File: utility.hh

package info (click to toggle)
dune-functions 2.10.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,544 kB
  • sloc: cpp: 14,241; python: 661; makefile: 3
file content (387 lines) | stat: -rw-r--r-- 11,086 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:

// SPDX-FileCopyrightText: Copyright © DUNE Project contributors, see file AUTHORS.md
// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception OR LGPL-3.0-or-later

#ifndef DUNE_FUNCTIONS_COMMON_UTILITY_HH
#define DUNE_FUNCTIONS_COMMON_UTILITY_HH


#include <utility>
#include <type_traits>

#include <dune/common/overloadset.hh>
#include <dune/common/indices.hh>

#include <dune/functions/common/functionconcepts.hh>

namespace Dune {
namespace Functions {



template<class F, class size_type, size_type firstValue, class... Args>
auto forwardAsStaticInteger(std::integer_sequence<size_type, firstValue> values, const size_type& i, F&& f, Args&&... args)
  ->decltype(f(std::integral_constant<size_type, firstValue>(), std::forward<Args>(args)...))
{
  return f(std::integral_constant<size_type, firstValue>(), std::forward<Args>(args)...);
}

template<class F, class size_type, size_type firstValue, size_type secondValue, size_type... otherValues, class... Args>
auto forwardAsStaticInteger(std::integer_sequence<size_type, firstValue, secondValue, otherValues...> values, const size_type i, F&& f, Args&&... args)
  ->decltype(f(std::integral_constant<size_type, firstValue>(), std::forward<Args>(args)...))
{
  if (i==firstValue)
    return f(std::integral_constant<size_type, firstValue>(), std::forward<Args>(args)...);
  return forwardAsStaticInteger(std::integer_sequence<size_type, secondValue, otherValues...>(), i, std::forward<F>(f), std::forward<Args>(args)...);
}



/**
 * \brief Transform dynamic index to static index_constant
 *
 * \ingroup Utility
 *
 * This will call the given function with index_constant<i>
 * where i is the dynamically provided index.
 *
 * To achieve this the condition i==ii is checked subsequently
 * for al static indices ii in the range 0,...,(end-1). In order
 * to be able to compile this we require for all ii in this range
 * that f(index_constant<ii>()) is well-formed and that the result
 * type of it can be converted to the result type of f(index_constant<0>()).
 * If i is not in this range, the returned value is f(index_constant<n-1>())
 *
 * \param i Dynamic index
 * \param f Function to call (e.g., a generic lambda)
 * \param args Additional arguments for f
 *
 * \returns f(index_constant<i>(), args...)
 */
template<std::size_t end, class F, class size_type, class... Args>
auto forwardAsStaticIndex(const size_type& i, F&& f, Args&&... args)
  ->decltype(f(Dune::Indices::_0, std::forward<Args>(args)...))
{
  return forwardAsStaticInteger(std::make_index_sequence<end>{}, i, std::forward<F>(f), std::forward<Args>(args)...);
}



namespace Imp {

  template<template<class...> class T, class List>
  struct ExpandTupleHelper
  {};

  template<template<class...> class T, template<class...> class ListType, class... Args>
  struct ExpandTupleHelper<T, ListType<Args...>>
  {
    using Type = T<Args...>;
  };

} // end namespace Imp

/**
 * \brief Expand tuple arguments as template arguments
 *
 * \ingroup Utility
 *
 * This template alias refers to T<Args...> if
 * ArgTuple is a std::tuple<Args...>.
 *
 * \tparam T A variadic template
 * \tparam ArgTuple A tuple of types
 */
template<template<class...> class T, class ArgTuple>
using ExpandTuple = typename Imp::ExpandTupleHelper<T, ArgTuple>::Type;



namespace Imp {

  template<template<class...> class T, class... Tuple>
  struct TransformTupleHelper
  {};

  template<template<class...> class T, class... Args1>
  struct TransformTupleHelper<T, typename std::tuple<Args1...>>
  {
    using Type = std::tuple<T<Args1>...>;
  };

  template<template<class...> class T, class... Args1, class... Args2>
  struct TransformTupleHelper<T, typename std::tuple<Args1...>, typename std::tuple<Args2...>>
  {
    using Type = std::tuple<T<Args1, Args2>...>;
  };

} // end namespace Imp

/**
 * \brief Transform tuple types argument using type-functor
 *
 * \ingroup Utility
 *
 * This is a template alias for a tuple whose i-th type
 * is given by F<T1i,...,TMi> where T1i,...,TMi are the
 * i-th types of the 1,...,M-th tuple of the given tuple
 * list Tuples. Currently only M=1,2 are supported.
 * \tparam F A template alias mapping 1,...,sizeof...(ArgTuple) types to a new one
 * \tparam Tuples A list of tuples
 */
template<template<class...> class F, class... Tuples>
using TransformTuple = typename Imp::TransformTupleHelper<F, Tuples...>::Type;



namespace Imp {

  template<class F, class... T, std::size_t... k>
  auto transformTupleHelper(F&& f, const std::tuple<T...>& tuple, std::index_sequence<k...>)
    -> decltype(std::make_tuple(f(std::get<k>(tuple))...))
  {
    return std::make_tuple(f(std::get<k>(tuple))...);
  }

  template<class F, class... T1, class...T2, std::size_t... k>
  auto transformTupleHelper(F&& f, const std::tuple<T1...>& tuple1, const std::tuple<T2...>& tuple2, std::index_sequence<k...>)
    -> decltype(std::make_tuple(f(std::get<k>(tuple1), std::get<k>(tuple2))...))
  {
    return std::make_tuple(f(std::get<k>(tuple1), std::get<k>(tuple2))...);
  }

} // end namespace Imp

/**
 * \brief Transform tuple value using a functor
 *
 * \ingroup Utility
 *
 * This will apply the given functor to all values in
 * given tuple and return the results in a new tuple.
 *
 * \param F A functor defined for all tuple entries
 * \param tuple The tuple to transform
 */
template<class F, class... T>
auto transformTuple(F&& f, const std::tuple<T...>& tuple)
  -> decltype(Imp::transformTupleHelper(std::forward<F>(f), tuple, std::index_sequence_for<T...>{}))
{
  return Imp::transformTupleHelper(std::forward<F>(f), tuple, std::index_sequence_for<T...>{});
}

/**
 * \brief Transform tuple value using a binary functor
 *
 * \ingroup Utility
 *
 * This will apply the given functor to the each corresponding
 * pair of values in the given tuples and return the results
 * in a new tuple.
 *
 * \param F A functor defined for all tuple entries
 * \param tuple1 The tuple containing values for the first parameter
 * \param tuple2 The tuple containing values for the second parameter
 */
template<class F, class... T1, class... T2>
auto transformTuple(F&& f, const std::tuple<T1...>& tuple1, const std::tuple<T2...>& tuple2)
  -> decltype(Imp::transformTupleHelper(std::forward<F>(f), tuple1, tuple2, std::index_sequence_for<T1...>{}))
{
  return Imp::transformTupleHelper(std::forward<F>(f), tuple1, tuple2, std::index_sequence_for<T1...>{});
}



namespace Imp {

  template<class IntegerSequence>
  struct IntegerSequenceTupleHelper
  {};

  template<class I, I... k>
  struct IntegerSequenceTupleHelper<std::integer_sequence<I, k...>>
  {
    using Type = std::tuple<std::integral_constant<I, k>...>;
  };

} // end namespace Imp

/**
 * \brief Transform integer_sequence<I,k...> to tuple<integral_constant<I,k>...>
 */
template<class IntegerSequence>
using IntegerSequenceTuple= typename Imp::IntegerSequenceTupleHelper<IntegerSequence>::Type;



/**
 * \brief Get last entry of type list
 *
 * \ingroup Utility
 */
template<class... T>
struct LastType
{
  using type = std::tuple_element_t<sizeof...(T)-1, std::tuple<T...>>;
};



namespace Imp {

template<class T, class I>
struct RotateHelper;

template<class... T, std::size_t... I>
struct RotateHelper<std::tuple<T...>, std::index_sequence<I...> >
{
  using type = typename std::tuple<typename LastType<T...>::type, std::tuple_element_t<I,std::tuple<T...>>...>;
};

} // end namespace Imp


/**
 * \brief Rotate type list by one, such that last entry is moved to first position
 *
 * \ingroup Utility
 *
 * The rotated type list is exported as tuple
 */
template<class... T>
struct RotateTuple
{
  using type = typename Imp::RotateHelper<std::tuple<T...>, std::make_index_sequence<sizeof...(T)-1>>::type;
};



/**
 * \brief Create a predicate for checking validity of expressions
 *
 * \param f A function involving the expression to check.
 *
 * This returns a function object that allows to check if the
 * expression encoded in f is valid for the given arguments.
 * To be precise it checks if f can be called using the given arguments.
 * This can be used in the following way: To generate a check if the
 * expression x(a,b) is valid for some a and b use:
 *
 \code{.cpp}
 auto xIsValid = callableCheck([](auto&& a, auto&& b) -> std::void_t<decltype(x(a,b))> {});
 if (xIsValid(a,b))
   ...
 \endcode
 *
 * Notice that the given function f is stored by value.
 *
 * \ingroup Utility
 */
template<class Expression>
auto callableCheck(Expression f)
{
  return [f](auto&&... args){
    return Functions::Concept::isCallable(f, std::forward<decltype(args)>(args)...);
  };
}



/**
 * \brief Negate given predicate
 *
 * \param f A predicate function to negate
 *
 * This returns a function havin the same parameters as
 * f, but negating the result. Negation here means that
 * std::true_type is converted to std::false_type are
 * vice verse, while other return values are converted to
 * bool values and then the negated value is returned as bool, too.
 *
 * Notice that the given function f is stored by value.
 *
 * \ingroup Utility
 */
template<class Check>
auto negatePredicate(Check check)
{
  return [check](auto&&... args){
    auto negate = overload(
        [](std::true_type) { return std::false_type{};},
        [](std::false_type) { return std::true_type{};},
        [](bool v) { return not v;});
    return negate(check(std::forward<decltype(args)>(args)...));
  };
}


namespace Impl {

  // Wrapper to capture values in a lambda for perfect forwarding.
  // This captures value types by value and reference types by reference.
  template <typename T>
  struct ForwardCaptureWrapper;

  template <typename T>
  struct ForwardCaptureWrapper
  {
    template <typename TT>
    ForwardCaptureWrapper(TT&& t) : t_{std::forward<TT>(t)} {}

    auto forward() const { return std::move(t_); }

    T t_;
  };

  template <typename T>
  struct ForwardCaptureWrapper<T&>
  {
    ForwardCaptureWrapper(T& t) : t_{t} {}

    T& forward() const { return t_; };

    T& t_;
  };

  template <typename T>
  struct ForwardCaptureWrapper<const T&>
  {
    ForwardCaptureWrapper(const T& t) : t_{t} {}

    const T& forward() const { return t_; };

    const T& t_;
  };

} // end namespace Dune::Functions::Impl



/**
 * \brief Create a capture object for perfect forwarding.
 *
 * The returned object will capture the passed argument t.
 * If t is passed as r-value, then it is captured by value,
 * otherwise by reference. The captured value is accessible
 * once using the forward() method which either returns the
 * catured reference or moves the captured value.
 *
 * This allows to capture values for perfect forwarding
 * in lambda functions using
 * [t=forwardCapture(std::forward<T>(t))]() -> decltype(auto) { return t.forward(); }
 */
template <class T>
auto forwardCapture(T&& t)
{
    return Impl::ForwardCaptureWrapper<T>(std::forward<T>(t));
}



} // namespace Dune::Functions
} // namespace Dune


#endif // DUNE_FUNCTIONS_COMMON_UTILITY_HH