File: taylorhoodbasistest.cc

package info (click to toggle)
dune-functions 2.6~20180228-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 1,188 kB
  • sloc: cpp: 8,599; makefile: 3
file content (133 lines) | stat: -rw-r--r-- 4,119 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#include <config.h>

#include <iostream>

#include <dune/common/exceptions.hh>
#include <dune/common/parallel/mpihelper.hh>
#include <dune/common/test/testsuite.hh>

#include <dune/geometry/quadraturerules.hh>

#include <dune/grid/yaspgrid.hh>

#include <dune/functions/functionspacebases/taylorhoodbasis.hh>

#include <dune/functions/functionspacebases/test/basistest.hh>

using namespace Dune;
using namespace Dune::Functions;

int main (int argc, char* argv[]) try
{
  Dune::MPIHelper::instance(argc, argv);

  Dune::TestSuite test;

  // Generate grid for testing
  const int dim = 2;
  typedef YaspGrid<dim> GridType;
  FieldVector<double,dim> l(1);
  std::array<int,dim> elements = {{10, 10}};
  GridType grid(l,elements);

  typedef GridType::LeafGridView GridView;
  typedef TaylorHoodBasis<GridView> Basis;

  const GridView& gridView = grid.leafGridView();
  Basis feBasis(gridView);


  test.subTest(checkBasis(feBasis));


  typedef Basis::MultiIndex MultiIndex;

  // Sample the function f(x,y) = x on the grid vertices
  // If we use that as the coefficients of a finite element function,
  // we know its integral and can check whether quadrature returns
  // the correct result
  std::array<std::vector<double>,dim> x;
  for (unsigned int i = 0; i<dim; i++)
    x[i].resize(feBasis.size({i}));

  // TODO: Implement interpolation properly using the global basis.
  for (auto it = gridView.begin<dim>(); it != gridView.end<dim>(); ++it)
    x[1][gridView.indexSet().index(*it)] = it->geometry().corner(0)[0];

  // Objects required in the local context
  auto localView = feBasis.localView();
  auto localIndexSet = feBasis.localIndexSet();
  std::vector<double> coefficients(localView.maxSize());

  // Loop over elements and integrate over the function
  double integral = 0;
  for (auto it = gridView.begin<0>(); it != gridView.end<0>(); ++it)
  {
    localView.bind(*it);
    localIndexSet.bind(localView);

    // paranoia checks
    assert(localView.size() == localIndexSet.size());
    assert(&(localView.globalBasis()) == &(feBasis));
    assert(&(localIndexSet.localView()) == &(localView));

    // copy data from global vector
    coefficients.resize(localIndexSet.size());
    for (size_t i=0; i<localIndexSet.size(); i++)
    {
      MultiIndex mi = localIndexSet.index(i);
      coefficients[i] = x[mi[0]][mi[1]];
    }

    // get access to the finite element
    using namespace Dune::TypeTree::Indices;
    typedef Basis::LocalView::Tree Tree;
    auto& p_leaf = TypeTree::child(localView.tree(),_1);
    auto& v_leaf = TypeTree::child(localView.tree(),_0,1);
    auto& localFiniteElement = p_leaf.finiteElement();

    // A quadrature rule
    const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(it->type(), 1);

    // Loop over all quadrature points
    for ( size_t pt=0; pt < quad.size(); pt++ ) {

      // Position of the current quadrature point in the reference element
      const FieldVector<double,dim>& quadPos = quad[pt].position();

      // The multiplicative factor in the integral transformation formula
      const double integrationElement = it->geometry().integrationElement(quadPos);

      // Evaluate all shape function values at this point
      std::vector<FieldVector<double,1> > shapeFunctionValues;
      localFiniteElement.localBasis().evaluateFunction(quadPos, shapeFunctionValues);

      // Actually compute the vector entries
      for (size_t i=0; i<localFiniteElement.localBasis().size(); i++)
      {
        integral += coefficients[p_leaf.localIndex(i)] * shapeFunctionValues[i] * quad[pt].weight() * integrationElement;
      }
    }

    // unbind
    localIndexSet.unbind();
    localView.unbind();
  }

  std::cout << "Computed integral is " << integral << std::endl;
  assert(std::abs(integral-0.5)< 1e-10);

  return test.exit();

} catch ( Dune::Exception &e )
{
  std::cerr << "Dune reported error: " << e << std::endl;
  return 1;
}
catch(...)
{
  std::cerr << "Unknown exception thrown!" << std::endl;
  return 1;
}