File: poisson-mfem.py

package info (click to toggle)
dune-functions 2.10.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,544 kB
  • sloc: cpp: 14,241; python: 661; makefile: 3
file content (362 lines) | stat: -rw-r--r-- 13,617 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
# SPDX-FileCopyrightText: Copyright © DUNE Project contributors, see file AUTHORS.md
# SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception OR LGPL-3.0-or-later

import numpy
import scipy.sparse.linalg
from scipy.sparse import lil_matrix
from io import StringIO

import dune.geometry
import dune.grid as grid
import dune.functions as functions

# Compute the stiffness matrix for a single element
def getLocalMatrix(localView):

    n = len(localView)    # Number of local degrees of freedom (flux + pressure)

    # Get the grid element from the local FE basis view
    element = localView.element()

    # Make dense element stiffness matrix
    elementMatrix = numpy.zeros((n,n))

    # Get set of shape functions for this element
    fluxLocalFiniteElement     = localView.tree().child(0).finiteElement()
    pressureLocalFiniteElement = localView.tree().child(1).finiteElement()

    # The actual shape functions on the reference element
    localFluxBasis = fluxLocalFiniteElement.localBasis
    localPressureBasis = pressureLocalFiniteElement.localBasis

    nFlux = len(fluxLocalFiniteElement)
    nPressure = len(pressureLocalFiniteElement)

    # Get a quadrature rule
    fluxOrder = dim*fluxLocalFiniteElement.localBasis.order
    pressureOrder = dim*pressureLocalFiniteElement.localBasis.order
    quadOrder = numpy.max((2*fluxOrder, (fluxOrder-1)+pressureOrder))

    quadRule = dune.geometry.quadratureRule(element.type, quadOrder)

    # Loop over all quadrature points
    for quadPoint in quadRule:

        # Position of the current quadrature point in the reference element
        quadPos = quadPoint.position

        # The inverse Jacobian of the map from the reference element to the element
        geometryJacobianInverse = element.geometry.jacobianInverse(quadPos)

        # The multiplicative factor in the integral transformation formula
        integrationElement = element.geometry.integrationElement(quadPos)

        # --------------------------------------------------------------
        #  Shape functions - flux
        # --------------------------------------------------------------

        # Values of the flux shape functions on the current element
        fluxValues = localFluxBasis.evaluateFunction(quadPos)

        # Gradients of the flux shape function gradients on the reference element
        fluxReferenceJacobians = localFluxBasis.evaluateJacobian(quadPos)

        fluxDivergence = numpy.zeros(nFlux)

        # Domain transformation of Jacobians and computation of div = trace(Jacobian)
        # TODO: Extend the Dune Python interface to allow to do this without casting to numpy.array
        for i in range(nFlux):
            fluxDivergence[i] = numpy.trace(numpy.array(fluxReferenceJacobians[i]) * geometryJacobianInverse)

        # --------------------------------------------------------------
        #  Shape functions - pressure
        # --------------------------------------------------------------

        # Values of the pressure shape functions
        pressureValues = localPressureBasis.evaluateFunction(quadPos)

        # --------------------------------------------------------------
        #  Flux--flux coupling
        # --------------------------------------------------------------

        for i in range(nFlux):

            row = localView.tree().child(0).localIndex(i)

            for j in range(nFlux):

                col = localView.tree().child(0).localIndex(j)
                elementMatrix[row,col] += numpy.dot(fluxValues[i], fluxValues[j]) * quadPoint.weight * integrationElement

        # --------------------------------------------------------------
        #  Flux--pressure coupling
        # --------------------------------------------------------------

        for i in range(nFlux):

            fluxIndex = localView.tree().child(0).localIndex(i)

            for j in range(nPressure):

                pressureIndex = localView.tree().child(1).localIndex(j)

                # Pre-compute matrix contribution
                tmp = (fluxDivergence[i] * pressureValues[j][0]) * quadPoint.weight * integrationElement

                elementMatrix[fluxIndex, pressureIndex] += tmp
                elementMatrix[pressureIndex, fluxIndex] += tmp

    return elementMatrix


# Compute the right-hand side for a single element
def getVolumeTerm(localView, localVolumeTerm):

    # Get the grid element from the local FE basis view
    element = localView.element()

    n = len(localView)
    localRhs = numpy.zeros(n)

    # Get set of shape functions for this element
    # Only the pressure part has a non-zero right-hand side
    pressureLocalFiniteElement = localView.tree().child(1).finiteElement()

    # A quadrature rule
    dim = element.dimension
    quadOrder = 2*dim*pressureLocalFiniteElement.localBasis.order
    quadRule = dune.geometry.quadratureRule(element.type, quadOrder)

    nPressure = len(pressureLocalFiniteElement)

    # Loop over all quadrature points
    for quadPoint in quadRule:

        # Position of the current quadrature point in the reference element
        quadPos = quadPoint.position

        # The multiplicative factor in the integral transformation formula
        integrationElement = element.geometry.integrationElement(quadPos)

        # Evaluate the strong right-hand side at the quadrature point
        functionValue = localVolumeTerm(quadPos)

        # Evaluate all shape function values at this point
        pressureValues = pressureLocalFiniteElement.localBasis.evaluateFunction(quadPos)

        # Actually compute the vector entries
        for j in range(nPressure):
            pressureIndex = localView.tree().child(1).localIndex(j)
            localRhs[pressureIndex] += - pressureValues[j][0] * functionValue * quadPoint.weight * integrationElement

    return localRhs


# Assemble the divergence stiffness matrix on the given grid view
def assembleMixedPoissonMatrix(basis):

    # Get the grid view from the finite element basis
    gridView = basis.gridView

    n = len(basis)

    # Make an empty stiffness matrix
    stiffnessMatrix = lil_matrix( (n,n) )

    # A view on the FE basis on a single element
    localView = basis.localView()

    # A loop over all elements of the grid
    for element in basis.gridView.elements:

        # Bind the local FE basis view to the current element
        localView.bind(element)

        # Now let's get the element stiffness matrix
        # A dense matrix is used for the element stiffness matrix
        elementMatrix = getLocalMatrix(localView)

        # Add element stiffness matrix onto the global stiffness matrix
        for i in range(len(localView)):

            # The global index of the i-th local degree of freedom of the element
            row = localView.index(i)[0]

            for j in range(len(localView)):

                # The global index of the j-th local degree of freedom of the element
                col = localView.index(j)[0]
                stiffnessMatrix[row,col] += elementMatrix[i, j];

    # Transform the stiffness matrix to CSR format, and return it
    return stiffnessMatrix.tocsr()


# Assemble the divergence stiffness matrix on the given grid view
def assembleMixedPoissonRhs(basis, volumeTerm):

    # Get the grid view from the finite element basis
    gridView = basis.gridView

    # Get the basis for the pressure variable
    pressureBasis = functions.subspaceBasis(basis, 1)

    # Represent the volume term function as a FE function in the pressure space
    volumeTermCoeff = numpy.zeros(len(basis))
    pressureBasis.interpolate(volumeTermCoeff, volumeTerm)
    volumeTermGF = pressureBasis.asFunction(volumeTermCoeff)

    # A view on a single element
    localVolumeTerm = volumeTermGF.localFunction()

    # Set rhs to correct length -- the total number of basis vectors in the basis
    n = len(basis)
    rhs = numpy.zeros(n)

    # A view on the FE basis on a single element
    localView = basis.localView()

    # A loop over all elements of the grid
    for element in gridView.elements:

        # Bind the local FE basis view to the current element
        localView.bind(element)

        # Now get the local contribution to the right-hand side vector
        localVolumeTerm.bind(element)
        localRhs = getVolumeTerm(localView, localVolumeTerm)

        for i in range(len(localRhs)):
            # The global index of the i-th vertex of the element
            row = localView.index(i)[0]
            rhs[row] += localRhs[i]

    return rhs


# Mark all DOFs associated to entities for which # the boundary intersections center
# is marked by the given indicator functions.
#
# This method simply calls the corresponding C++ code.  A more Pythonic solution
# is planned to appear eventually...
def markBoundaryDOFsByIndicator(basis, vector, indicator):
    code="""
    #include<utility>
    #include<functional>
    #include<dune/common/fvector.hh>
    #include<dune/functions/functionspacebases/boundarydofs.hh>
    template<class Basis, class Vector, class Indicator>
    void run(const Basis& basis, Vector& vector, const Indicator& indicator)
    {
      auto vectorBackend = vector.mutable_unchecked();
      Dune::Functions::forEachBoundaryDOF(basis, [&] (auto&& localIndex, const auto& localView, const auto& intersection) {
        if (indicator(intersection.geometry().center()).template cast<bool>())
          vectorBackend[localView.index(localIndex)] = true;
      });
    }
    """
    dune.generator.algorithm.run("run",StringIO(code), basis, vector, indicator)


# This incorporates essential constraints into matrix # and rhs of a linear system.
# The mask vector isConstrained # indicates which DOFs should be constrained,
# x contains the desired values of these DOFs. Other entries of x # are ignored.
# Note that this implements the symmetrized approach to modify the matrix.
def incorporateEssentialConstraints(A, b, isConstrained, x):
    b -= A*(x*isConstrained)
    N = len(b)
    rows, cols = A.nonzero()
    for i,j in zip(rows, cols):
        if isConstrained[i] or isConstrained[j]:
          A[i,j] = 0
    for i in range(N):
        if isConstrained[i]:
            A[i,i] = 1
            b[i] = x[i]



############################  main program  ###################################

# Number of grid elements per direction
dim = 2
elements = [50, 50]
l = [1, 1]

# Create a grid of the unit square
gridView = grid.structuredGrid([0,0],l,elements)

# Construct a pair of finite element space bases
# Note: In contrast to the corresponding C++ example we are using a single matrix with scalar entries,
# and plain numbers to index it (no multi-digit multi-indices).
k = 0  # order
basis = functions.defaultGlobalBasis(gridView, functions.Composite(functions.RaviartThomas(order=k),
                                                                             functions.Lagrange(order=k),
                                                                             blocked=False,
                                                                             layout="lexicographic"))

fluxBasis = functions.subspaceBasis(basis, 0);

pressureBasis = functions.subspaceBasis(basis, 1);

# Compute the stiffness matrix and the load vector
stiffnessMatrix = assembleMixedPoissonMatrix(basis)

# The volume source term
rightHandSide = lambda x : 2

rhs = assembleMixedPoissonRhs(basis, rightHandSide)

# This marks the top and bottom boundary of the domain
fluxDirichletIndicator = lambda x : 1.*((x[dim-1] > l[dim-1] - 1e-8) or (x[dim-1] < 1e-8))

############################################################
# ToDo: We should provide binding for FaceNormalGridFunction
# and support for grid functions to the bindings of interpolate().
# This would allow to avoid having to define the normal field
# manually.
############################################################

normal = lambda x : numpy.array([0.,1.]) if numpy.abs(x[1]-1) < 1e-8 else numpy.array([0., -1.])
fluxDirichletValues = lambda x : numpy.sin(2.*numpy.pi*x[0]) * normal(x)

isDirichlet = numpy.zeros(len(basis))

# Mark all DOFs located in a boundary intersection marked
# by the fluxDirichletIndicator function. If the flux
# ansatz space also contains tangential components, this
# approach will fail, because those are also marked.
# For Raviart-Thomas this does not happen.
markBoundaryDOFsByIndicator(fluxBasis, isDirichlet, fluxDirichletIndicator);

# ToDo: This should be constrained to boundary DOFs
fluxDirichletCoeffs = numpy.zeros(len(basis))
fluxBasis.interpolate(fluxDirichletCoeffs, fluxDirichletValues);

# //////////////////////////////////////////
#   Modify Dirichlet rows
# //////////////////////////////////////////

incorporateEssentialConstraints(stiffnessMatrix, rhs, isDirichlet, fluxDirichletCoeffs)

# //////////////////////////
#    Compute solution
# //////////////////////////

x = scipy.sparse.linalg.spsolve(stiffnessMatrix, rhs)

# ////////////////////////////////////////////////////////////////////////////////////////////
#   Write result to VTK file
# ////////////////////////////////////////////////////////////////////////////////////////////

# TODO: Improve file writing.  Currently this simply projects everything
# onto a first-order Lagrange space
vtkWriter = gridView.vtkWriter(2)

fluxFunction = fluxBasis.asFunction(x)
fluxFunction.addToVTKWriter("flux", vtkWriter, grid.DataType.PointVector)

pressureFunction = pressureBasis.asFunction(x)
pressureFunction.addToVTKWriter("pressure", vtkWriter, grid.DataType.PointData)

vtkWriter.write("poisson-mfem-result")