File: stokes-taylorhood.cc

package info (click to toggle)
dune-functions 2.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,232 kB
  • sloc: cpp: 12,639; python: 283; makefile: 3
file content (525 lines) | stat: -rw-r--r-- 19,090 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#include <config.h>

#include <array>
#include <vector>

#include <dune/common/bitsetvector.hh>
#include <dune/common/indices.hh>
#include <dune/common/transpose.hh>

#include <dune/geometry/quadraturerules.hh>

#include <dune/grid/yaspgrid.hh>
#include <dune/grid/io/file/vtk/subsamplingvtkwriter.hh>

#include <dune/istl/matrix.hh>
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/matrixindexset.hh>
#include <dune/istl/solvers.hh>
#include <dune/istl/preconditioners.hh>
#include <dune/istl/multitypeblockmatrix.hh>
#include <dune/istl/multitypeblockvector.hh>

#include <dune/functions/functionspacebases/interpolate.hh>
#include <dune/functions/functionspacebases/taylorhoodbasis.hh>
#include <dune/functions/backends/istlvectorbackend.hh>
#include <dune/functions/functionspacebases/powerbasis.hh>
#include <dune/functions/functionspacebases/compositebasis.hh>
#include <dune/functions/functionspacebases/lagrangebasis.hh>
#include <dune/functions/functionspacebases/subspacebasis.hh>
#include <dune/functions/functionspacebases/boundarydofs.hh>

#include <dune/functions/gridfunctions/discreteglobalbasisfunction.hh>
#include <dune/functions/gridfunctions/gridviewfunction.hh>

#define BLOCKEDBASIS 1

// { using_namespace_dune_begin }
using namespace Dune;
// { using_namespace_dune_end }

// Compute the stiffness matrix for a single element
// { local_assembler_signature_begin }
template <class LocalView>
void getLocalMatrix(
        const LocalView& localView,
        Matrix<FieldMatrix<double,1,1>>& elementMatrix)
// { local_assembler_signature_end }
{
  // Get the grid element from the local FE basis view
  // { local_assembler_get_element_information_begin }
  using Element = typename LocalView::Element;
  const Element element = localView.element();

  const int dim = Element::dimension;
  auto geometry = element.geometry();
  // { local_assembler_get_element_information_end }

  // Set all matrix entries to zero
  // { initialize_element_matrix_begin }
  elementMatrix.setSize(localView.size(), localView.size());
  elementMatrix = 0;      // fills the entire matrix with zeros
  // { initialize_element_matrix_end }

  // Get set of shape functions for this element
  // { get_local_fe_begin }
  using namespace Indices;
  const auto& velocityLocalFiniteElement                   /*@\label{li:stokes_taylorhood_get_velocity_lfe}@*/
          = localView.tree().child(_0,0).finiteElement();
  const auto& pressureLocalFiniteElement
          = localView.tree().child(_1).finiteElement();    /*@\label{li:stokes_taylorhood_get_pressure_lfe}@*/
  // { get_local_fe_end }

  // Get a quadrature rule
  // { begin_quad_loop_begin }
  int order = 2*(dim*velocityLocalFiniteElement.localBasis().order()-1);
  const auto& quad = QuadratureRules<double, dim>::rule(element.type(), order);

  // Loop over all quadrature points
  for (const auto& quadPoint : quad)
  {
    // { begin_quad_loop_end }
    // { quad_loop_preamble_begin }
    // The inverse Jacobian of the map from the
    // reference element to the element
    const auto jacobianInverse = geometry.jacobianInverse(quadPoint.position());

    // The multiplicative factor in the integral transformation formula
    const auto integrationElement
            = geometry.integrationElement(quadPoint.position());
    // { quad_loop_preamble_end }

    ///////////////////////////////////////////////////////////////////////
    //  Velocity--velocity coupling
    ///////////////////////////////////////////////////////////////////////

    // The gradients of the shape functions on the reference element
    // { velocity_gradients_begin }
    std::vector<FieldMatrix<double,1,dim> > referenceJacobians;
    velocityLocalFiniteElement.localBasis().evaluateJacobian(
            quadPoint.position(),
            referenceJacobians);

    // Compute the shape function gradients on the grid element
    std::vector<FieldMatrix<double,1,dim> > jacobians(referenceJacobians.size());
    for (size_t i=0; i<jacobians.size(); i++)
      jacobians[i] = referenceJacobians[i] * jacobianInverse;
    // { velocity_gradients_end }

    // Compute the actual matrix entries
    // { velocity_velocity_coupling_begin }
    for (size_t i=0; i<velocityLocalFiniteElement.size(); i++)
      for (size_t j=0; j<velocityLocalFiniteElement.size(); j++ )
        for (size_t k=0; k<dim; k++)
        {
          size_t row = localView.tree().child(_0,k).localIndex(i);                    /*@\label{li:stokes_taylorhood_compute_vv_element_matrix_row}@*/
          size_t col = localView.tree().child(_0,k).localIndex(j);                    /*@\label{li:stokes_taylorhood_compute_vv_element_matrix_column}@*/
          elementMatrix[row][col] += (jacobians[i] * transpose(jacobians[j]))
                                     * quadPoint.weight() * integrationElement;  /*@\label{li:stokes_taylorhood_update_vv_element_matrix}@*/
        }
    // { velocity_velocity_coupling_end }

    ///////////////////////////////////////////////////////////////////////
    //  Velocity--pressure coupling
    ///////////////////////////////////////////////////////////////////////

    // The values of the pressure shape functions
    // { pressure_values_begin }
    std::vector<FieldVector<double,1> > pressureValues;
    pressureLocalFiniteElement.localBasis().evaluateFunction(
            quadPoint.position(),
            pressureValues);
    // { pressure_values_end }

    // Compute the actual matrix entries
    // { velocity_pressure_coupling_begin }
    for (size_t i=0; i<velocityLocalFiniteElement.size(); i++)
      for (size_t j=0; j<pressureLocalFiniteElement.size(); j++ )
        for (size_t k=0; k<dim; k++)
        {
          size_t vIndex = localView.tree().child(_0,k).localIndex(i); /*@\label{li:stokes_taylorhood_compute_vp_element_matrix_row}@*/
          size_t pIndex = localView.tree().child(_1).localIndex(j);   /*@\label{li:stokes_taylorhood_compute_vp_element_matrix_column}@*/

          elementMatrix[vIndex][pIndex] +=                    /*@\label{li:stokes_taylorhood_update_vp_element_matrix_a}@*/
                  jacobians[i][0][k] * pressureValues[j]
                  * quadPoint.weight() * integrationElement;
          elementMatrix[pIndex][vIndex] +=
                  jacobians[i][0][k] * pressureValues[j]
                  * quadPoint.weight() * integrationElement;  /*@\label{li:stokes_taylorhood_update_vp_element_matrix_b}@*/
        }
    // { velocity_pressure_coupling_end }

  }

}


// Set the occupation pattern of the stiffness matrix
template <class Basis, class MatrixType>
void setOccupationPattern(const Basis& basis, MatrixType& matrix)
{
  enum {dim = Basis::GridView::dimension};

  // MatrixIndexSets store the occupation pattern of a sparse matrix.
  // They are not particularly efficient, but simple to use.
  std::array<std::array<MatrixIndexSet, 2>, 2> nb;

  // Set sizes of the 2x2 submatrices
  for (size_t i=0; i<2; i++)
    for (size_t j=0; j<2; j++)
      nb[i][j].resize(basis.size({i}), basis.size({j}));

  // A view on the FE basis on a single element
  auto localView = basis.localView();

  // Loop over all leaf elements
  for(const auto& element : elements(basis.gridView()))
  {
    // Bind the local  view to the current element
    localView.bind(element);

    // Add element stiffness matrix onto the global stiffness matrix
    for (size_t i=0; i<localView.size(); i++) {

      // Global index of the i-th local degree of freedom of the current element
      auto row = localView.index(i);

      for (size_t j=0; j<localView.size(); j++ ) {

        // Global index of the j-th local degree of freedom of the current element
        auto col = localView.index(j);

        nb[row[0]][col[0]].add(row[1],col[1]);

      }

    }

  }

  // Give the matrix the occupation pattern we want.
  using namespace Indices;
#if !BLOCKEDBASIS
  matrix.setSize(2,2);
#endif
  nb[0][0].exportIdx(matrix[_0][_0]);
  nb[0][1].exportIdx(matrix[_0][_1]);
  nb[1][0].exportIdx(matrix[_1][_0]);
  nb[1][1].exportIdx(matrix[_1][_1]);
}


#if BLOCKEDBASIS
// { matrixentry_begin }
template<class Matrix, class MultiIndex>
decltype(auto) matrixEntry(
        Matrix& matrix, const MultiIndex& row, const MultiIndex& col)
{
  using namespace Indices;
  if ((row[0]==0) and (col[0]==0))
    return matrix[_0][_0][row[1]][col[1]][row[2]][col[2]];
  if ((row[0]==0) and (col[0]==1))
    return matrix[_0][_1][row[1]][col[1]][row[2]][0];
  if ((row[0]==1) and (col[0]==0))
    return matrix[_1][_0][row[1]][col[1]][0][col[2]];
  return matrix[_1][_1][row[1]][col[1]][0][0];  /*@\label{li:matrixentry_pressure_pressure}@*/
}
// { matrixentry_end }
#else
template<class Matrix, class MultiIndex>
decltype(auto) matrixEntry(Matrix& matrix, const MultiIndex& row, const MultiIndex& col)
{
  return matrix[row[0]][col[0]][row[1]][col[1]];
}
#endif


/** \brief Assemble the Laplace stiffness matrix on the given grid view */
// { global_assembler_signature_begin }
template <class Basis, class MatrixType>
void assembleStokesMatrix(const Basis& basis, MatrixType& matrix)
// { global_assembler_signature_end }
{
  // { setup_matrix_pattern_begin }
  // Set matrix size and occupation pattern
  setOccupationPattern(basis, matrix);

  // Set all entries to zero
  matrix = 0;
  // { setup_matrix_pattern_end }

  // A view on the FE basis on a single element
  // { get_localview_begin }
  auto localView     = basis.localView();
  // { get_localview_end }

  // A loop over all elements of the grid
  // { element_loop_and_bind_begin }
  for (const auto& element : elements(basis.gridView()))
  {
    // Bind the local FE basis view to the current element
    localView.bind(element);
    // { element_loop_and_bind_end }

    // Now let's get the element stiffness matrix
    // A dense matrix is used for the element stiffness matrix
    // { setup_element_stiffness_begin }
    Matrix<FieldMatrix<double,1,1> > elementMatrix;
    getLocalMatrix(localView, elementMatrix);
    // { setup_element_stiffness_end }

    // Add element stiffness matrix onto the global stiffness matrix
    // { accumulate_global_matrix_begin }
    for (size_t i=0; i<elementMatrix.N(); i++)
    {
      // The global index of the i-th local degree of freedom of the element 'e'
      auto row = localView.index(i);                /*@\label{li:stokes_taylorhood_get_global_row_index}@*/

      for (size_t j=0; j<elementMatrix.M(); j++ )
      {
        // The global index of the j-th local degree of freedom of the element 'e'
        auto col = localView.index(j);                /*@\label{li:stokes_taylorhood_get_global_column_index}@*/
        matrixEntry(matrix, row, col) += elementMatrix[i][j];  /*@\label{li:stokes_taylorhood_scatter_matrix_indices}@*/
      }
    }
    // { accumulate_global_matrix_end }
  }

}



// { main_begin }
int main (int argc, char *argv[]) try
{
  // Set up MPI, if available
  MPIHelper::instance(argc, argv);
  // { mpi_setup_end }

  ///////////////////////////////////
  //   Generate the grid
  ///////////////////////////////////

  // { grid_setup_begin }
  const int dim = 2;
  using GridType = YaspGrid<dim>;
  FieldVector<double,dim> upperRight = {1, 1};
  std::array<int,dim> elements = {{4, 4}};
  GridType grid(upperRight,elements);

  using GridView = typename GridType::LeafGridView;
  GridView gridView = grid.leafGridView();
  // { grid_setup_end }

  /////////////////////////////////////////////////////////
  //   Choose a finite element space
  /////////////////////////////////////////////////////////

#if BLOCKEDBASIS
  // { function_space_basis_begin }
  using namespace Functions::BasisFactory;

  constexpr std::size_t p = 1; // pressure order for Taylor-Hood

  auto taylorHoodBasis = makeBasis(
          gridView,
          composite(
            power<dim>(
              lagrange<p+1>(),
              blockedInterleaved()),
            lagrange<p>()
          ));
  // { function_space_basis_end }
#else
  using namespace Functions::BasisFactory;

  static const std::size_t p = 1; // pressure order for Taylor-Hood
  auto taylorHoodBasis = makeBasis(
          gridView,
          composite(
            power<dim>(
              lagrange<p+1>(),
              flatInterleaved()),
            lagrange<p>()
          ));
#endif



  /////////////////////////////////////////////////////////
  //   Stiffness matrix and right hand side vector
  /////////////////////////////////////////////////////////

#if BLOCKEDBASIS
  // { linear_algebra_setup_begin }
  using VelocityVector = BlockVector<FieldVector<double,dim>>;
  using PressureVector = BlockVector<FieldVector<double,1>>;
  using VectorType = MultiTypeBlockVector<VelocityVector, PressureVector>;

  using VelocityBitVector = BlockVector<FieldVector<char,dim>>;
  using PressureBitVector = BlockVector<FieldVector<char,1>>;
  using BitVectorType = MultiTypeBlockVector<VelocityBitVector, PressureBitVector>;

  using Matrix00 = BCRSMatrix<FieldMatrix<double,dim,dim>>;
  using Matrix01 = BCRSMatrix<FieldMatrix<double,dim,1>>;
  using Matrix10 = BCRSMatrix<FieldMatrix<double,1,dim>>;
  using Matrix11 = BCRSMatrix<FieldMatrix<double,1,1>>;   /*@\label{li:matrix_type_pressure_pressure}@*/
  using MatrixRow0 = MultiTypeBlockVector<Matrix00, Matrix01>;
  using MatrixRow1 = MultiTypeBlockVector<Matrix10, Matrix11>;
  using MatrixType = MultiTypeBlockMatrix<MatrixRow0,MatrixRow1>;
  // { linear_algebra_setup_end }
#else
  using VectorType = BlockVector<BlockVector<FieldVector<double,1> > >;
  using BitVectorType = BlockVector<BlockVector<FieldVector<char,1> > >;
  using MatrixType = Matrix<BCRSMatrix<FieldMatrix<double,1,1> > >;
#endif

  /////////////////////////////////////////////////////////
  //  Assemble the system
  /////////////////////////////////////////////////////////

  // { rhs_assembly_begin }
  VectorType rhs;

  auto rhsBackend = Dune::Functions::istlVectorBackend(rhs);

  rhsBackend.resize(taylorHoodBasis);
  rhs = 0;                                 /*@\label{li:stokes_taylorhood_set_rhs_to_zero}@*/
  // { rhs_assembly_end }

  // { matrix_assembly_begin }
  MatrixType stiffnessMatrix;
  assembleStokesMatrix(taylorHoodBasis, stiffnessMatrix);   /*@\label{li:stokes_taylorhood_call_to_assemblestokesmatrix}@*/
  // { matrix_assembly_end }

  /////////////////////////////////////////////////////////
  // Set Dirichlet values.
  // Only velocity components have Dirichlet boundary values
  /////////////////////////////////////////////////////////

  // { initialize_boundary_dofs_vector_begin }

  BitVectorType isBoundary;

  auto isBoundaryBackend = Dune::Functions::istlVectorBackend(isBoundary);
  isBoundaryBackend.resize(taylorHoodBasis);
  isBoundary = false;
  // { initialize_boundary_dofs_vector_end }

  // { determine_boundary_dofs_begin }
  using namespace Indices;
  Functions::forEachBoundaryDOF(
          Functions::subspaceBasis(taylorHoodBasis, _0),
          [&] (auto&& index) {
            isBoundaryBackend[index] = true;
          });
  // { determine_boundary_dofs_end }

  // { interpolate_dirichlet_values_begin }
  using Coordinate = GridView::Codim<0> ::Geometry::GlobalCoordinate;
  using VelocityRange = FieldVector<double,dim>;
  auto&& velocityDirichletData = [](Coordinate x)
  {
    return VelocityRange{0.0, double(x[0] < 1e-8)};
  };

  Functions::interpolate(
          Functions::subspaceBasis(taylorHoodBasis, _0), rhs,
          velocityDirichletData,
          isBoundary);
  // { interpolate_dirichlet_values_end }

  ////////////////////////////////////////////
  //   Modify Dirichlet rows
  ////////////////////////////////////////////

  // loop over the matrix rows
  // { set_dirichlet_matrix_begin }
  auto localView = taylorHoodBasis.localView();
  for(const auto& element : Dune::elements(taylorHoodBasis.gridView()))
  {
    localView.bind(element);
    for (size_t i=0; i<localView.size(); ++i)
    {
      auto row = localView.index(i);
      // If row corresponds to a boundary entry, modify
      // it to be an identity matrix row
      if (isBoundaryBackend[row])
        for (size_t j=0; j<localView.size(); ++j)
        {
          auto col = localView.index(j);
          matrixEntry(stiffnessMatrix, row, col) = (i==j) ? 1 : 0;
        }
    }
  }
  // { set_dirichlet_matrix_end }

  ////////////////////////////
  //   Compute solution
  ////////////////////////////
  // { stokes_solve_begin }
  // Start from the rhs vector; that way the Dirichlet entries are already correct
  VectorType x = rhs;

  // Technicality:  turn the matrix into a linear operator
  MatrixAdapter<MatrixType,VectorType,VectorType> stiffnessOperator(stiffnessMatrix);

  // Fancy (but only) way to not have a preconditioner at all
  Richardson<VectorType,VectorType> preconditioner(1.0);

  // Construct the actual iterative solver
  RestartedGMResSolver<VectorType> solver(
          stiffnessOperator,  // operator to invert
          preconditioner,     // preconditioner for iteration
          1e-10,              // desired residual reduction factor
          500,                // number of iterations between restarts
          500,                // maximum number of iterations
          2);                 // verbosity of the solver

  // Object storing some statistics about the solving process
  InverseOperatorResult statistics;

  // Solve!
  solver.apply(x, rhs, statistics);
  // { stokes_solve_end }

  ////////////////////////////////////////////////////////////////////////////
  //  Make a discrete function from the FE basis and the coefficient vector
  ////////////////////////////////////////////////////////////////////////////

  // { make_result_functions_begin }
  using VelocityRange = FieldVector<double,dim>;
  using PressureRange = double;

  auto velocityFunction
          = Functions::makeDiscreteGlobalBasisFunction<VelocityRange>(
            Functions::subspaceBasis(taylorHoodBasis, _0), x);
  auto pressureFunction
          = Functions::makeDiscreteGlobalBasisFunction<PressureRange>(
            Functions::subspaceBasis(taylorHoodBasis, _1), x);
  // { make_result_functions_end }

  //////////////////////////////////////////////////////////////////////////////////////////////
  //  Write result to VTK file
  //  We need to subsample, because VTK cannot natively display real second-order functions
  //////////////////////////////////////////////////////////////////////////////////////////////
  // { vtk_output_begin }
  SubsamplingVTKWriter<GridView> vtkWriter(
          gridView,
          refinementLevels(2));
  vtkWriter.addVertexData(
          velocityFunction,
          VTK::FieldInfo("velocity", VTK::FieldInfo::Type::vector, dim));
  vtkWriter.addVertexData(
          pressureFunction,
          VTK::FieldInfo("pressure", VTK::FieldInfo::Type::scalar, 1));
  vtkWriter.write("stokes-taylorhood-result");
  // { vtk_output_end }

 }
// Error handling
 catch (Exception& e) {
    std::cout << e.what() << std::endl;
 }