1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
|
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#include <config.h>
#include <vector>
#include <cmath>
#include <dune/common/bitsetvector.hh>
#include <dune/common/indices.hh>
#include <dune/geometry/quadraturerules.hh>
#include <dune/grid/yaspgrid.hh>
#include <dune/grid/io/file/vtk/subsamplingvtkwriter.hh>
#include <dune/istl/matrix.hh>
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/matrixindexset.hh>
#include <dune/istl/preconditioners.hh>
#include <dune/istl/solvers.hh>
#include <dune/functions/functionspacebases/interpolate.hh>
#include <dune/functions/functionspacebases/lagrangebasis.hh>
#include <dune/functions/functionspacebases/raviartthomasbasis.hh>
#include <dune/functions/functionspacebases/boundarydofs.hh>
#include <dune/functions/backends/istlvectorbackend.hh>
#include <dune/functions/functionspacebases/compositebasis.hh>
#include <dune/functions/functionspacebases/subspacebasis.hh>
#include <dune/functions/gridfunctions/analyticgridviewfunction.hh>
#include <dune/functions/gridfunctions/discreteglobalbasisfunction.hh>
#include <dune/functions/gridfunctions/gridviewfunction.hh>
#include <dune/functions/gridfunctions/facenormalgridfunction.hh>
#include <dune/functions/gridfunctions/composedgridfunction.hh>
#define DIM2 // Use a two-dimensional test, otherwise three-dimensional
using namespace Dune;
// Compute the stiffness matrix for a single element
template <class LocalView, class MatrixType>
void getLocalMatrix(const LocalView& localView,
MatrixType& elementMatrix)
{
// Get the grid element from the local FE basis view (use test space)
typedef typename LocalView::Element Element;
const Element& element = localView.element();
const int dim = Element::dimension;
auto geometry = element.geometry();
// Set all matrix entries to zero
elementMatrix.setSize(localView.size(), localView.size());
elementMatrix = 0; // fills the entire matrix with zeroes
// Get set of shape functions for this element
using namespace Dune::Indices;
const auto& fluxLocalFiniteElement = localView.tree().child(_0).finiteElement();
const auto& pressureLocalFiniteElement = localView.tree().child(_1).finiteElement();
// Get a quadrature rule
int fluxOrder = dim*fluxLocalFiniteElement.localBasis().order();
int pressureOrder = dim*pressureLocalFiniteElement.localBasis().order();
int order = std::max(2*fluxOrder, (fluxOrder-1)+pressureOrder);
const auto& quad = QuadratureRules<double, dim>::rule(element.type(), order);
// Loop over all quadrature points
for (const auto& quadPoint : quad)
{
// Position of the current quadrature point in the reference element
const auto quadPos = quadPoint.position();
// The inverse Jacobian of the map from the reference element to the element
const auto jacobianInverse = geometry.jacobianInverse(quadPos);
// The multiplicative factor in the integral transformation formula
const auto integrationElement = geometry.integrationElement(quadPos);
///////////////////////////////////////////////////////////////////////////
// Shape functions - flux
///////////////////////////////////////////////////////////////////////////
// Values of the flux shape functions on the current element
std::vector<FieldVector<double,dim> > fluxValues(fluxLocalFiniteElement.size());
fluxLocalFiniteElement.localBasis().evaluateFunction(quadPos, fluxValues);
// Gradients of the flux shape function gradients on the reference element
std::vector<FieldMatrix<double,dim,dim> > fluxReferenceJacobians(fluxLocalFiniteElement.size());
fluxLocalFiniteElement.localBasis().evaluateJacobian(quadPos, fluxReferenceJacobians);
// Helper function to compute the trace of a matrix
auto trace = [](const auto& matrix) {
double r=0;
for (size_t j=0; j<matrix.N(); j++)
r += matrix[j][j];
return r;
};
// Domain transformation of Jacobians and computation of div = trace(Jacobian)
std::vector<double> fluxDivergence(fluxValues.size(), 0.0);
for (size_t i=0; i<fluxReferenceJacobians.size(); i++)
fluxDivergence[i] = trace(fluxReferenceJacobians[i] * jacobianInverse);
///////////////////////////////////////////////////////////////////////////
// Shape functions - pressure
///////////////////////////////////////////////////////////////////////////
// Values of the pressure shape functions
std::vector<FieldVector<double,1> > pressureValues(pressureLocalFiniteElement.size());
pressureLocalFiniteElement.localBasis().evaluateFunction(quadPos, pressureValues);
/////////////////////////////
// Flux--flux coupling
/////////////////////////////
for (size_t i=0; i<fluxLocalFiniteElement.size(); i++)
{
size_t row = localView.tree().child(_0).localIndex(i);
for (size_t j=0; j<fluxLocalFiniteElement.size(); j++)
{
size_t col = localView.tree().child(_0).localIndex(j);
elementMatrix[row][col] += (fluxValues[i] * fluxValues[j]) * quadPoint.weight() * integrationElement;
}
}
/////////////////////////////
// Flux--pressure coupling
/////////////////////////////
for (size_t i=0; i<fluxLocalFiniteElement.size(); i++)
{
size_t fluxIndex = localView.tree().child(_0).localIndex(i);
for (size_t j=0; j<pressureLocalFiniteElement.size(); j++)
{
size_t pressureIndex = localView.tree().child(_1).localIndex(j);
// Pre-compute matrix contribution
double tmp = - (fluxDivergence[i] * pressureValues[j]) * quadPoint.weight() * integrationElement;
elementMatrix[fluxIndex][pressureIndex] += tmp;
elementMatrix[pressureIndex][fluxIndex] += tmp;
}
}
}
}
// Compute the source term for a single element
template <class LocalView, class LocalVolumeTerm>
void getVolumeTerm( const LocalView& localView,
BlockVector<FieldVector<double,1> >& localRhs,
LocalVolumeTerm&& localVolumeTerm)
{
// Get the grid element from the local FE basis view
typedef typename LocalView::Element Element;
const Element& element = localView.element();
const int dim = Element::dimension;
// Set all entries to zero
localRhs.resize(localView.size());
localRhs = 0;
// Get set of shape functions for this element
using namespace Dune::Indices;
const auto& fluxLocalFiniteElement = localView.tree().child(_0).finiteElement();
const auto& pressureLocalFiniteElement = localView.tree().child(_1).finiteElement();
// A quadrature rule
int fluxOrder = dim*fluxLocalFiniteElement.localBasis().order();
int pressureOrder = dim*pressureLocalFiniteElement.localBasis().order();
int order = std::max(2*fluxOrder, 2*pressureOrder);
const auto& quad = QuadratureRules<double, dim>::rule(element.type(), order);
// Loop over all quadrature points
for (const auto& quadPoint : quad)
{
// Position of the current quadrature point in the reference element
const auto& quadPos = quadPoint.position();
// The multiplicative factor in the integral transformation formula
const double integrationElement = element.geometry().integrationElement(quadPos);
double functionValue = localVolumeTerm(quadPos);
// Evaluate all shape function values at this point
std::vector<FieldVector<double,1> > pressureValues;
pressureLocalFiniteElement.localBasis().evaluateFunction(quadPos, pressureValues);
// Actually compute the vector entries
for (size_t j=0; j<pressureLocalFiniteElement.size(); j++)
{
size_t pressureIndex = localView.tree().child(_1).localIndex(j);
localRhs[pressureIndex] += - pressureValues[j] * functionValue * quadPoint.weight() * integrationElement;
}
}
}
// Get the occupation pattern of the stiffness matrix
template <class Basis>
void getOccupationPattern(const Basis& basis,
std::array<std::array<MatrixIndexSet,2>,2>& nb)
{
// Set sizes of the 2x2 submatrices
for (size_t i=0; i<2; ++i)
for (size_t j=0; j<2; j++)
nb[i][j].resize(basis.size({i}), basis.size({j}));
// A view on the FE basis on a single element
auto localView = basis.localView();
// Loop over all leaf elements
for(const auto& element : elements(basis.gridView()))
{
// Bind the local FE basis view to the current element
localView.bind(element);
// Add element stiffness matrix onto global stiffness matrix
for (size_t i=0; i<localView.size(); i++)
{
// The global index of the i-th local degree of freedom of the element 'e'
auto row = localView.index(i);
for (size_t j=0; j<localView.size(); ++j)
{
// The global index set of the j-th local degree of freedom of the element 'e'
auto col = localView.index(j);
nb[row[0]][col[0]].add(row[1], col[1]);
}
}
}
}
/** \brief Assemble the divergence stiffness matrix on the given grid view */
template <class Basis, class MatrixType>
void assembleMixedPoissonMatrix(const Basis& basis,
MatrixType& matrix)
{
// Get the grid view from the finite element basis (use of test space arbitrary)
auto gridView = basis.gridView();
// MatrixIndexSets store the occupation pattern of a sparse matrix.
// They are not particularly efficient, but simple to use.
std::array<std::array<MatrixIndexSet, 2>, 2> occupationPattern;
getOccupationPattern(basis, occupationPattern);
// ... and give it the occupation pattern we want.
matrix.setSize(2,2);
for (size_t i=0; i<2; i++)
for (size_t j=0; j<2; j++)
occupationPattern[i][j].exportIdx(matrix[i][j]);
// Set all entries to zero
matrix = 0;
// A view on the FE basis on a single element
auto localView = basis.localView();
// A loop over all elements of the grid
for(const auto& element : elements(gridView))
{
// Bind the local FE basis view to the current element
localView.bind(element);
// Now let's get the element stiffness matrix
// A dense matrix is used for the element stiffness matrix
Matrix<FieldMatrix<double,1,1> > elementMatrix;
getLocalMatrix(localView, elementMatrix);
// Add element stiffness matrix onto the global stiffness matrix
for (size_t i=0; i<elementMatrix.N(); i++)
{
// The global index of the i-th local degree of freedom of the element 'e'
auto row = localView.index(i);
for (size_t j=0; j<elementMatrix.M(); j++ )
{
// The global index of the j-th local degree of freedom of the element 'e'
auto col = localView.index(j);
matrix[row[0]][col[0]][row[1]][col[1]] += elementMatrix[i][j];
}
}
}
}
/** \brief Assemble the divergence stiffness matrix on the given grid view */
template <class Basis, class VectorType, class VolumeTerm>
void assembleMixedPoissonRhs(const Basis& basis,
VectorType& rhs,
VolumeTerm&& volumeTerm)
{
// Get the grid view from the finite element basis (use of test space arbitrary)
auto gridView = basis.gridView();
auto localVolumeTerm = localFunction(Functions::makeGridViewFunction(volumeTerm, gridView));
// set rhs to correct length -- the total number of basis vectors in the basis
using Functions::istlVectorBackend;
istlVectorBackend(rhs).resize(basis);
// Set all entries to zero
rhs = 0;
// A view on the FE basis on a single element
auto localView = basis.localView();
// A loop over all elements of the grid
for(const auto& element : elements(gridView))
{
// Bind the local FE basis view to the current element
localView.bind(element);
// Now get the local contribution to the right-hand side vector
BlockVector<FieldVector<double,1> > localRhs;
localVolumeTerm.bind(element);
getVolumeTerm(localView, localRhs, localVolumeTerm);
for (size_t i=0; i<localRhs.size(); i++)
{
// The global index of the i-th vertex of the element 'e'
auto row = localView.index(i);
rhs[row[0]][row[1]] += localRhs[i];
}
}
}
// Mark all DOFs associated to entities for which
// the boundary intersections center is marked
// by the given indicator functions.
template<class Basis, class Vector, class Indicator>
void markBoundaryDOFsByIndicator(const Basis& basis, Vector& vector, const Indicator& indicator)
{
auto vectorBackend = Dune::Functions::istlVectorBackend(vector);
Dune::Functions::forEachBoundaryDOF(basis, [&] (auto&& localIndex, const auto& localView, const auto& intersection) {
if (indicator(intersection.geometry().center())>1e-8)
vectorBackend[localView.index(localIndex)] = true;
});
}
int main (int argc, char *argv[])
{
// Set up MPI, if available
MPIHelper::instance(argc, argv);
///////////////////////////////////
// Generate the grid
///////////////////////////////////
#ifdef DIM2
const int dim = 2;
std::array<int,dim> elements = {{50, 50}};
#else
const int dim = 3;
std::array<int,dim> elements = {{10, 10, 10}};
#endif
typedef YaspGrid<dim> GridType;
FieldVector<double,dim> l(1);
GridType grid(l,elements);
auto gridView = grid.leafGridView();
/////////////////////////////////////////////////////////
// Choose a finite element space
/////////////////////////////////////////////////////////
using namespace Functions::BasisFactory;
using namespace Indices;
const int k = 0;
auto basis = makeBasis(
gridView,
composite(
raviartThomas<k>(),
lagrange<k>()
));
auto fluxBasis = Functions::subspaceBasis(basis, _0);
auto pressureBasis = Functions::subspaceBasis(basis, _1);
/////////////////////////////////////////////////////////
// Stiffness matrix and right hand side vector
/////////////////////////////////////////////////////////
using MatrixType = Matrix<BCRSMatrix<FieldMatrix<double,1,1> > >;
using VectorType = BlockVector<BlockVector<FieldVector<double,1> > >;
using BitVectorType = BlockVector<BlockVector<FieldVector<char,1> > >;
using Functions::istlVectorBackend;
MatrixType stiffnessMatrix;
VectorType rhs;
/////////////////////////////////////////////////////////
// Assemble the system
/////////////////////////////////////////////////////////
using Domain = GridType::template Codim<0>::Geometry::GlobalCoordinate;
assembleMixedPoissonMatrix(basis, stiffnessMatrix);
auto rightHandSide = [] (const Domain& x) { return 10; };
assembleMixedPoissonRhs(basis, rhs, rightHandSide);
// This marks the top and bottom boundary of the domain
auto fluxDirichletIndicator = [&l] (const auto& x) {
return ((x[dim-1] > l[dim-1] - 1e-8) or (x[dim-1] < 1e-8));
};
auto coordinate = Dune::Functions::makeAnalyticGridViewFunction([](const auto& x) { return x; }, gridView);
auto normal = Dune::Functions::FaceNormalGridFunction(gridView);
auto fluxDirichletValues = Dune::Functions::makeComposedGridFunction(
[pi = std::acos(-1.0)](const auto& x, const auto& normal) {
return (-0.05 * (1. - x[0]) * std::sin(2.*pi*x[0])) * normal;
},
coordinate,
normal);
// Mark all DOFs located in a boundary intersection marked
// by the fluxDirichletIndicator function. If the flux
// ansatz space also contains tangential components, this
// approach will fail, because those are also marked.
// For Raviart-Thomas this does not happen.
auto isDirichlet = BitVectorType();
istlVectorBackend(isDirichlet).resize(basis);
isDirichlet = false;
markBoundaryDOFsByIndicator(fluxBasis, isDirichlet, fluxDirichletIndicator);
// Interpolate flux Dirichlet values
interpolate(fluxBasis, rhs, fluxDirichletValues, isDirichlet);
////////////////////////////////////////////
// Modify Dirichlet rows
////////////////////////////////////////////
// loop over the matrix rows
for (size_t i=0; i<stiffnessMatrix[0][0].N(); i++)
{
if (isDirichlet[0][i])
{
// Lower right matrix block
auto cIt = stiffnessMatrix[0][0][i].begin();
auto cEndIt = stiffnessMatrix[0][0][i].end();
// loop over nonzero matrix entries in current row
for (; cIt!=cEndIt; ++cIt)
*cIt = (i==cIt.index()) ? 1. : 0.;
// Lower left matrix block
for (auto&& entry: stiffnessMatrix[0][1][i])
entry = 0.0;
}
}
////////////////////////////
// Compute solution
////////////////////////////
// Start from the rhs vector; that way the Dirichlet entries are already correct
VectorType x = rhs;
// Technicality: turn the matrix into a linear operator
MatrixAdapter<MatrixType,VectorType,VectorType> op(stiffnessMatrix);
// Fancy (but only) way to not have a preconditioner at all
Richardson<VectorType,VectorType> preconditioner(1.0);
// Preconditioned GMRES / BiCGSTAB solver
//RestartedGMResSolver<VectorType> solver (op, preconditioner, 1e-6, 1000, 10000, 2);
BiCGSTABSolver<VectorType> solver(op, preconditioner, 1e-6, 4000, 2);
// Object storing some statistics about the solving process
InverseOperatorResult statistics;
// Solve!
solver.apply(x, rhs, statistics);
////////////////////////////////////////////////////////////////////////////
// Make a discrete function from the FE basis and the coefficient vector
////////////////////////////////////////////////////////////////////////////
using FluxRange = FieldVector<double,dim>;
using PressureRange = double;
auto fluxFunction = Functions::makeDiscreteGlobalBasisFunction<FluxRange>(fluxBasis, x);
auto pressureFunction = Functions::makeDiscreteGlobalBasisFunction<PressureRange>(pressureBasis, x);
//////////////////////////////////////////////////////////////////////////////////////////////
// Write result to VTK file
//////////////////////////////////////////////////////////////////////////////////////////////
auto vtkWriter = SubsamplingVTKWriter(gridView, Dune::refinementLevels(0));
vtkWriter.addVertexData(fluxFunction, VTK::FieldInfo("flux", VTK::FieldInfo::Type::vector, dim));
vtkWriter.addVertexData(pressureFunction, VTK::FieldInfo("pressure", VTK::FieldInfo::Type::scalar, 1));
vtkWriter.write("poisson-mfem-result");
}
|