File: referenceelement.hh

package info (click to toggle)
dune-geometry 2.10.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 2,304 kB
  • sloc: cpp: 15,221; python: 253; makefile: 3
file content (313 lines) | stat: -rw-r--r-- 10,288 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
// SPDX-FileCopyrightInfo: Copyright © DUNE Project contributors, see file LICENSE.md in module root
// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
#ifndef DUNE_GEOMETRY_REFERENCEELEMENT_HH
#define DUNE_GEOMETRY_REFERENCEELEMENT_HH

#include <dune/geometry/type.hh>

namespace Dune {
  namespace Geo {

    namespace Impl {

      // forward declaration for friend declaration
      template<typename ctype, int dim>
      class ReferenceElementContainer;

    }

    // forward declaration for constructing default reference element type
    template<typename ctype, int dim>
    class ReferenceElementImplementation;

    // forward declaration for backwards compatibility conversion
    template<typename ctype, int dim>
    struct ReferenceElements;

    // ReferenceElement
    // ----------------

    /** \class ReferenceElement
     *  \ingroup GeometryReferenceElements
     *  \brief This class provides access to geometric and topological
     *  properties of a reference element.
     *
     *  This includes its type,
     *  the number of subentities, the volume, and a method for checking
     *  if a point is contained in the reference element.
     *  The embedding of each subentity into the reference element is also
     *  provided.
     *
     *  This class has value semantics, i.e. you can (and should) pass it
     *  around by value and not by reference and store a copy of it.
     *
     *  Instances of this object for a given geometry type can be retrieved
     *  from the ReferenceElements class.
     *
     */
    template<typename Implementation>
    class ReferenceElement
    {

    public:

#ifndef DOXYGEN

      /** \brief Collection of types depending on the codimension */
      template<int codim>
      using Codim = typename Implementation::template Codim<codim>;

#else

      /** \brief Collection of types depending on the codimension */
      template< int codim >
      struct Codim
      {
        //! type of geometry embedding a subentity into the reference element
        using Geometry = implementation-defined;
      };

#endif // DOXYGEN

      //! The coordinate field type.
      using ctype = typename Implementation::ctype;

      //! The coordinate field type.
      using CoordinateField = ctype;

      //! The coordinate type.
      using Coordinate = typename Implementation::Coordinate;

      /** \brief Type used for volume */
      typedef ctype Volume;

      //! The dimension of the reference element.
      static constexpr int dimension = Implementation::dimension;


      /** \brief number of subentities of codimension c
       *
       *  \param[in]  c  codimension whose size is desired
       */
      int size(int c) const
      {
        return _impl->size(c);
      }


      /** \brief number of subentities of codimension cc of subentity (i,c)
       *
       *  Denote by E the i-th subentity of codimension c of the current
       *  reference element. This method returns the number of subentities
       *  of codimension cc of the current reference element, that are also
       *  a subentity of E. If cc<c this number is zero.
       *
       *  \param[in]  i   number of subentity E (0 <= i < size( c ))
       *  \param[in]  c   codimension of subentity E (0 <= c <= dim)
       *  \param[in]  cc  codimension whose size is desired (0 <= cc <= dim)
       */
      int size(int i, int c, int cc) const
      {
        return _impl->size(i,c,cc);
      }


      /** \brief obtain number of ii-th subentity with codim cc of (i,c)
       *
       *  Denote by E the i-th subentity of codimension c of the current
       *  reference element. And denote by S the ii-th subentity of codimension
       *  (cc-c) of E. Then, S is a also a subentity of codimension cc of the current
       *  reference element. This method returns the number of S with respect
       *  to the current reference element.
       *
       *  \param[in]  i   number of subentity E (0 <= i < size( c ))
       *  \param[in]  c   codimension of subentity E
       *  \param[in]  ii  number of subentity S (with respect to E)
       *  \param[in]  cc  codimension of subentity S (c <= cc <= dim)
       */
      int subEntity(int i, int c, int ii, int cc) const
      {
        return _impl->subEntity(i,c,ii,cc);
      }

      /** \brief Obtain the range of numbers of subentities with codim cc of (i,c)
       *
       *  Denote by E the i-th subentity of codimension c of the current
       *  reference element. This method returns a range of numbers of
       *  all subentities of E with codimension cc. Notice that the sub-subentity
       *  codimension as well as the numbers in the returned range are
       *  given with respect to the reference element itself and not with
       *  respect to E. For 0<=cc<c this will return an empty range.
       *  The returned range r provide the methods r.begin(), r.end(),
       *  r.contains(std::size_t) and r.size() mimicking an immutable
       *  iterable set.
       *
       *  \param[in]  i   number of subentity E (0 <= i < size( c ))
       *  \param[in]  c   codimension of subentity E
       *  \param[in]  cc  codimension of subentity S (0 <= cc <= dim)
       *
       *  \returns An iterable range of numbers of the sub-subentities.
       */
      auto subEntities ( int i, int c, int cc ) const
      {
        return _impl->subEntities(i,c,cc);
      }


      /** \brief obtain the type of subentity (i,c)
       *
       *  Denote by E the i-th subentity of codimension c of the current
       *  reference element. This method returns the GeometryType of E.
       *
       *  \param[in]  i      number of subentity E (0 <= i < size( c ))
       *  \param[in]  c      codimension of subentity E
       */
      GeometryType type(int i, int c) const
      {
        return _impl->type(i,c);
      }


      /** \brief obtain the type of this reference element
       */
      GeometryType type() const
      {
        return _impl->type();
      }


      /** \brief position of the barycenter of entity (i,c)
       *
       *  Denote by E the i-th subentity of codimension c of the current
       *  reference element. This method returns the coordinates of
       *  the center of gravity of E within the current reference element.
       *
       *  \param[in]  i   number of subentity E (0 <= i < size( c ))
       *  \param[in]  c   codimension of subentity E
       */
      Coordinate position(int i, int c) const
      {
        return _impl->position(i,c);
      }


      /** \brief check if a coordinate is in the reference element
       *
       *  This method returns true if the given local coordinate is within this
       *  reference element.
       *
       *  \param[in]  local  coordinates of the point
       */
      bool checkInside(const Coordinate& local) const
      {
        return _impl->checkInside(local);
      }


      /** \brief obtain the embedding of subentity (i,codim) into the reference
       *         element
       *
       *  Denote by E the i-th subentity of codimension codim of the current
       *  reference element. This method returns a \ref Dune::AffineGeometry
       *  that maps the reference element of E into the current reference element.
       *
       *  \tparam     codim  codimension of subentity E
       *
       *  \param[in]  i      number of subentity E (0 <= i < size( codim ))
       */
      template<int codim>
      typename Codim<codim>::Geometry geometry(int i) const
      {
        return _impl->template geometry<codim>(i);
      }


      /** \brief obtain the volume of the reference element */
      CoordinateField volume() const
      {
        return _impl->volume();
      }


      /** \brief obtain the integration outer normal of the reference element
       *
       *  The integration outer normal is the outer normal whose length coincides
       *  with the face's integration element.
       *
       *  \param[in]  face  index of the face, whose normal is desired
       */
      Coordinate integrationOuterNormal(int face) const
      {
        return _impl->integrationOuterNormal(face);
      }


      /** \brief Constructs an empty reference element.
       *
       * This constructor creates an empty (invalid) reference element. This element may not be
       * used in any way except for assigning other reference elements to it. After
       * assigning a valid reference element (obtained from ReferenceElements), it may
       * be used without restrictions.
       */
      ReferenceElement()
        : _impl(nullptr)
      {}

      /** \brief Returns a reference to the internal implementation object.
       *
       * \warning This method may only be called on valid reference elements.
       * \warning This method exposes undocumented internals that may change without notice!
       */
      const Implementation& impl() const
      {
        return *_impl;
      }

      //! Compares for equality with another reference element.
      bool operator==(const ReferenceElement& r) const
      {
        return _impl == r._impl;
      }

      //! Compares for inequality with another reference element.
      bool operator!=(const ReferenceElement& r) const
      {
        return not (*this == r);
      }

      //! Yields a hash value suitable for storing the reference element a in hash table
      friend std::size_t hash_value(const ReferenceElement& r)
      {
        return reinterpret_cast<std::size_t>(r._impl);
      }

    private:

      // The implementation must be a friend to construct a wrapper around itself.
      friend Implementation;

      // The reference container is a friend to be able to call setImplementation.
      friend class Impl::ReferenceElementContainer<ctype,dimension>;

      // Constructor for wrapping an implementation reference (required internally by the default implementation)
      ReferenceElement(const Implementation& impl)
        : _impl(&impl)
      {}

      void setImplementation(const Implementation& impl)
      {
        _impl = &impl;
      }

      const Implementation* _impl;

    };

  }

}


#endif // DUNE_GEOMETRY_REFERENCEELEMENT_HH