1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
|
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#include <config.h>
#include <array>
#include <vector>
#include <dune/common/bitsetvector.hh>
#include <dune/common/indices.hh>
#include <dune/common/transpose.hh>
#include <dune/geometry/quadraturerules.hh>
#include <dune/grid/yaspgrid.hh>
#include <dune/grid/io/file/vtk/subsamplingvtkwriter.hh>
#include <dune/istl/matrix.hh>
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/matrixindexset.hh>
#include <dune/istl/solvers.hh>
#include <dune/istl/preconditioners.hh>
#include <dune/istl/multitypeblockmatrix.hh>
#include <dune/istl/multitypeblockvector.hh>
#include <dune/functions/functionspacebases/interpolate.hh>
#include <dune/functions/functionspacebases/taylorhoodbasis.hh>
#include <dune/functions/backends/istlvectorbackend.hh>
#include <dune/functions/functionspacebases/powerbasis.hh>
#include <dune/functions/functionspacebases/compositebasis.hh>
#include <dune/functions/functionspacebases/lagrangebasis.hh>
#include <dune/functions/functionspacebases/subspacebasis.hh>
#include <dune/functions/functionspacebases/boundarydofs.hh>
#include <dune/functions/gridfunctions/discreteglobalbasisfunction.hh>
#include <dune/functions/gridfunctions/gridviewfunction.hh>
#define BLOCKEDBASIS 1
// { using_namespace_dune_begin }
using namespace Dune;
// { using_namespace_dune_end }
// Compute the stiffness matrix for a single element
// { local_assembler_signature_begin }
template <class LocalView>
void getLocalMatrix(
const LocalView& localView,
Matrix<FieldMatrix<double,1,1>>& elementMatrix)
// { local_assembler_signature_end }
{
// Get the grid element from the local FE basis view
// { local_assembler_get_element_information_begin }
using Element = typename LocalView::Element;
const Element element = localView.element();
const int dim = Element::dimension;
auto geometry = element.geometry();
// { local_assembler_get_element_information_end }
// Set all matrix entries to zero
// { initialize_element_matrix_begin }
elementMatrix.setSize(localView.size(), localView.size());
elementMatrix = 0; // fills the entire matrix with zeros
// { initialize_element_matrix_end }
// Get set of shape functions for this element
// { get_local_fe_begin }
using namespace Indices;
const auto& velocityLocalFiniteElement /*@\label{li:stokes_taylorhood_get_velocity_lfe}@*/
= localView.tree().child(_0,0).finiteElement();
const auto& pressureLocalFiniteElement
= localView.tree().child(_1).finiteElement(); /*@\label{li:stokes_taylorhood_get_pressure_lfe}@*/
// { get_local_fe_end }
// Get a quadrature rule
// { begin_quad_loop_begin }
int order = 2*(dim*velocityLocalFiniteElement.localBasis().order()-1);
const auto& quad = QuadratureRules<double, dim>::rule(element.type(), order);
// Loop over all quadrature points
for (const auto& quadPoint : quad)
{
// { begin_quad_loop_end }
// { quad_loop_preamble_begin }
// The inverse Jacobian of the map from the
// reference element to the element
const auto jacobianInverse = geometry.jacobianInverse(quadPoint.position());
// The multiplicative factor in the integral transformation formula
const auto integrationElement
= geometry.integrationElement(quadPoint.position());
// { quad_loop_preamble_end }
///////////////////////////////////////////////////////////////////////
// Velocity--velocity coupling
///////////////////////////////////////////////////////////////////////
// The gradients of the shape functions on the reference element
// { velocity_gradients_begin }
std::vector<FieldMatrix<double,1,dim> > referenceJacobians;
velocityLocalFiniteElement.localBasis().evaluateJacobian(
quadPoint.position(),
referenceJacobians);
// Compute the shape function gradients on the grid element
std::vector<FieldMatrix<double,1,dim> > jacobians(referenceJacobians.size());
for (size_t i=0; i<jacobians.size(); i++)
jacobians[i] = referenceJacobians[i] * jacobianInverse;
// { velocity_gradients_end }
// Compute the actual matrix entries
// { velocity_velocity_coupling_begin }
for (size_t i=0; i<velocityLocalFiniteElement.size(); i++)
for (size_t j=0; j<velocityLocalFiniteElement.size(); j++ )
for (size_t k=0; k<dim; k++)
{
size_t row = localView.tree().child(_0,k).localIndex(i); /*@\label{li:stokes_taylorhood_compute_vv_element_matrix_row}@*/
size_t col = localView.tree().child(_0,k).localIndex(j); /*@\label{li:stokes_taylorhood_compute_vv_element_matrix_column}@*/
elementMatrix[row][col] += (jacobians[i] * transpose(jacobians[j]))
* quadPoint.weight() * integrationElement; /*@\label{li:stokes_taylorhood_update_vv_element_matrix}@*/
}
// { velocity_velocity_coupling_end }
///////////////////////////////////////////////////////////////////////
// Velocity--pressure coupling
///////////////////////////////////////////////////////////////////////
// The values of the pressure shape functions
// { pressure_values_begin }
std::vector<FieldVector<double,1> > pressureValues;
pressureLocalFiniteElement.localBasis().evaluateFunction(
quadPoint.position(),
pressureValues);
// { pressure_values_end }
// Compute the actual matrix entries
// { velocity_pressure_coupling_begin }
for (size_t i=0; i<velocityLocalFiniteElement.size(); i++)
for (size_t j=0; j<pressureLocalFiniteElement.size(); j++ )
for (size_t k=0; k<dim; k++)
{
size_t vIndex = localView.tree().child(_0,k).localIndex(i); /*@\label{li:stokes_taylorhood_compute_vp_element_matrix_row}@*/
size_t pIndex = localView.tree().child(_1).localIndex(j); /*@\label{li:stokes_taylorhood_compute_vp_element_matrix_column}@*/
elementMatrix[vIndex][pIndex] += /*@\label{li:stokes_taylorhood_update_vp_element_matrix_a}@*/
jacobians[i][0][k] * pressureValues[j]
* quadPoint.weight() * integrationElement;
elementMatrix[pIndex][vIndex] +=
jacobians[i][0][k] * pressureValues[j]
* quadPoint.weight() * integrationElement; /*@\label{li:stokes_taylorhood_update_vp_element_matrix_b}@*/
}
// { velocity_pressure_coupling_end }
}
}
// Set the occupation pattern of the stiffness matrix
template <class Basis, class MatrixType>
void setOccupationPattern(const Basis& basis, MatrixType& matrix)
{
enum {dim = Basis::GridView::dimension};
// MatrixIndexSets store the occupation pattern of a sparse matrix.
// They are not particularly efficient, but simple to use.
std::array<std::array<MatrixIndexSet, 2>, 2> nb;
// Set sizes of the 2x2 submatrices
for (size_t i=0; i<2; i++)
for (size_t j=0; j<2; j++)
nb[i][j].resize(basis.size({i}), basis.size({j}));
// A view on the FE basis on a single element
auto localView = basis.localView();
// Loop over all leaf elements
for(const auto& element : elements(basis.gridView()))
{
// Bind the local view to the current element
localView.bind(element);
// Add element stiffness matrix onto the global stiffness matrix
for (size_t i=0; i<localView.size(); i++) {
// Global index of the i-th local degree of freedom of the current element
auto row = localView.index(i);
for (size_t j=0; j<localView.size(); j++ ) {
// Global index of the j-th local degree of freedom of the current element
auto col = localView.index(j);
nb[row[0]][col[0]].add(row[1],col[1]);
}
}
}
// Give the matrix the occupation pattern we want.
using namespace Indices;
#if !BLOCKEDBASIS
matrix.setSize(2,2);
#endif
nb[0][0].exportIdx(matrix[_0][_0]);
nb[0][1].exportIdx(matrix[_0][_1]);
nb[1][0].exportIdx(matrix[_1][_0]);
nb[1][1].exportIdx(matrix[_1][_1]);
}
#if BLOCKEDBASIS
// { matrixentry_begin }
template<class Matrix, class MultiIndex>
decltype(auto) matrixEntry(
Matrix& matrix, const MultiIndex& row, const MultiIndex& col)
{
using namespace Indices;
if ((row[0]==0) and (col[0]==0))
return matrix[_0][_0][row[1]][col[1]][row[2]][col[2]];
if ((row[0]==0) and (col[0]==1))
return matrix[_0][_1][row[1]][col[1]][row[2]][0];
if ((row[0]==1) and (col[0]==0))
return matrix[_1][_0][row[1]][col[1]][0][col[2]];
return matrix[_1][_1][row[1]][col[1]][0][0]; /*@\label{li:matrixentry_pressure_pressure}@*/
}
// { matrixentry_end }
#else
template<class Matrix, class MultiIndex>
decltype(auto) matrixEntry(Matrix& matrix, const MultiIndex& row, const MultiIndex& col)
{
return matrix[row[0]][col[0]][row[1]][col[1]];
}
#endif
/** \brief Assemble the Laplace stiffness matrix on the given grid view */
// { global_assembler_signature_begin }
template <class Basis, class MatrixType>
void assembleStokesMatrix(const Basis& basis, MatrixType& matrix)
// { global_assembler_signature_end }
{
// { setup_matrix_pattern_begin }
// Set matrix size and occupation pattern
setOccupationPattern(basis, matrix);
// Set all entries to zero
matrix = 0;
// { setup_matrix_pattern_end }
// A view on the FE basis on a single element
// { get_localview_begin }
auto localView = basis.localView();
// { get_localview_end }
// A loop over all elements of the grid
// { element_loop_and_bind_begin }
for (const auto& element : elements(basis.gridView()))
{
// Bind the local FE basis view to the current element
localView.bind(element);
// { element_loop_and_bind_end }
// Now let's get the element stiffness matrix
// A dense matrix is used for the element stiffness matrix
// { setup_element_stiffness_begin }
Matrix<FieldMatrix<double,1,1> > elementMatrix;
getLocalMatrix(localView, elementMatrix);
// { setup_element_stiffness_end }
// Add element stiffness matrix onto the global stiffness matrix
// { accumulate_global_matrix_begin }
for (size_t i=0; i<elementMatrix.N(); i++)
{
// The global index of the i-th local degree of freedom of the element 'e'
auto row = localView.index(i); /*@\label{li:stokes_taylorhood_get_global_row_index}@*/
for (size_t j=0; j<elementMatrix.M(); j++ )
{
// The global index of the j-th local degree of freedom of the element 'e'
auto col = localView.index(j); /*@\label{li:stokes_taylorhood_get_global_column_index}@*/
matrixEntry(matrix, row, col) += elementMatrix[i][j]; /*@\label{li:stokes_taylorhood_scatter_matrix_indices}@*/
}
}
// { accumulate_global_matrix_end }
}
}
// { main_begin }
int main (int argc, char *argv[]) try
{
// Set up MPI, if available
MPIHelper::instance(argc, argv);
// { mpi_setup_end }
///////////////////////////////////
// Generate the grid
///////////////////////////////////
// { grid_setup_begin }
const int dim = 2;
using GridType = YaspGrid<dim>;
FieldVector<double,dim> upperRight = {1, 1};
std::array<int,dim> elements = {{4, 4}};
GridType grid(upperRight,elements);
using GridView = typename GridType::LeafGridView;
GridView gridView = grid.leafGridView();
// { grid_setup_end }
/////////////////////////////////////////////////////////
// Choose a finite element space
/////////////////////////////////////////////////////////
#if BLOCKEDBASIS
// { function_space_basis_begin }
using namespace Functions::BasisFactory;
constexpr std::size_t p = 1; // pressure order for Taylor-Hood
auto taylorHoodBasis = makeBasis(
gridView,
composite(
power<dim>(
lagrange<p+1>(),
blockedInterleaved()),
lagrange<p>()
));
// { function_space_basis_end }
#else
using namespace Functions::BasisFactory;
static const std::size_t p = 1; // pressure order for Taylor-Hood
auto taylorHoodBasis = makeBasis(
gridView,
composite(
power<dim>(
lagrange<p+1>(),
flatInterleaved()),
lagrange<p>()
));
#endif
/////////////////////////////////////////////////////////
// Stiffness matrix and right hand side vector
/////////////////////////////////////////////////////////
#if BLOCKEDBASIS
// { linear_algebra_setup_begin }
using VelocityVector = BlockVector<FieldVector<double,dim>>;
using PressureVector = BlockVector<FieldVector<double,1>>;
using VectorType = MultiTypeBlockVector<VelocityVector, PressureVector>;
using VelocityBitVector = BlockVector<FieldVector<char,dim>>;
using PressureBitVector = BlockVector<FieldVector<char,1>>;
using BitVectorType = MultiTypeBlockVector<VelocityBitVector, PressureBitVector>;
using Matrix00 = BCRSMatrix<FieldMatrix<double,dim,dim>>;
using Matrix01 = BCRSMatrix<FieldMatrix<double,dim,1>>;
using Matrix10 = BCRSMatrix<FieldMatrix<double,1,dim>>;
using Matrix11 = BCRSMatrix<FieldMatrix<double,1,1>>; /*@\label{li:matrix_type_pressure_pressure}@*/
using MatrixRow0 = MultiTypeBlockVector<Matrix00, Matrix01>;
using MatrixRow1 = MultiTypeBlockVector<Matrix10, Matrix11>;
using MatrixType = MultiTypeBlockMatrix<MatrixRow0,MatrixRow1>;
// { linear_algebra_setup_end }
#else
using VectorType = BlockVector<BlockVector<FieldVector<double,1> > >;
using BitVectorType = BlockVector<BlockVector<FieldVector<char,1> > >;
using MatrixType = Matrix<BCRSMatrix<FieldMatrix<double,1,1> > >;
#endif
/////////////////////////////////////////////////////////
// Assemble the system
/////////////////////////////////////////////////////////
// { rhs_assembly_begin }
VectorType rhs;
auto rhsBackend = Dune::Functions::istlVectorBackend(rhs);
rhsBackend.resize(taylorHoodBasis);
rhs = 0; /*@\label{li:stokes_taylorhood_set_rhs_to_zero}@*/
// { rhs_assembly_end }
// { matrix_assembly_begin }
MatrixType stiffnessMatrix;
assembleStokesMatrix(taylorHoodBasis, stiffnessMatrix); /*@\label{li:stokes_taylorhood_call_to_assemblestokesmatrix}@*/
// { matrix_assembly_end }
/////////////////////////////////////////////////////////
// Set Dirichlet values.
// Only velocity components have Dirichlet boundary values
/////////////////////////////////////////////////////////
// { initialize_boundary_dofs_vector_begin }
BitVectorType isBoundary;
auto isBoundaryBackend = Dune::Functions::istlVectorBackend(isBoundary);
isBoundaryBackend.resize(taylorHoodBasis);
isBoundary = false;
// { initialize_boundary_dofs_vector_end }
// { determine_boundary_dofs_begin }
using namespace Indices;
Functions::forEachBoundaryDOF(
Functions::subspaceBasis(taylorHoodBasis, _0),
[&] (auto&& index) {
isBoundaryBackend[index] = true;
});
// { determine_boundary_dofs_end }
// { interpolate_dirichlet_values_begin }
using Coordinate = GridView::Codim<0> ::Geometry::GlobalCoordinate;
using VelocityRange = FieldVector<double,dim>;
auto&& velocityDirichletData = [](Coordinate x)
{
return VelocityRange{0.0, double(x[0] < 1e-8)};
};
Functions::interpolate(
Functions::subspaceBasis(taylorHoodBasis, _0), rhs,
velocityDirichletData,
isBoundary);
// { interpolate_dirichlet_values_end }
////////////////////////////////////////////
// Modify Dirichlet rows
////////////////////////////////////////////
// loop over the matrix rows
// { set_dirichlet_matrix_begin }
auto localView = taylorHoodBasis.localView();
for(const auto& element : Dune::elements(taylorHoodBasis.gridView()))
{
localView.bind(element);
for (size_t i=0; i<localView.size(); ++i)
{
auto row = localView.index(i);
// If row corresponds to a boundary entry, modify
// it to be an identity matrix row
if (isBoundaryBackend[row])
for (size_t j=0; j<localView.size(); ++j)
{
auto col = localView.index(j);
matrixEntry(stiffnessMatrix, row, col) = (i==j) ? 1 : 0;
}
}
}
// { set_dirichlet_matrix_end }
////////////////////////////
// Compute solution
////////////////////////////
// { stokes_solve_begin }
// Start from the rhs vector; that way the Dirichlet entries are already correct
VectorType x = rhs;
// Technicality: turn the matrix into a linear operator
MatrixAdapter<MatrixType,VectorType,VectorType> stiffnessOperator(stiffnessMatrix);
// Fancy (but only) way to not have a preconditioner at all
Richardson<VectorType,VectorType> preconditioner(1.0);
// Construct the actual iterative solver
RestartedGMResSolver<VectorType> solver(
stiffnessOperator, // operator to invert
preconditioner, // preconditioner for iteration
1e-10, // desired residual reduction factor
500, // number of iterations between restarts
500, // maximum number of iterations
2); // verbosity of the solver
// Object storing some statistics about the solving process
InverseOperatorResult statistics;
// Solve!
solver.apply(x, rhs, statistics);
// { stokes_solve_end }
////////////////////////////////////////////////////////////////////////////
// Make a discrete function from the FE basis and the coefficient vector
////////////////////////////////////////////////////////////////////////////
// { make_result_functions_begin }
using VelocityRange = FieldVector<double,dim>;
using PressureRange = double;
auto velocityFunction
= Functions::makeDiscreteGlobalBasisFunction<VelocityRange>(
Functions::subspaceBasis(taylorHoodBasis, _0), x);
auto pressureFunction
= Functions::makeDiscreteGlobalBasisFunction<PressureRange>(
Functions::subspaceBasis(taylorHoodBasis, _1), x);
// { make_result_functions_end }
//////////////////////////////////////////////////////////////////////////////////////////////
// Write result to VTK file
// We need to subsample, because VTK cannot natively display real second-order functions
//////////////////////////////////////////////////////////////////////////////////////////////
// { vtk_output_begin }
SubsamplingVTKWriter<GridView> vtkWriter(
gridView,
refinementLevels(2));
vtkWriter.addVertexData(
velocityFunction,
VTK::FieldInfo("velocity", VTK::FieldInfo::Type::vector, dim));
vtkWriter.addVertexData(
pressureFunction,
VTK::FieldInfo("pressure", VTK::FieldInfo::Type::scalar, 1));
vtkWriter.write("stokes-taylorhood-result");
// { vtk_output_end }
}
// Error handling
catch (Exception& e) {
std::cout << e.what() << std::endl;
}
|