1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
// SPDX-FileCopyrightInfo: Copyright © DUNE Project contributors, see file LICENSE.md in module root
// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
#ifndef DUNE_GEOMETRY_TEST_REFERENCEELEMENTGEOMETRY_HH
#define DUNE_GEOMETRY_TEST_REFERENCEELEMENTGEOMETRY_HH
#include <type_traits>
#include <dune/geometry/referenceelements.hh>
namespace Dune {
namespace Impl {
// Placeholder type for a trivial identity matrix without any functionality
struct IdentityMatrix
{
// multiply Id * A
template <class A>
friend const A& operator* (IdentityMatrix, const A& a) { return a; }
// multiply A * Id
template <class A>
friend const A& operator* (const A& a, IdentityMatrix) { return a; }
// multiply Id * Id
friend IdentityMatrix operator* (IdentityMatrix, IdentityMatrix) { return {}; }
friend std::ostream& operator<< (std::ostream& out, IdentityMatrix)
{
return out << "I";
}
// cast into FieldMatrix
template <class K, int n>
operator FieldMatrix<K,n,n> () const
{
FieldMatrix<K,n,n> I;
for (int i = 0; i < n; ++i)
I[i][i] = K(1);
return I;
}
};
/**
* \brief Represent an identity map on a reference element as geometry.
*
* Each reference element `RefElem` provides an element-geometry that
* is essentially a representation of the identity map. But it is typically
* implemented as an \ref `AffineGeometry`. The `ReferenceElementGeometry`
* instead uses exact identity with a special jacobian matrix encoded
* in the `IdentityMatrix` class with optimized multiplications.
*
* The `ReferenceElementGeometry` inherits all functionality from
* the geometry type of the reference element, except for `local()`,
* `global()`, and `jacobinXXX()` methods.
*
* \tparam RefElem The type of a reference element.
**/
template <class RefElem>
class ReferenceElementGeometry
: public RefElem::template Codim<0>::Geometry
{
using Base = typename RefElem::template Codim<0>::Geometry;
public:
using LocalCoordinate = typename RefElem::Coordinate;
using GlobalCoordinate = typename RefElem::Coordinate;
using Jacobian = Impl::IdentityMatrix;
using JacobianTransposed = Impl::IdentityMatrix;
using JacobianInverse = Impl::IdentityMatrix;
using JacobianInverseTransposed = Impl::IdentityMatrix;
public:
constexpr explicit ReferenceElementGeometry (const RefElem& refElem)
: Base{refElem.template geometry<0>(0)}
{}
/// \brief Evaluate the inverse coordinate mapping, this is an identity mapping
constexpr const LocalCoordinate& local (const GlobalCoordinate& global) const noexcept
{
return global;
}
/// \brief Evaluate the coordinate mapping, this is an identity mapping
constexpr const GlobalCoordinate& global (const LocalCoordinate& local) const noexcept
{
return local;
}
/// \brief Obtain the Jacobian, this is an identity matrix.
constexpr Jacobian jacobian (const LocalCoordinate& local) const noexcept
{
return Jacobian{};
}
/// \brief Obtain the transposed of the Jacobian, this is an identity matrix.
constexpr JacobianTransposed jacobianTransposed (const LocalCoordinate& local) const noexcept
{
return JacobianTransposed{};
}
/// \brief obtain the Jacobian's inverse, this is an identity matrix.
constexpr JacobianInverse jacobianInverse (const LocalCoordinate& local) const noexcept
{
return JacobianInverse{};
}
/// \brief obtain the transposed of the Jacobian's inverse, this is an identity matrix.
constexpr JacobianInverseTransposed jacobianInverseTransposed (const LocalCoordinate& local) const noexcept
{
return JacobianInverseTransposed{};
}
};
/**
* \brief Represent an identity map on a reference element with jacobians given by a real geometry.
*
* This geometry is a mixture of the `ReferenceElementGeometry` and the `Geometry`
* given as a template parameter. Everything is taken from the `ReferenceElementGeometry`, that is,
* essentially an identity mapping on the reference element, but the jacobian functions
* are taken from the real `Geometry`.
*
* The application of the `LocalDerivativeGeometry` is inside a `MappendGeometry` together with a
* local-function mapping from dune-functions that implements a derivative w.r.t. global coordinates,
* instead of a derivative w.r.t. to local coordinates. A chaining of this function with a
* `ReferenceElementGeometry` would need an additional transformation of the Jacobians that is
* circumvented by using this `LocalDerivativeGeometry` directly.
*
* \tparam Geometry The type of a real element geometry providing the `jacobianXXX` methods.
**/
template <class Geometry>
class LocalDerivativeGeometry
: public ReferenceElementGeometry<
typename Dune::ReferenceElements<typename Geometry::ctype, Geometry::mydimension>::ReferenceElement >
{
using ReferenceElements = Dune::ReferenceElements<typename Geometry::ctype, Geometry::mydimension>;
using ReferenceElement = typename ReferenceElements::ReferenceElement;
using Base = ReferenceElementGeometry<ReferenceElement>;
public:
using LocalCoordinate = typename Geometry::LocalCoordinate;
using Jacobian = typename Geometry::Jacobian;
using JacobianTransposed = typename Geometry::JacobianTransposed;
using JacobianInverse = typename Geometry::JacobianInverse;
using JacobianInverseTransposed = typename Geometry::JacobianInverseTransposed;
public:
explicit LocalDerivativeGeometry (const Geometry& geometry) noexcept
: Base(referenceElement(geometry))
, geometry_(geometry)
{}
/// \brief Obtain the Jacobian
Jacobian jacobian (const LocalCoordinate& local) const
{
return geometry_.jacobian(local);
}
/// \brief Obtain the transposed of the Jacobian
JacobianTransposed jacobianTransposed (const LocalCoordinate& local) const
{
return geometry_.jacobianTransposed(local);
}
/// \brief obtain the Jacobian's inverse
JacobianInverse jacobianInverse (const LocalCoordinate& local) const
{
return geometry_.jacobianInverse(local);
}
/// \brief obtain the transposed of the Jacobian's inverse
JacobianInverseTransposed jacobianInverseTransposed (const LocalCoordinate& local) const
{
return geometry_.jacobianInverseTransposed(local);
}
private:
Geometry geometry_;
};
} // end namespace Impl
} // end namespace Dune
#endif // DUNE_GEOMETRY_TEST_REFERENCEELEMENTGEOMETRY_HH
|