw wrapper vector
*/
template<class V>
class ISTLVectorBackend
{
// Template aliases for using detection idiom.
template<class C>
using dynamicIndexAccess_t = decltype(std::declval<C>()[0]);
template<class C>
using staticIndexAccess_t = decltype(std::declval<C>()[Dune::Indices::_0]);
template<class C>
using resizeMethod_t = decltype(std::declval<C>().resize(0));
// Short cuts for feature detection
template<class C>
using hasDynamicIndexAccess = Dune::Std::is_detected<dynamicIndexAccess_t, std::remove_reference_t<C>>;
template<class C>
using hasStaticIndexAccess = Dune::Std::is_detected<staticIndexAccess_t, std::remove_reference_t<C>>;
template<class C>
using hasResizeMethod = Dune::Std::is_detected<resizeMethod_t, std::remove_reference_t<C>>;
template<class C>
using isDynamicVector = Dune::Std::is_detected<dynamicIndexAccess_t, std::remove_reference_t<C>>;
template<class C>
using isStaticVector = Dune::Std::bool_constant<
Dune::Std::is_detected_v<staticIndexAccess_t, std::remove_reference_t<C>>
and not Dune::Std::is_detected_v<dynamicIndexAccess_t, std::remove_reference_t<C>>>;
template<class C>
using isScalar = Dune::Std::bool_constant<not Dune::Std::is_detected_v<staticIndexAccess_t, std::remove_reference_t<C>>>;
template<class C>
using isVector = Dune::Std::bool_constant<Dune::Std::is_detected_v<staticIndexAccess_t, std::remove_reference_t<C>>>;
template<class... Args>
static void forwardToResize(Args&&... args)
{
resize(std::forward<Args>(args)...);
}
template<class C, class SizeProvider,
std::enable_if_t<hasResizeMethod<C>::value, int> = 0>
static void resize(C&& c, const SizeProvider& sizeProvider, typename SizeProvider::SizePrefix prefix)
{
auto size = sizeProvider.size(prefix);
if (size==0)
{
// If size==0 this prefix refers to a single coefficient c.
// But being in this overload means that c is not a scalar
// because is has a resize() method. Since operator[] deliberately
// supports implicit padding of multi-indices by as many
// [0]'s as needed to resolve a scalar entry, we should also
// except a non-scalar c here. However, this requires that
// we silently believe that whatever size c already has is
// intended by the user. The only exception is c.size()==0
// which is not acceptable but we also cannot know the desired size.
if (c.size()==0)
DUNE_THROW(RangeError, "The vector entry v[" << prefix << "] should refer to a "
<< "scalar coefficient, but is a dynamically sized vector of size==0");
else
// Accept non-zero sized coefficients to avoid that resize(basis)
// fails for a vector that works with operator[] and already
// has the appropriate size.
return;
}
c.resize(size);
prefix.push_back(0);
for(std::size_t i=0; i<size; ++i)
{
prefix.back() = i;
resize(c[i], sizeProvider, prefix);
}
}
template<class C, class SizeProvider,
std::enable_if_t<not hasResizeMethod<C>::value, int> = 0,
std::enable_if_t<isVector<C>::value, int> = 0>
static void resize(C&& c, const SizeProvider& sizeProvider, typename SizeProvider::SizePrefix prefix)
{
auto size = sizeProvider.size(prefix);
// If size == 0 there's nothing to do:
// We can't resize c and it's already
// large enough anyway.
if (size == 0)
return;
// If size>0 but c does not have the appropriate
// size we throw an exception.
//
// We could perhaps also allow c.size()>size.
// But then looping the loop below gets complicated:
// We're not allowed to loop until c.size(). But
// we also cannot use size for termination,
// because this fails if c is a static vector.
if (c.size() != size)
DUNE_THROW(RangeError, "Can't resize non-resizable entry v[" << prefix << "] of size " << c.size() << " to size(" << prefix << ")=" << size);
// Recursively resize all entries of c now.
using namespace Dune::Hybrid;
prefix.push_back(0);
forEach(integralRange(Hybrid::size(c)), [&](auto&& i) {
prefix.back() = i;
// Here we'd simply like to call resize(c[i], sizeProvider, prefix);
// but even gcc-7 does not except this bus reports
// "error: ‘this’ was not captured for this lambda function"
// although there's no 'this' because we're in a static method.
// Bypassing this by and additional method that does perfect
// forwarding allows to workaround this.
ISTLVectorBackend<V>::forwardToResize(c[i], sizeProvider, prefix);
});
}
template<class C, class SizeProvider,
std::enable_if_t<not hasResizeMethod<C>::value, int> = 0,
std::enable_if_t<isScalar<C>::value, int> = 0>
static void resize(C&&, const SizeProvider& sizeProvider, typename SizeProvider::SizePrefix prefix)
{
auto size = sizeProvider.size(prefix);
if (size != 0)
DUNE_THROW(RangeError, "Can't resize scalar vector entry v[" << prefix << "] to size(" << prefix << ")=" << size);
}
template<class C, class T,
std::enable_if_t<std::is_assignable_v<C&,T>, int> = 0>
void recursiveAssign(C& c, const T& t)
{
c = t;
}
template<class C, class T,
std::enable_if_t<not std::is_assignable_v<C&,T>, int> = 0>
void recursiveAssign(C& c, const T& t)
{
Dune::Hybrid::forEach(c, [&](auto&& ci) {
recursiveAssign(ci, t);
});
}
public:
using Vector = V;
ISTLVectorBackend(Vector& vector) :
vector_(&vector)
{}
template<class SizeProvider>
void resize(const SizeProvider& sizeProvider)
{
auto prefix = typename SizeProvider::SizePrefix();
prefix.resize(0);
resize(*vector_, sizeProvider, prefix);
}
template<class MultiIndex>
decltype(auto) operator[](const MultiIndex& index) const
{
return resolveDynamicMultiIndex(*vector_, index);
}
template<class MultiIndex>
decltype(auto) operator[](const MultiIndex& index)
{
return resolveDynamicMultiIndex(*vector_, index);
}
/**
* \brief Assign value to wrapped vector
*
* If the wrapped vector type supports assignment from T,
* then this is used. Otherwise assignment is done by recursively
* assigning all entries from T. The recursion stops for
* the first nested entry type which is assignable from T.
*/
template<typename T>
void operator= (const T& other)
{
recursiveAssign(vector(), other);
}
template<typename T>
void operator= (const ISTLVectorBackend<T>& other)
{
vector() = other.vector();
}
const Vector& vector() const
{
return *vector_;
}
Vector& vector()
{
return *vector_;
}
private:
Vector* vector_;
};
} // end namespace Impl
/**
* \brief Return a vector backend wrapping non-const ISTL like containers
*
* \ingroup FunctionSpaceBasesUtilities
*
* The returned object implements the VectorBackend concept and
* can be used for all dune-functions
* utilities requiring a coefficient vector (e.g. interpolate()
* and DiscreteGlobalBasisFunction). It essentially provides
* operator[] access using multi-indices and a recursive
* resize(GlobalBasis) method for adjusting the size to a
* given GlobalBasis.
*
* Additionally to the VectorBackend interface, provides access
* to the wrapped vector using the method vector() and forwards
* all assignments to the underlying wrapped vector.
*
* The wrapped vector type should be a nested ISTL like random
* access container providing operator[] and size() methods.
* For classical containers this should support indices
* of type std::size_t. For multi-type containers indices
* of the form Dune::index_constant<i> should be supported
* while size() should be a static constexpr method.
*
* When accessing the vector with a multi-index the backend
* appends multi-index digits using operator[] as long as the
* result is not a scalar. If this exhausts all digits of the
* multi-index, additional zero`s are appended.
*
* \tparam V Type of the raw wrapper vector
*/
template<class Vector>
auto istlVectorBackend(Vector& v)
{
static_assert(hasUniqueFieldType<Vector&>(), "Vector type passed to istlVectorBackend() does not have a unique field type.");
return Impl::ISTLVectorBackend<Vector>(v);
}
/**
* \brief Return a vector backend wrapping const ISTL like containers
*
* \ingroup FunctionSpaceBasesUtilities
*
* The returned object implements the VectorBackend concept and
* can be used for all dune-functions
* utilities requiring a coefficient vector (e.g. interpolate()
* and DiscreteGlobalBasisFunction. It essentially provides
* operator[] access using multi-indices and a recursive
* resize(GlobalBasis) method for adjusting the size to a given GlobalBasis.
*
* Additionally to the VectorBackend interface, provides access
* to the wrapped vector using the method vector().
*
* The wrapped vector type should be a nested ISTL like random
* access container providing operator[] and size() methods.
* For classical containers this should support indices
* of type std::size_t. For multi-type containers indices
* of the form Dune::index_constant<i> should be supported
* while size() should be a static constexpr method.
*
* When accessing the vector with a multi-index the backend
* appends multi-index digits using operator[] as long as the
* result is not a scalar. If this exhausts all digits of the
* multi-index, additional zero`s are appended.
*
* \tparam V Type of the raw wrapper vector
*/
template<class Vector>
auto istlVectorBackend(const Vector& v)
{
static_assert(hasUniqueFieldType<const Vector&>(), "Vector type passed to istlVectorBackend() does not have a unique field type.");
return Impl::ISTLVectorBackend<const Vector>(v);
}
} // namespace Functions
} // namespace Dune
#endif // DUNE_FUNCTIONS_FUNCTIONSPACEBASES_ISTLVECTORBACKEND_HH
|