File: gridviewfunctionspacebasistest.cc

package info (click to toggle)
dune-functions 2.6~20180228-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 1,188 kB
  • sloc: cpp: 8,599; makefile: 3
file content (428 lines) | stat: -rw-r--r-- 15,559 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#include <config.h>

#include <iostream>
#include <numeric>

#include <dune/common/exceptions.hh>
#include <dune/common/typetraits.hh>
#include <dune/common/parallel/mpihelper.hh>

#include <dune/geometry/quadraturerules.hh>

#include <dune/grid/yaspgrid.hh>
#include <dune/grid/uggrid.hh>
#include <dune/grid/io/file/gmshreader.hh>

#include <dune/localfunctions/test/test-localfe.hh>

#include <dune/functions/functionspacebases/interpolate.hh>
#include <dune/functions/functionspacebases/pq1nodalbasis.hh>
#include <dune/functions/functionspacebases/pqknodalbasis.hh>
#include <dune/functions/functionspacebases/lagrangedgbasis.hh>
#include <dune/functions/functionspacebases/bsplinebasis.hh>

#include <dune/functions/functionspacebases/test/basistest.hh>

using namespace Dune;
using namespace Dune::Functions;

/** \param disableInterpolate Not all bases can correctly represent the linear function
 *      that we use to test whether integrating over a given function gives the correct
 *      value (e.g. basis without dofs on the boundary).  Therefore we allow to disable this test.
 *  \param disabledLocalTests Allows to disable certain local tests (see dune-localfunctions/dune/localfunctions/test/test-localfe.hh)
 */
template <typename Basis>
void testScalarBasisConst(const Basis& feBasis,
                     bool isPartitionOfUnity,
                     bool disableInterpolate = false,
                     char disabledLocalTests = DisableNone)
{
  static const int dim = Basis::GridView::dimension;

  //////////////////////////////////////////////////////////////////////////////////////
  //  Run the dune-localfunctions test for the LocalFiniteElement of each grid element
  //////////////////////////////////////////////////////////////////////////////////////

  typedef typename Basis::GridView GridView;
  GridView gridView = feBasis.gridView();

  typename Basis::LocalView localView(feBasis);


  // Test the LocalFiniteElement
  for (auto it = gridView.template begin<0>(); it!=gridView.template end<0>(); ++it)
  {
    // Bind the local FE basis view to the current element
    localView.bind(*it);

    // The general LocalFiniteElement unit test from dune/localfunctions/test/test-localfe.hh
    const auto& lFE = localView.tree().finiteElement();
//    testFE(lFE, disabledLocalTests);

    if (lFE.size() != localView.size())
      DUNE_THROW(Exception, "Size of leaf node and finite element do not coincide");
  }

  /////////////////////////////////////////////////////////////////////////
  //  Make sure the basis is a partition of unity
  /////////////////////////////////////////////////////////////////////////
  if (isPartitionOfUnity)
  {
    for(const auto& e : elements(gridView))
    {
      // Bind the local FE basis view to the current element
      localView.bind(e);

      const auto& lFE = localView.tree().finiteElement();

      const QuadratureRule<double,dim>& quad = QuadratureRules<double,dim>::rule(e.type(), 3);
      std::vector<FieldVector<double,1> > values;
      for (size_t i=0; i<quad.size(); i++)
      {
        lFE.localBasis().evaluateFunction(quad[i].position(), values);
        double sum = std::accumulate(values.begin(), values.end(), 0.0);

        if (std::abs(sum-1.0) > 1e-5)
          DUNE_THROW(Exception, "Basis is no partition of unity, even though it is supposed to be! Error occurred for geometry type: " << e.type());
      }
    }
  }

  ////////////////////////////////////////////////////////////////////////////
  //  Make sure the basis does not give out constant zero shape functions
  ////////////////////////////////////////////////////////////////////////////
  for(const auto& e : elements(gridView))
  {
    // Bind the local FE basis view to the current element
    localView.bind(e);

    const auto& lFE = localView.tree().finiteElement();

    const QuadratureRule<double,dim>& quad = QuadratureRules<double,dim>::rule(e.type(), 3);
    std::vector<FieldVector<double,1> > values;
    std::vector<double> sumOfAbsValues(lFE.size());
    std::fill(sumOfAbsValues.begin(), sumOfAbsValues.end(), 0.0);
    for (size_t i=0; i<quad.size(); i++)
    {
      lFE.localBasis().evaluateFunction(quad[i].position(), values);
      // Sum the absolute values for each quadrature point
      for (size_t j=0; j<values.size(); j++)
        sumOfAbsValues[j] += std::fabs(values[j][0]);
    }

    for (size_t i=0; i<values.size(); i++)
      if ( sumOfAbsValues[i] <= 1e-5)
        DUNE_THROW(Exception, "Basis gives out a constant-zero shape function!");
  }




  // Check whether the basis exports a type 'MultiIndex'
  typedef typename Basis::MultiIndex MultiIndex;

  // And this type must be indexable
  static_assert(is_indexable<MultiIndex>(), "MultiIndex must support operator[]");

  ///////////////////////////////////////////////////////////////////////////////////
  //  Check whether the global indices are in the correct range,
  //  and whether each global index appears at least once.
  ///////////////////////////////////////////////////////////////////////////////////

  std::vector<bool> seen(feBasis.size());
  std::fill(seen.begin(), seen.end(), false);

  auto localIndexSet = feBasis.localIndexSet();

  // Loop over all leaf elements
  for (auto it = gridView.template begin<0>(); it!=gridView.template end<0>(); ++it)
  {
    // Bind the local FE basis view to the current element
    localView.bind(*it);
    localIndexSet.bind(localView);

    for (size_t i=0; i<localView.tree().size(); i++)
    {
      if (localIndexSet.index(i)[0] < 0)
        DUNE_THROW(Exception, "Index is negative, which is not allowed");

      if (localIndexSet.index(i)[0] >= seen.size())
        DUNE_THROW(Exception, "Local index " << i
                           << " is mapped to global index " << localIndexSet.index(i)
                           << ", which is larger than allowed");

      seen[localIndexSet.index(i)[0]] = true;
    }
  }

  for (size_t i=0; i<seen.size(); i++)
    if (! seen[i])
      DUNE_THROW(Exception, "Index [" << i << "] does not exist as global basis vector");

  //////////////////////////////////////////////////////////////////////////////////////////
  // Interpolate the function f(x,y) = x wrt the basis, and check whether we get
  // the expected integral.
  //////////////////////////////////////////////////////////////////////////////////////////

  std::vector<double> x(feBasis.size());
  if (! disableInterpolate)
    interpolate(feBasis, x, [](FieldVector<double,dim> x){ return x[0]; });
  else  // dummy values
    std::fill(x.begin(), x.end(), 0.5);

  // Objects required in the local context
  auto localIndexSet2 = feBasis.localIndexSet();
  std::vector<double> localCoefficients(localView.maxSize());

  // Loop over elements and integrate over the function
  double integral = 0;
  for (const auto& element : elements(gridView))
  {
    localView.bind(element);
    localIndexSet.bind(localView);
    localIndexSet2.bind(localView);

    // paranoia checks
    assert(localView.size() == localIndexSet.size());
    assert(&(localView.globalBasis()) == &(feBasis));
    assert(&(localIndexSet.localView()) == &(localView));

    assert(localIndexSet.size() == localIndexSet2.size());
    for (size_t i=0; i<localIndexSet.size(); i++)
      assert(localIndexSet.index(i) == localIndexSet2.index(i));

    // copy data from global vector
    localCoefficients.resize(localIndexSet.size());
    for (size_t i=0; i<localIndexSet.size(); i++)
      localCoefficients[i] = x[localIndexSet.index(i)[0]];

    // get access to the finite element
    typedef typename Basis::LocalView::Tree Tree;
    const Tree& tree = localView.tree();

    auto& localFiniteElement = tree.finiteElement();

    // we have a flat tree...
    assert(localView.size() == tree.size());
    assert(localView.size() == tree.finiteElement().localBasis().size());

    // A quadrature rule
    // BUG: I need more than just the order given by the localBasis to make the integral come out precisely
    const auto& quad = QuadratureRules<double, dim>::rule(element.type(), 1+tree.finiteElement().localBasis().order());

    // Loop over all quadrature points
    for ( size_t pt=0; pt < quad.size(); pt++ ) {

      // Position of the current quadrature point in the reference element
      const FieldVector<double,dim>& quadPos = quad[pt].position();

      // The multiplicative factor in the integral transformation formula
      const double integrationElement = element.geometry().integrationElement(quadPos);

      // Evaluate all shape function values at this point
      std::vector<FieldVector<double,1> > shapeFunctionValues;
      localFiniteElement.localBasis().evaluateFunction(quadPos, shapeFunctionValues);

      // Actually compute the vector entries
      for (size_t i=0; i<localFiniteElement.localBasis().size(); i++)
      {
        integral += localCoefficients[tree.localIndex(i)] * shapeFunctionValues[i] * quad[pt].weight() * integrationElement;
      }
    }

    // unbind
    localIndexSet.unbind();
    localView.unbind();
  }

  if (!disableInterpolate && std::abs(integral-0.5) > 1e-10)
    DUNE_THROW(Dune::Exception, "Error: integral value is wrong!");


  auto checkResult = checkBasis(feBasis);
  if (not checkResult)
  {
    checkResult.report();
    DUNE_THROW(Dune::Exception, "checkBasis() failed");
  }
}

template <typename Basis, typename GV>
void testScalarBasis(Basis& feBasis, GV gv,
                     bool isPartitionOfUnity,
                     bool disableInterpolate = false,
                     char disabledLocalTests = DisableNone)
{
  feBasis.update(gv);
  testScalarBasisConst(feBasis, isPartitionOfUnity, disableInterpolate, disabledLocalTests);
}

template <int dim>
void testOnStructuredGrid()
{
  std::cout << "   +++++++++++  Testing on structured " << dim << "d grids  ++++++++++++" << std::endl;

  // Generate grid for testing
  typedef YaspGrid<dim> GridType;
  FieldVector<double,dim> l;
  std::fill(l.begin(), l.end(), 1.0);
  std::array<int,dim> elements;
  std::fill(elements.begin(), elements.end(), 2);
  GridType grid(l,elements);

  // Test whether PQ1FunctionSpaceBasis.hh can be instantiated on the leaf view
  typedef typename GridType::LeafGridView GridView;
  GridView gridView = grid.leafGridView();

  PQ1NodalBasis<GridView> pq1Basis(gridView);
  PQkNodalBasis<GridView, 3> pq3Basis(gridView);
  PQkNodalBasis<GridView, 4> pq4Basis(gridView);
  PQkNodalBasis<GridView, 0> pq0Basis(gridView);
  LagrangeDGBasis<GridView, 1> lagrangeDG1Basis(gridView);
  LagrangeDGBasis<GridView, 2> lagrangeDG2Basis(gridView);
  LagrangeDGBasis<GridView, 3> lagrangeDG3Basis(gridView);

  grid.globalRefine(2);

  // Test PQ1NodalBasis
  testScalarBasis(pq1Basis, gridView, true);

  // Test PQkNodalBasis for k==3
  if (dim<3) // Currently not implemented for dim >= 3
    testScalarBasis(pq3Basis, gridView, true);

  // Test PQkNodalBasis for k==4
  if (dim<3) // Currently not implemented for dim >= 3
    testScalarBasis(pq4Basis, gridView, true);

  // Test PQkNodalBasis for the corner case k == 0
  testScalarBasis(pq0Basis, gridView, true);

  // Test LagrangeDGBasis for k==1
  testScalarBasis(lagrangeDG1Basis, gridView, true);

  // Test LagrangeDGBasis for k==2
  testScalarBasis(lagrangeDG2Basis, gridView, true);

  // Test LagrangeDGBasis for k==3
  testScalarBasis(lagrangeDG3Basis, gridView, true);

  // Testing B-spline basis with open knot vectors
  std::vector<double> knotVector(elements[0]*4+1);
  for (size_t i=0; i<knotVector.size(); i++)
    knotVector[i] = i*l[0] / elements[0];

  // Test open knot vectors
  std::cout << "  Testing B-spline basis with open knot vectors" << std::endl;
  for (unsigned int order : {0, 1, 2})
  {
    std::cout << "   order: " << order << std::endl;

    BSplineBasis<GridView> bSplineBasis(gridView, knotVector, order);
    testScalarBasisConst(bSplineBasis,
                    true,
                    true,      // Don't interpolate a given function and try to integrate over it
                    DisableLocalInterpolation);
  }

  // Testing B-spline basis with non-open knot vectors
  std::cout << "  Testing B-spline basis with non-open knot vectors" << std::endl;
  for (unsigned int order : {0, 1, 2})
  {
    std::cout << "   order: " << order << std::endl;

    BSplineBasis<GridView> bSplineBasis(gridView, knotVector, order, false);
    testScalarBasisConst(bSplineBasis,
                    order==0,   // only zero-order B-splines for a partition of unity
                    true,      // Don't interpolate a given function and try to integrate over it
                    DisableLocalInterpolation);
  }
}

template <int dim>
void testOnHybridGrid()
{
#if ! HAVE_UG
  std::cout << "   ---- Skipping test on hybrid " << dim << "d grid -- UGGrid is not installed ----" << std::endl;
#else
  std::cout << "   +++++++++++  Testing on hybrid " << dim << "d grid  ++++++++++++" << std::endl;

  // Generate grid for testing
  typedef UGGrid<dim> GridType;

  const std::string path = std::string(DUNE_GRID_EXAMPLE_GRIDS_PATH) + "gmsh/";

  std::string filename = path + "hybrid-testgrid-" + std::to_string(dim) + "d.msh";

  std::shared_ptr<GridType> grid(GmshReader<GridType>::read(filename));

  // Test whether function space basis can be instantiated on the leaf view
  typedef typename GridType::LeafGridView GridView;
  GridView gridView = grid->leafGridView();

  // Disable the global interpolation test for 3d grids.
  // Global interpolation should work for all grids and spaces, but the hard-coded
  // reference value is wrong.
  bool disableInterpolate = (dim==3);

  // Test PQ1NodalBasis -- dedicated implementation
  PQ1NodalBasis<GridView> pq1DedicatedBasis(gridView);
  testScalarBasisConst(pq1DedicatedBasis, true, disableInterpolate);

  // Test PQ1NodalBasis -- generic basis
  PQkNodalBasis<GridView, 1> pq1Basis(gridView);
  testScalarBasisConst(pq1Basis, true, disableInterpolate);

  // Test PQkNodalBasis for k==3
  PQkNodalBasis<GridView, 3> pq3Basis(gridView);
  if (dim<3) // Currently not implemented for dim >= 3
    testScalarBasisConst(pq3Basis, true, disableInterpolate);

  // Test PQkNodalBasis for k==4
  PQkNodalBasis<GridView, 4> pq4Basis(gridView);
  if (dim<3) // Currently not implemented for dim >= 3
    testScalarBasisConst(pq4Basis, true, disableInterpolate);

  // Test LagrangeDGBasis for k==1
  LagrangeDGBasis<GridView, 1> lagrangeDG1Basis(gridView);
  testScalarBasisConst(lagrangeDG1Basis, true, disableInterpolate);

  // Test LagrangeDGBasis for k==2
  // \todo Enable these tests once pyramid element of order two is bug free
//  LagrangeDGBasis<GridView, 2> lagrangeDG2Basis(gridView);
//  testScalarBasisConst(lagrangeDG2Basis, true, disableInterpolate);

  // Test LagrangeDGBasis for k==3
  // \todo Enable these tests once pyramid element of order three is implemented
//  LagrangeDGBasis<GridView, 3> lagrangeDG3Basis(gridView);
//  testScalarBasisConst(lagrangeDG3Basis, true, disableInterpolate);
#endif
}



int main (int argc, char* argv[]) try
{
  Dune::MPIHelper::instance(argc, argv);

  testOnStructuredGrid<1>();
  testOnStructuredGrid<2>();
  testOnStructuredGrid<3>();

  testOnHybridGrid<2>();
  testOnHybridGrid<3>();

  return 0;

} catch ( Dune::Exception &e )
{
  std::cerr << "Dune reported error: " << e << std::endl;
  return 1;
}
catch(...)
{
  std::cerr << "Unknown exception thrown!" << std::endl;
  return 1;
}