1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
|
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#include <config.h>
#include <vector>
#include <cmath>
#include <dune/common/bitsetvector.hh>
#include <dune/geometry/quadraturerules.hh>
#include <dune/grid/yaspgrid.hh>
#include <dune/grid/uggrid.hh>
#include <dune/grid/io/file/vtk/subsamplingvtkwriter.hh>
#include <dune/istl/matrix.hh>
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/matrixindexset.hh>
#include <dune/istl/preconditioners.hh>
#include <dune/istl/solvers.hh>
#include <dune/functions/functionspacebases/interpolate.hh>
#include <dune/functions/functionspacebases/lagrangebasis.hh>
#include <dune/functions/functionspacebases/boundarydofs.hh>
#include <dune/functions/gridfunctions/discreteglobalbasisfunction.hh>
#include <dune/functions/gridfunctions/gridviewfunction.hh>
using namespace Dune;
// Compute the stiffness matrix for a single element
template <class LocalView, class MatrixType>
void getLocalMatrix( const LocalView& localView, MatrixType& elementMatrix)
{
// Get the grid element from the local FE basis view
typedef typename LocalView::Element Element;
const Element& element = localView.element();
const int dim = Element::dimension;
auto geometry = element.geometry();
// Get set of shape functions for this element
const auto& localFiniteElement = localView.tree().finiteElement();
// Set all matrix entries to zero
elementMatrix.setSize(localFiniteElement.localBasis().size(),localFiniteElement.localBasis().size());
elementMatrix = 0; // fills the entire matrix with zeroes
// Get a quadrature rule
int order = 2*(dim*localFiniteElement.localBasis().order()-1);
const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(element.type(), order);
// Loop over all quadrature points
for (size_t pt=0; pt < quad.size(); pt++) {
// Position of the current quadrature point in the reference element
const FieldVector<double,dim>& quadPos = quad[pt].position();
// The inverse Jacobian of the map from the reference element to the element
const auto& jacobianInverse = geometry.jacobianInverse(quadPos);
// The multiplicative factor in the integral transformation formula
const double integrationElement = geometry.integrationElement(quadPos);
// The gradients of the shape functions on the reference element
std::vector<FieldMatrix<double,1,dim> > referenceJacobians;
localFiniteElement.localBasis().evaluateJacobian(quadPos, referenceJacobians);
// Compute the shape function gradients on the real element
std::vector<FieldMatrix<double,1,dim> > jacobians(referenceJacobians.size());
for (size_t i=0; i<jacobians.size(); i++)
jacobians[i] = referenceJacobians[i] * jacobianInverse;
// Compute the actual matrix entries
for (size_t i=0; i<elementMatrix.N(); i++)
for (size_t j=0; j<elementMatrix.M(); j++ )
elementMatrix[i][j] += (jacobians[i] * transpose(jacobians[j])) * quad[pt].weight() * integrationElement;
}
}
// Compute the source term for a single element
template <class LocalView, class LocalVolumeTerm>
void getVolumeTerm( const LocalView& localView,
BlockVector<FieldVector<double,1> >& localRhs,
LocalVolumeTerm&& localVolumeTerm)
{
// Get the grid element from the local FE basis view
typedef typename LocalView::Element Element;
const Element& element = localView.element();
const int dim = Element::dimension;
// Get set of shape functions for this element
const auto& localFiniteElement = localView.tree().finiteElement();
// Set all entries to zero
localRhs.resize(localFiniteElement.localBasis().size());
localRhs = 0;
// A quadrature rule
int order = dim*localFiniteElement.localBasis().order();
const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(element.type(), order);
// Loop over all quadrature points
for ( size_t pt=0; pt < quad.size(); pt++ ) {
// Position of the current quadrature point in the reference element
const FieldVector<double,dim>& quadPos = quad[pt].position();
// The multiplicative factor in the integral transformation formula
const double integrationElement = element.geometry().integrationElement(quadPos);
double functionValue = localVolumeTerm(quadPos);
// Evaluate all shape function values at this point
std::vector<FieldVector<double,1> > shapeFunctionValues;
localFiniteElement.localBasis().evaluateFunction(quadPos, shapeFunctionValues);
// Actually compute the vector entries
for (size_t i=0; i<localRhs.size(); i++)
localRhs[i] += shapeFunctionValues[i] * functionValue * quad[pt].weight() * integrationElement;
}
}
// Get the occupation pattern of the stiffness matrix
template <class FEBasis>
void getOccupationPattern(const FEBasis& feBasis, MatrixIndexSet& nb)
{
// Total number of grid vertices
auto n = feBasis.size();
nb.resize(n, n);
// A view on the FE basis on a single element
auto localView = feBasis.localView();
// Loop over all leaf elements
for(const auto& e : elements(feBasis.gridView()))
{
// Bind the local FE basis view to the current element
localView.bind(e);
// There is a matrix entry a_ij if the i-th and j-th vertex are connected in the grid
for (size_t i=0; i<localView.tree().size(); i++) {
for (size_t j=0; j<localView.tree().size(); j++) {
auto iIdx = localView.index(i);
auto jIdx = localView.index(j);
// Add a nonzero entry to the matrix
nb.add(iIdx, jIdx);
}
}
}
}
/** \brief Assemble the Laplace stiffness matrix on the given grid view */
template <class FEBasis, class VolumeTerm>
void assembleLaplaceMatrix(const FEBasis& feBasis,
BCRSMatrix<FieldMatrix<double,1,1> >& matrix,
BlockVector<FieldVector<double,1> >& rhs,
VolumeTerm&& volumeTerm)
{
// Get the grid view from the finite element basis
typedef typename FEBasis::GridView GridView;
GridView gridView = feBasis.gridView();
auto localVolumeTerm = localFunction(Functions::makeGridViewFunction(volumeTerm, gridView));
// MatrixIndexSets store the occupation pattern of a sparse matrix.
// They are not particularly efficient, but simple to use.
MatrixIndexSet occupationPattern;
getOccupationPattern(feBasis, occupationPattern);
// ... and give it the occupation pattern we want.
occupationPattern.exportIdx(matrix);
// set rhs to correct length -- the total number of basis vectors in the basis
rhs.resize(feBasis.size());
// Set all entries to zero
matrix = 0;
rhs = 0;
// A view on the FE basis on a single element
auto localView = feBasis.localView();
// A loop over all elements of the grid
for(const auto& e : elements(gridView))
{
// Bind the local FE basis view to the current element
localView.bind(e);
// Now let's get the element stiffness matrix
// A dense matrix is used for the element stiffness matrix
Matrix<FieldMatrix<double,1,1> > elementMatrix;
getLocalMatrix(localView, elementMatrix);
// Add element stiffness matrix onto the global stiffness matrix
for (size_t i=0; i<elementMatrix.N(); i++) {
// The global index of the i-th local degree of freedom of the element 'e'
auto row = localView.index(i);
for (size_t j=0; j<elementMatrix.M(); j++ ) {
// The global index of the j-th local degree of freedom of the element 'e'
auto col = localView.index(j);
matrix[row][col] += elementMatrix[i][j];
}
}
// Now get the local contribution to the right-hand side vector
BlockVector<FieldVector<double,1> > localRhs;
localVolumeTerm.bind(e);
getVolumeTerm(localView, localRhs, localVolumeTerm);
for (size_t i=0; i<localRhs.size(); i++) {
// The global index of the i-th vertex of the element 'e'
auto row = localView.index(i);
rhs[row] += localRhs[i];
}
}
}
// This method marks all vertices on the boundary of the grid.
// In our problem these are precisely the Dirichlet nodes.
// The result can be found in the 'dirichletNodes' variable. There, a bit
// is set precisely when the corresponding vertex is on the grid boundary.
// Since interpolating into a vector<bool> is currently not supported,
// we use a vector<char> which, in contrast to vector<bool>
// is a real container.
template <class FEBasis>
void boundaryTreatment (const FEBasis& feBasis, std::vector<char>& dirichletNodes )
{
dirichletNodes.clear();
dirichletNodes.resize(feBasis.size(), false);
Functions::forEachBoundaryDOF(feBasis, [&] (auto&& index) {
dirichletNodes[index] = true;
});
}
template<int dim>
auto createUniformCubeGrid()
{
using Grid = Dune::YaspGrid<dim>;
Dune::FieldVector<double,dim> l(1.0);
std::array<int,dim> elements = {{2, 2}};
return std::make_unique<Grid>(l, elements);
}
#if HAVE_DUNE_UGGRID
auto createMixedGrid()
{
using Grid = Dune::UGGrid<2>;
Dune::GridFactory<Grid> factory;
for(unsigned int k : Dune::range(9))
factory.insertVertex({0.5*(k%3), 0.5*(k/3)});
factory.insertElement(Dune::GeometryTypes::cube(2), {0, 1, 3, 4});
factory.insertElement(Dune::GeometryTypes::cube(2), {1, 2, 4, 5});
factory.insertElement(Dune::GeometryTypes::simplex(2), {3, 4, 6});
factory.insertElement(Dune::GeometryTypes::simplex(2), {4, 7, 6});
factory.insertElement(Dune::GeometryTypes::simplex(2), {4, 5, 7});
factory.insertElement(Dune::GeometryTypes::simplex(2), {5, 8, 7});
return std::unique_ptr<Grid>{factory.createGrid()};
}
#endif
int main (int argc, char *argv[]) try
{
// Set up MPI, if available
MPIHelper::instance(argc, argv);
///////////////////////////////////
// Generate the grid
///////////////////////////////////
#if HAVE_DUNE_UGGRID
auto gridPtr = createMixedGrid();
#else
auto gridPtr = createUniformCubeGrid<2>();
#endif
auto& grid = *gridPtr;
grid.globalRefine(4);
auto gridView = grid.leafGridView();
using GridView = decltype(gridView);
/////////////////////////////////////////////////////////
// Choose a finite element space
/////////////////////////////////////////////////////////
typedef Functions::LagrangeBasis<GridView,2> FEBasis;
FEBasis feBasis(gridView);
/////////////////////////////////////////////////////////
// Stiffness matrix and right hand side vector
/////////////////////////////////////////////////////////
typedef BlockVector<FieldVector<double,1> > VectorType;
typedef BCRSMatrix<FieldMatrix<double,1,1> > MatrixType;
VectorType rhs;
MatrixType stiffnessMatrix;
/////////////////////////////////////////////////////////
// Assemble the system
/////////////////////////////////////////////////////////
std::cout << "Number of DOFs is " << feBasis.dimension() << std::endl;
auto rightHandSide = [] (const auto& x) { return 10;};
Dune::Timer timer;
assembleLaplaceMatrix(feBasis, stiffnessMatrix, rhs, rightHandSide);
std::cout << "Assembling the problem took " << timer.elapsed() << "s" << std::endl;
/////////////////////////////////////////////////
// Choose an initial iterate
/////////////////////////////////////////////////
VectorType x(feBasis.size());
x = 0;
// Determine Dirichlet dofs
std::vector<char> dirichletNodes;
boundaryTreatment(feBasis, dirichletNodes);
// Don't trust on non-standard M_PI.
auto pi = std::acos(-1.0);
auto dirichletValueFunction = [pi](const auto& x){ return std::sin(2*pi*x[0]); };
// Interpolate dirichlet values at the boundary nodes
interpolate(feBasis, x, dirichletValueFunction, dirichletNodes);
//////////////////////////////////////////////////////
// Incorporate dirichlet values in a symmetric way
//////////////////////////////////////////////////////
// Compute residual for non-homogeneous Dirichlet values
// stored in x. Since x is zero for non-Dirichlet DOFs,
// we can simply multiply by the matrix.
stiffnessMatrix.mmv(x, rhs);
// Change Dirichlet matrix rows and columns to the identity.
for (size_t i=0; i<stiffnessMatrix.N(); i++) {
if (dirichletNodes[i]) {
rhs[i] = x[i];
auto cIt = stiffnessMatrix[i].begin();
auto cEndIt = stiffnessMatrix[i].end();
// loop over nonzero matrix entries in current row
for (; cIt!=cEndIt; ++cIt)
*cIt = (i==cIt.index()) ? 1 : 0;
}
else {
auto cIt = stiffnessMatrix[i].begin();
auto cEndIt = stiffnessMatrix[i].end();
// loop over nonzero matrix entries in current row
for (; cIt!=cEndIt; ++cIt)
if (dirichletNodes[cIt.index()])
*cIt = 0;
}
}
////////////////////////////
// Compute solution
////////////////////////////
// Technicality: turn the matrix into a linear operator
MatrixAdapter<MatrixType,VectorType,VectorType> op(stiffnessMatrix);
// Sequential incomplete LU decomposition as the preconditioner
SeqILDL<MatrixType,VectorType,VectorType> ildl(stiffnessMatrix,1.0);
// Preconditioned conjugate-gradient solver
CGSolver<VectorType> cg(op,
ildl, // preconditioner
1e-4, // desired residual reduction factor
100, // maximum number of iterations
2); // verbosity of the solver
// Object storing some statistics about the solving process
InverseOperatorResult statistics;
// Solve!
cg.apply(x, rhs, statistics);
////////////////////////////////////////////////////////////////////////////
// Make a discrete function from the FE basis and the coefficient vector
////////////////////////////////////////////////////////////////////////////
auto xFunction = Functions::makeDiscreteGlobalBasisFunction<double>(feBasis, x);
//////////////////////////////////////////////////////////////////////////////////////////////
// Write result to VTK file
// We need to subsample, because VTK cannot natively display real second-order functions
//////////////////////////////////////////////////////////////////////////////////////////////
SubsamplingVTKWriter<GridView> vtkWriter(gridView, Dune::refinementLevels(2));
vtkWriter.addVertexData(xFunction, VTK::FieldInfo("x", VTK::FieldInfo::Type::scalar, 1));
vtkWriter.write("poisson-pq2");
}
// Error handling
catch (Exception& e) {
std::cout << e.what() << std::endl;
}
|