File: indexaccess.hh

package info (click to toggle)
dune-functions 2.10.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,544 kB
  • sloc: cpp: 14,241; python: 661; makefile: 3
file content (433 lines) | stat: -rw-r--r-- 12,544 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:

// SPDX-FileCopyrightText: Copyright © DUNE Project contributors, see file AUTHORS.md
// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception OR LGPL-3.0-or-later

#ifndef DUNE_FUNCTIONS_COMMON_INDEX_ACCESS_HH
#define DUNE_FUNCTIONS_COMMON_INDEX_ACCESS_HH


#include <utility>
#include <type_traits>

#include <dune/common/typetraits.hh>
#include <dune/common/concept.hh>
#include <dune/common/hybridutilities.hh>

#include <dune/functions/common/utility.hh>



namespace Dune {
namespace Functions {


namespace Imp {

namespace Concept {

template<class size_type>
struct HasDynamicIndexAccess
{
  template<class C>
  auto require(C&& c) -> decltype(
    c[std::declval<size_type>()]
  );
};

struct HasStaticIndexAccess
{
  template<class C>
  auto require(C&& c) -> decltype(
    c[Dune::Indices::_0]
  );
};

} // namespace Concept

} // namespace Imp



/**
 * \brief Provide operator[] index-access for containers
 *
 * \ingroup Utility
 *
 * This is the overload for types providing a operator[]
 * for dynamic std::size_t arguments.
 *
 * \param c Container to access
 * \param i The index to use for accessing the container
 * \param f A functor to call with the result of operator[]
 */
template<class C, class I, class F,
  std::enable_if_t< Dune::models<Imp::Concept::HasDynamicIndexAccess<I>, C>(), int> = 0>
auto hybridIndexAccess(C&& c, const I& i, F&& f)
  -> decltype(f(c[i]))
{
  return f(c[i]);
}

/**
 * \brief Provide operator[] index-access for containers
 *
 * \ingroup Utility
 *
 * This is the overload for types providing a operator[]
 * only for static arguments of type std::integral_constant<std::size_t,k>.
 * This does a static linear search until a static index
 * matching the given dynamic index is found.
 * Since the result type will in general be different
 * for different indices the method does not return
 * the result directly but passes it to a given functor.
 *
 * \param c Container to access
 * \param i The index to use for accessing the container
 * \param f A functor to call with the result of operator[]
 */
template<class C, class I, class F,
  std::enable_if_t< not Dune::models<Imp::Concept::HasDynamicIndexAccess<I>, C>(), int> = 0>
decltype(auto) hybridIndexAccess(C&& c, const I& i, F&& f)
{
  using Size = decltype(Hybrid::size(c));
  return Hybrid::switchCases(std::make_index_sequence<Size::value>(), i,
      [&](const auto& ii) -> decltype(auto){
        return f(c[ii]);
      }, [&]() -> decltype(auto){
        return f(c[Dune::Indices::_0]);
      });
}


namespace Imp {

  /**
   * \brief Class representing a shifted multi index
   *
   * \tparam Index Type of the base multi index
   * \tparam offset Number of positions to shift left
   *
   * For a given multi index of size n this
   * represents a multi index with the first
   * offset entries removed.
   *
   * Notice that this does only store a reference to
   * the passed multi index.
   */
  template<class Index, std::size_t offset=1>
  class ShiftedDynamicMultiIndex
  {
  public:
    ShiftedDynamicMultiIndex(const Index& index) :
      index_(index)
    {}

    std::size_t operator[](std::size_t position) const
    {
      if (position<size())
        return index_[position+offset];
      else
        return 0;
    }

    /**
     * \brief Return multi index with one more position truncated
     */
    ShiftedDynamicMultiIndex<Index, offset+1> pop() const
    {
      return {index_};
    }

    std::size_t size() const
    {
      if (offset < index_.size())
        return index_.size() - offset;
      else
        return 0;
    }

    const Index& originalIndex() const
    {
      return index_;
    }

  private:
    const Index& index_;
  };

  template<class Index, std::size_t offset=1>
  class ShiftedStaticMultiIndex
  {
  public:
    ShiftedStaticMultiIndex(const Index& index) :
      index_(index)
    {}

    template<std::size_t i>
    auto operator[](Dune::index_constant<i>) const
    {
      if constexpr (i<size()) {
        return index_[Dune::index_constant<i+offset>{}];
      } else {
        return Dune::index_constant<0>{};
      }
    }

    /**
     * \brief Return multi index with one more position truncated
     */
    ShiftedStaticMultiIndex<Index, offset+1> pop() const
    {
      return {index_};
    }

    static constexpr std::size_t size()
    {
      auto fullSize = decltype(Hybrid::size(std::declval<Index>()))::value;
      if (offset < fullSize)
        return fullSize - offset;
      else
        return 0;
    }

  private:
    const Index& index_;
  };

  /**
   * \brief Create a ShiftedDynamicMultiIndex
   *
   * \tparam offset Number of positions to shift left
   */
  template<std::size_t offset, class Index>
  ShiftedDynamicMultiIndex<Index, offset> shiftedDynamicMultiIndex(const Index& index)
  {
    return {index};
  }

  /**
   * \brief Create a ShiftedDynamicMultiIndex
   *
   * \tparam offset Number of positions to shift left
   *
   * This overload ensures that shifting a multi index twice will not
   * nest the shifting wrapper but add the offsets.
   */
  template<std::size_t offset, class Index, std::size_t oldOffset>
  ShiftedDynamicMultiIndex<Index, offset+oldOffset> shiftedDynamicMultiIndex(const ShiftedDynamicMultiIndex<Index, oldOffset>& index)
  {
    return {index.originalIndex()};
  }

  template<std::size_t offset, class Index>
  ShiftedStaticMultiIndex<Index, offset> shiftedStaticMultiIndex(const Index& index)
  {
    return {index};
  }

} // namespace Imp




namespace Imp {

template<class Result, class Index>
struct MultiIndexResolver
{
  MultiIndexResolver(const Index& index) :
    index_(index)
  {}

  template<class C,
    std::enable_if_t<not std::is_convertible_v<C&, Result>, int> = 0>
  Result operator()(C&& c)
  {
    auto&& subIndex = Imp::shiftedDynamicMultiIndex<1>(index_);
    auto&& subIndexResolver = MultiIndexResolver<Result, decltype(subIndex)>(subIndex);
    return (Result)(hybridIndexAccess(c, index_[Dune::Indices::_0], subIndexResolver));
  }

  template<class C,
    std::enable_if_t<std::is_convertible_v<C&, Result>, int> = 0>
  Result operator()(C&& c)
  {
    return (Result)(std::forward<C>(c));
  }

  const Index& index_;
};

} // namespace Imp



/**
 * \brief Provide multi-index access by chaining operator[]
 *
 * \ingroup Utility
 *
 * This provides access to a nested container by given
 * multi-index. Internally this is resolved by recursive
 * operator[]-calls with static or dynamic indices.
 * Because this recursion must be terminated using a
 * compile-time criterion, the result type must explicitly
 * be provided. The recursion will terminate once the
 * result can be converted to this result type.
 *
 * \tparam Result Type of result
 *
 * \param c Container to access
 * \param index Multi-index
 */
template<class Result, class C, class MultiIndex>
Result hybridMultiIndexAccess(C&& c, const MultiIndex& index)
{

  Imp::MultiIndexResolver<Result, MultiIndex> multiIndexResolver(index);
  return multiIndexResolver(c);
}






namespace Imp {

  template<class C, class MultiIndex, class IsFinal>
  constexpr decltype(auto) resolveDynamicMultiIndex(C&& c, const MultiIndex& multiIndex, const IsFinal& isFinal)
  {
    // If c is already considered final simply return it,
    // else resolve the next multiIndex entry.
    return Hybrid::ifElse(isFinal(c), [&, c = forwardCapture(std::forward<C>(c))](auto) -> decltype(auto) {
      assert(multiIndex.size() == 0);
      return c.forward();
    }, [&](auto) -> decltype(auto) {
      auto hasDynamicAccess = callableCheck([](auto&& cc) -> std::void_t<decltype(cc[0])> {});

      // Split multiIndex into first entry and remaining ones.
      auto i = multiIndex[0];
      auto tail = multiIndex.pop();

      // Resolve first multiIndex entry by c[multiIndex[0]] and
      // continue resolving with the remaining remaining ones.
      // If c has a dynamic operator[] this is straight forward.
      // Else the dynamic multiIndex[0] has to be translated into
      // a static one using hybridIndexAccess.
      return Hybrid::ifElse(hasDynamicAccess(c), [&](auto id) -> decltype(auto) {
        return Imp::resolveDynamicMultiIndex(id(c)[i], tail, isFinal);
      }, [&](auto id) -> decltype(auto) {
        // auto indexRange = range(Hybrid::size(id(c)));
        auto indexRange = typename decltype(range(Hybrid::size(id(c))))::integer_sequence();
        return Hybrid::switchCases(indexRange, i, [&](auto static_i) -> decltype(auto){
          // Do rescursion with static version of i
          return Imp::resolveDynamicMultiIndex(id(c)[static_i], tail, isFinal);
        }, [&]() -> decltype(auto){
          // As fallback we use c[0] this is needed, because there must be one branch that matches.
          return Imp::resolveDynamicMultiIndex(id(c)[Dune::Indices::_0], tail, isFinal);
        });
      });
    });
  }

  template<class C, class MultiIndex>
  constexpr decltype(auto) resolveStaticMultiIndex(C&& c, const MultiIndex& multiIndex)
  {
    auto isExhausted = Hybrid::equal_to(Hybrid::size(multiIndex), Dune::Indices::_0);
    return Hybrid::ifElse(isExhausted, [&, c = forwardCapture(std::forward<C>(c))](auto) -> decltype(auto) {
      return c.forward();
    }, [&](auto id) -> decltype(auto) {
      auto head = multiIndex[Dune::Indices::_0];
      auto tail = multiIndex.pop();

      return Imp::resolveStaticMultiIndex(id(c)[head], tail);
    });
  }

} // namespace Imp



/**
 * \brief Provide multi-index access by chaining operator[]
 *
 * \ingroup Utility
 *
 * This provides access to a nested container by given dynamically sized
 * multi-index. Internally this is resolved by recursive
 * operator[]-calls with static or dynamic indices.
 * Because this recursion must be terminated, a predicate
 * is used to determine if a type is considered final for the
 * multi-index resolution. Hence multi-index resolution is
 * terminated for values where the criterion matches.
 * In order to do this statically the predicate has to
 * return its result as std::true_type or std::false_type.
 *
 * If the entries of the multi-index are exhausted, additional
 * [0] entries are used until the termination criterion is satisfied.
 *
 * \param c Container to access
 * \param index Multi-index
 * \param isFinal A predicate function checking if recursion should be terminated.
 */
template<class C, class MultiIndex, class IsFinal>
constexpr decltype(auto) resolveDynamicMultiIndex(C&& c, const MultiIndex& multiIndex, const IsFinal& isFinal)
{
  return Imp::resolveDynamicMultiIndex(std::forward<C>(c), Imp::shiftedDynamicMultiIndex<0>(multiIndex), isFinal);
}

/**
 * \brief Provide multi-index access by chaining operator[]
 *
 * \ingroup Utility
 *
 * This provides access to a nested container by given dynamically sized
 * multi-index. Internally this is resolved by recursive
 * operator[]-calls with static or dynamic indices.
 * Because this recursion must be terminated, a predicate
 * is used to determine if a type is considered final for the
 * multi-index resolution. This version terminates the recursion
 * on values that neither have a static nor a dynamic operator[].
 *
 * \param c Container to access
 * \param index Multi-index
 */
template<class C, class MultiIndex>
constexpr decltype(auto) resolveDynamicMultiIndex(C&& c, const MultiIndex& multiIndex)
{
  auto hasNoIndexAccess = negatePredicate(callableCheck([](auto&& cc) -> std::void_t<decltype(cc[Dune::Indices::_0])> {}));
  return Imp::resolveDynamicMultiIndex(std::forward<C>(c), Imp::shiftedDynamicMultiIndex<0>(multiIndex), hasNoIndexAccess);
}

/**
 * \brief Provide multi-index access by chaining operator[]
 *
 * \ingroup Utility
 *
 * This provides access to a nested container by given statically sized
 * multi-index. Internally this is resolved by recursive
 * operator[]-calls with static or dynamic indices.
 * Since the multi-index must have compile-time known size
 * it is possible, that values resolved by different multi-indices
 * have a different size.
 *
 * \param c Container to access
 * \param index Multi-index
 */
template<class C, class MultiIndex>
constexpr decltype(auto) resolveStaticMultiIndex(C&& c, const MultiIndex& multiIndex)
{
  return Imp::resolveStaticMultiIndex(std::forward<C>(c), Imp::shiftedStaticMultiIndex<0>(multiIndex));
}



} // namespace Dune::Functions
} // namespace Dune



#endif // DUNE_FUNCTIONS_COMMON_INDEX_ACCESS_HH