1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
// SPDX-FileCopyrightInfo: Copyright © DUNE Project contributors, see file LICENSE.md in module root
// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
#ifndef DUNE_PYTHON_GEOMETRY_TYPE_HH
#define DUNE_PYTHON_GEOMETRY_TYPE_HH
#include <cassert>
#include <dune/common/exceptions.hh>
#include <dune/geometry/type.hh>
#include <dune/geometry/typeindex.hh>
#include <dune/python/pybind11/operators.h>
#include <dune/python/pybind11/pybind11.h>
namespace Dune
{
// to_string for GeometryType
// --------------------------
inline static std::string to_string ( const GeometryType &type )
{
if( type.isNone() )
return "none(" + std::to_string( type.dim() ) + ")";
switch( type.dim() )
{
case 0:
return "vertex";
case 1:
return "line";
case 2:
return (type.isSimplex() ? "triangle" : "quadrilateral");
case 3:
if( type.isSimplex() )
return "tetrahedron";
else if( type.isHexahedron() )
return "hexahedron";
else if( type.isPyramid() )
return "pyramid";
else if( type.isPrism() )
return "prism";
default:
if( type.isSimplex() )
return "simplex(" + std::to_string( type.dim() ) + ")";
else if( type.isCube() )
return "cube(" + std::to_string( type.dim() ) + ")";
else
return "general(" + std::to_string( type.id() ) + ", " + std::to_string( type.dim() ) + ")";
}
}
// geometryTypeFromString
// ----------------------
inline static GeometryType geometryTypeFromString ( const std::string &s )
{
typedef GeometryType (*Constructor) ( const std::vector< std::string > & );
static const char *constructorNames[] = {
"cube",
"general",
"hexahedron",
"line",
"none",
"prism",
"pyramid",
"quadrilateral",
"simplex",
"tetrahedron",
"triangle",
"vertex"
};
static const Constructor constructors[]
= {
// cube
[] ( const std::vector< std::string > &args ) {
if( args.size() != 1 )
DUNE_THROW( Exception, "GeometryType 'cube' requires integer argument for dimension." );
return GeometryTypes::cube( std::stoul( args[ 0 ] ) );
},
// general
[] ( const std::vector< std::string > &args ) {
if( args.size() != 2 )
DUNE_THROW( Exception, "GeometryType 'general' requires two integer arguments, topologyId and dimension." );
const auto id = std::stoul( args[ 0 ] );
const auto dim = std::stoul( args[ 1 ] );
if( id >= Dune::Impl::numTopologies( dim ) )
DUNE_THROW( Exception, "Topology id " << id << " too large for dimension " << dim << "." );
return GeometryType( id, dim );
},
// hexahedron
[] ( const std::vector< std::string > &args ) {
if( !args.empty() )
DUNE_THROW( Exception, "GeometryType 'hexahedron' does not require arguments." );
return GeometryTypes::hexahedron;
},
// line
[] ( const std::vector< std::string > &args ) {
if( !args.empty() )
DUNE_THROW( Exception, "GeometryType 'line' does not require arguments." );
return GeometryTypes::line;
},
// none
[] ( const std::vector< std::string > &args ) {
if( args.size() != 1 )
DUNE_THROW( Exception, "GeometryType 'none' requires integer argument for dimension." );
return GeometryTypes::none( std::stoul( args[ 0 ] ) );
},
// prism
[] ( const std::vector< std::string > &args ) {
if( !args.empty() )
DUNE_THROW( Exception, "GeometryType 'prism' does not require arguments." );
return GeometryTypes::prism;
},
// pyramid
[] ( const std::vector< std::string > &args ) {
if( !args.empty() )
DUNE_THROW( Exception, "GeometryType 'pyramid' does not require arguments." );
return GeometryTypes::pyramid;
},
// quadrilateral
[] ( const std::vector< std::string > &args ) {
if( !args.empty() )
DUNE_THROW( Exception, "GeometryType 'quadrilateral' does not require arguments." );
return GeometryTypes::quadrilateral;
},
// simplex
[] ( const std::vector< std::string > &args ) {
if( args.size() != 1 )
DUNE_THROW( Exception, "GeometryType 'simplex' requires integer argument for dimension." );
return GeometryTypes::simplex( std::stoul( args[ 0 ] ) );
},
// tetrahedron
[] ( const std::vector< std::string > &args ) {
if( !args.empty() )
DUNE_THROW( Exception, "GeometryType 'tetrahedron' does not require arguments." );
return GeometryTypes::tetrahedron;
},
// triangle
[] ( const std::vector< std::string > &args ) {
if( !args.empty() )
DUNE_THROW( Exception, "GeometryType 'triangle' does not require arguments." );
return GeometryTypes::triangle;
},
// vertex
[] ( const std::vector< std::string > &args ) {
if( !args.empty() )
DUNE_THROW( Exception, "GeometryType 'vertex' does not require arguments." );
return GeometryTypes::vertex;
}
};
const std::size_t numConstructors = sizeof( constructorNames ) / sizeof( const char * );
// find constructor index
std::size_t n = s.find_first_of( '(' );
const std::string cName = s.substr( 0, n );
const std::size_t cIdx = std::lower_bound( constructorNames, constructorNames + numConstructors, cName ) - constructorNames;
if( (cIdx == numConstructors) || (constructorNames[ cIdx ] != cName) )
DUNE_THROW( Exception, "No DUNE geometry type constructor named '" << cName << "'." );
// obtain argument vector
std::vector< std::string > args;
if( n != std::string::npos )
{
while( s[ n ] != ')' )
{
// skip leading spaces
const std::size_t m = s.find_first_not_of( ' ', n+1 );
if( m == std::string::npos )
DUNE_THROW( Exception, "Invalid argument list." );
// find end of argument
n = s.find_first_of( ",)", m );
if( (n == std::string::npos) || (n == m) )
DUNE_THROW( Exception, "Invalid argument list." );
// remove trailing spaces from argument
const std::size_t k = s.find_last_not_of( ' ', n-1 );
assert( (k != std::string::npos) && (k >= m) );
args.push_back( s.substr( m, k-m+1 ) );
}
}
// call constructor
return constructors[ cIdx ]( args );
}
namespace Python
{
inline pybind11::class_< GeometryType > registerGeometryType ( pybind11::module scope )
{
pybind11::class_< GeometryType > cls( scope, "GeometryType" );
cls.def( pybind11::init( [] ( const std::string &s ) { return new GeometryType( geometryTypeFromString( s ) ); } ) );
cls.def_property_readonly( "isVertex", [] ( const GeometryType &self ) { return self.isVertex(); } );
cls.def_property_readonly( "isLine", [] ( const GeometryType &self ) { return self.isLine(); } );
cls.def_property_readonly( "isTriangle", [] ( const GeometryType &self ) { return self.isTriangle(); } );
cls.def_property_readonly( "isQuadrilateral", [] ( const GeometryType &self ) { return self.isQuadrilateral(); } );
cls.def_property_readonly( "isTetrahedron",[] ( const GeometryType &self ) { return self.isTetrahedron(); } );
cls.def_property_readonly( "isPyramid",[] ( const GeometryType &self ) { return self.isPyramid(); } );
cls.def_property_readonly( "isPrism", [] ( const GeometryType &self ) { return self.isPrism(); } );
cls.def_property_readonly( "isHexahedron", [] ( const GeometryType &self ) { return self.isHexahedron(); } );
cls.def_property_readonly( "isSimplex", [] ( const GeometryType &self ) { return self.isSimplex(); } );
cls.def_property_readonly( "isCube", [] ( const GeometryType &self ) { return self.isCube(); } );
cls.def_property_readonly( "isNone", [] ( const GeometryType &self ) { return self.isNone(); } );
cls.def( pybind11::self == pybind11::self );
cls.def( pybind11::self != pybind11::self );
cls.def( "__hash__", [] ( const GeometryType &self ) { return GlobalGeometryTypeIndex::index( self ); } );
cls.def( "__str__", [] ( const GeometryType &self ) { return to_string( self ); } );
cls.def_property_readonly( "dim", [] ( const GeometryType &self ) { return self.dim(); } );
cls.def_property_readonly( "dimension", [] ( const GeometryType &self ) { return self.dim(); } );
return cls;
}
} // namespace Python
} // namespace Dune
#endif // ifndef DUNE_PYTHON_GEOMETRY_TYPE_HH
|