File: elements.cc

package info (click to toggle)
dune-uggrid 2.6.0-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 4,712 kB
  • sloc: cpp: 64,245; ansic: 755; makefile: 5
file content (979 lines) | stat: -rw-r--r-- 36,991 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
/****************************************************************************/
/*                                                                          */
/* File:      elements.c                                                    */
/*																			*/
/* Purpose:   implements a general element concept							*/
/*																			*/
/* Author:	  Peter Bastian, Stefan Lang                                                                    */
/*			  Institut fuer Computeranwendungen III                                                 */
/*			  Universitaet Stuttgart										*/
/*			  Pfaffenwaldring 27											*/
/*			  70569 Stuttgart												*/
/*			  email: ug@ica3.uni-stuttgart.de							    */
/*																			*/
/* History:   24.03.95 begin, ug version 3.0                                */
/*			  18.03.96 ug3.1                                                                */
/*																			*/
/* Remarks:                                                                                                                             */
/*																			*/
/****************************************************************************/

#include <config.h>
#include <cassert>

#include "general.h"
#include <dev/ugdevices.h>

#include "gm.h"
#include "ugm.h"

#ifdef ModelP
#include "parallel.h"
#endif

#include "elements.h"

USING_UG_NAMESPACE
USING_UGDIM_NAMESPACE

/****************************************************************************/
/*													*/
/* defines in the following order											*/
/*																			*/
/*		  compile time constants defining static data size (i.e. arrays)	*/
/*		  other constants													*/
/*		  macros															*/
/*																			*/
/****************************************************************************/

/****************************************************************************/
/*																			*/
/* data structures used in this source file (exported data structures are	*/
/*		  in the corresponding include file!)								*/
/*																			*/
/****************************************************************************/

/****************************************************************************/
/*																			*/
/* definition of exported global variables									*/
/*																			*/
/****************************************************************************/

INT NS_DIM_PREFIX n_offset[TAGS];
INT NS_DIM_PREFIX father_offset[TAGS];
INT NS_DIM_PREFIX sons_offset[TAGS];
INT NS_DIM_PREFIX nb_offset[TAGS];
INT NS_DIM_PREFIX evector_offset[TAGS];
INT NS_DIM_PREFIX svector_offset[TAGS];
INT NS_DIM_PREFIX side_offset[TAGS];

GENERAL_ELEMENT * NS_DIM_PREFIX element_descriptors[TAGS];
GENERAL_ELEMENT * NS_DIM_PREFIX reference_descriptors[MAX_CORNERS_OF_ELEM+1];
INT NS_DIM_PREFIX reference2tag[MAX_CORNERS_OF_ELEM+1];

#ifndef ModelP
static INT nOBJT, OBJT4Elements[MAXOBJECTS];
#endif

/****************************************************************************/
/*																			*/
/* definition of local variables											*/
/*																			*/
/****************************************************************************/

#ifdef __TWODIM__
static GENERAL_ELEMENT def_triangle = {
  3,                                                                                    /* tag							*/
  4,                                                                                    /* max number of sons			*/
  3,                                                                                    /* number of sides				*/
  3,                                                                                    /* number of corners			*/
  {{0.0,0.0},{1.0,0.0},{0.0,1.0}},                      /* local coordinates			*/
  3,                                                                                    /* number of edges				*/
  {1,1,1,-1},                                                                   /* edges for each side	(2D!)	*/
  {2,2,2,-1},                                                                   /* corners for each side		*/
  2,                                                                                    /* an edge has 2 corners		*/
  {{0,-1,-1},{1,-1,-1},{2,-1,-1},{-1,-1,-1}},       /* number of edge j of side i   */
  {{0,1,-1},{1,2,-1},{2,0,-1},{-1,-1,-1}},          /* number of corner j of side i */
  {{0,1},{1,2},{2,0},{-1,-1},{-1,-1},{-1,-1}}       /* number of corner j of edge i */
} ;

static GENERAL_ELEMENT def_quadrilateral = {
  4,                                                                                    /* tag							*/
  4,                                                                                    /* max number of sons			*/
  4,                                                                                    /* number of sides				*/
  4,                                                                                    /* number of corners			*/
  {{0.0,0.0},{1.0,0.0},{1.0,1.0},
   {0.0,1.0}},                                                          /* local coordinates			*/
  4,                                                                                    /* number of edges				*/
  {1,1,1,1},                                                                    /* edges for each side	(2D!)	*/
  {2,2,2,2},                                                                    /* corners for each side		*/
  2,                                                                                    /* an edge has 2 corners		*/
  {{0,-1,-1},{1,-1,-1},{2,-1,-1},{3,-1,-1}},       /* number of edge j of side i   */
  {{0,1,-1},{1,2,-1},{2,3,-1},{3,0,-1}},           /* number of corner j of side i */
  {{0,1},{1,2},{2,3},{3,0},{-1,-1},{-1,-1}}        /* number of corner j of edge i */
} ;
#endif

#ifdef __THREEDIM__
static GENERAL_ELEMENT def_tetrahedron = {
  4,                                                                                    /* tag							*/
  12,                                                                                   /* max number of sons			*/
  4,                                                                                    /* number of sides				*/
  4,                                                                                    /* number of corners			*/
  {{0.0,0.0,0.0},{1.0,0.0,0.0},
   {0.0,1.0,0.0},{0.0,0.0,1.0}},                        /* local coordinates			*/
  6,                                                                                    /* number of edges				*/
  {3,3,3,3,-1,-1},                                                      /* edges for each side	(2D!)	*/
  {3,3,3,3,-1,-1},                                                      /* corners for each side		*/
  2,                                                                                    /* an edge has 2 corners		*/
  {{2,1,0,-1},{1,5,4,-1},{3,5,2,-1},{0,4,3,-1}},       /* number of edge j of side i   */
  {{0,2,1,-1},{1,2,3,-1},{0,3,2,-1},{0,1,3,-1}},       /* number of corner j of side i */
  {{0,1},{1,2},{0,2},{0,3},{1,3},{2,3} }        /* number of corner j of edge i */
} ;

static GENERAL_ELEMENT def_pyramid = {
  5,                                                                                    /* tag							*/
  0,                                                                                    /* max number of sons			*/
  5,                                                                                    /* number of sides				*/
  5,                                                                                    /* number of corners			*/
  {{0.0,0.0,0.0},{1.0,0.0,0.0},{1.0,1.0,0.0},
   {0.0,1.0,0.0},{0.0,0.0,1.0}},                        /* local coordinates			*/
  8,                                                                                    /* number of edges				*/
  {4,3,3,3,3,-1},                                                       /* edges for each side	(2D!)	*/
  {4,3,3,3,3,-1},                                                       /* corners for each side		*/
  2,                                                                                    /* an edge has 2 corners		*/
  {{3,2,1,0},{0,5,4,-1},{1,6,5,-1},                     /* number of edge j of side i   */
   {2,7,6,-1},{3,4,7,-1}},
  {{0,3,2,1},{0,1,4,-1},{1,2,4,-1},                     /* number of corner j of side i */
   {2,3,4,-1},{3,0,4,-1}},
  {{0,1},{1,2},{2,3},{3,0},{0,4},{1,4},         /* number of corner j of edge i */
   {2,4},{3,4}}
} ;

static GENERAL_ELEMENT def_prism = {
  6,                                                                                    /* tag							*/
  0,                                                                                    /* max number of sons			*/
  5,                                                                                    /* number of sides				*/
  6,                                                                                    /* number of corners			*/
  {{0.0,0.0,0.0},{1.0,0.0,0.0},{0.0,1.0,0.0},
   {0.0,0.0,1.0},{1.0,0.0,1.0},{0.0,1.0,1.0}},       /* local coordinates		*/
  9,                                                                                    /* number of edges				*/
  {3,4,4,4,3,-1},                                                       /* edges for each side	(2D!)	*/
  {3,4,4,4,3,-1},                                                       /* corners for each side		*/
  2,                                                                                    /* an edge has 2 corners		*/
  {{2,1,0,-1},{0,4,6,3},{1,5,7,4},                      /* number of edge j of side i   */
   {2,3,8,5},{6,7,8,-1}},
  {{0,2,1,-1},{0,1,4,3},{1,2,5,4},                      /* number of corner j of side i */
   {2,0,3,5},{3,4,5,-1}},
  {{0,1},{1,2},{2,0},{0,3},{1,4},{2,5},         /* number of corner j of edge i */
   {3,4},{4,5},{5,3}}
} ;

static GENERAL_ELEMENT def_hexahedron = {
  7,                                                                                    /* tag							*/
  30,                                                                                   /* max number of sons			*/
  6,                                                                                    /* number of sides				*/
  8,                                                                                    /* number of corners			*/
  {{0.0,0.0,0.0},{1.0,0.0,0.0},
   {1.0,1.0,0.0},{0.0,1.0,0.0},
   {0.0,0.0,1.0},{1.0,0.0,1.0},
   {1.0,1.0,1.0},{0.0,1.0,1.0}},                        /* local coordinates			*/
  12,                                                                                   /* number of edges				*/
  {4,4,4,4,4,4},                                                        /* edges for each side	(2D!)	*/
  {4,4,4,4,4,4},                                                        /* corners for each side		*/
  2,                                                                                    /* an edge has 2 corners		*/
  {{3,2,1,0},{0,5,8,4},{1,6,9,5},                       /* number of edge j of side i   */
   {2,7,10,6},{3,4,11,7},{8,9,10,11}},
  {{0,3,2,1},{0,1,5,4},{1,2,6,5},                       /* number of corner j of side i */
   {2,3,7,6},{3,0,4,7},{4,5,6,7}},
  {{0,1},{1,2},{2,3},{3,0},{0,4},{1,5},         /* number of corner j of edge i */
   {2,6},{3,7},{4,5},{5,6},{6,7},{7,4}}
} ;
#endif

/****************************************************************************/
/** \brief Compute index fields for a given element type

   \param el pointer to an element description

   STRUCTURES:
   \verbatim
   typedef struct {
    INT tag;                                // element type to be defined

    // the following parameters determine size of refs array in element
    INT max_sons_of_elem;                   // max number of sons for this type
    INT sides_of_elem;                      // how many sides ?
    INT corners_of_elem;                    // how many corners ?

    // more size parameters
    INT edges_of_elem;                      // how many edges ?
    INT edges_of_side[MAX_SIDES_OF_ELEM];   // number of edges for each side
    INT corners_of_side[MAX_SIDES_OF_ELEM]; // number of corners for each side
    INT corners_of_edge;                    // is always 2 !

    // index computations
    // Within each element sides, edges, corners are numbered in some way.
    // Within each side the edges and corners are numbered, within the edge the
    // corners are numbered. The following arrays map the local numbers within
    // the side or edge to the numbering within the element.
    INT edge_of_side[MAX_SIDES_OF_ELEM][MAX_EDGES_OF_SIDE];
    INT corner_of_side[MAX_SIDES_OF_ELEM][MAX_CORNERS_OF_SIDE];
    INT corner_of_edge[MAX_EDGES_OF_ELEM][MAX_CORNERS_OF_EDGE];

    // the following parameters are derived from data above
    INT mapped_inner_objt;                  // tag to objt mapping for free list
    INT mapped_bnd_objt;                    // tag to objt mapping for free list
    INT inner_size, bnd_size;               // size in bytes used for alloc
    INT edge_with_corners[MAX_CORNERS_OF_ELEM][MAX_CORNERS_OF_ELEM];
    INT side_with_edge[MAX_EDGES_OF_ELEM][MAX_SIDES_OF_EDGE];
    INT corner_of_side_inv[MAX_SIDES_OF_ELEM][MAX_CORNERS_OF_ELEM];
    INT edges_of_corner[MAX_CORNERS_OF_ELEM][MAX_EDGES_OF_ELEM];
    INT corner_of_oppedge[MAX_EDGES_OF_ELEM][MAX_CORNERS_OF_EDGE];
    INT corner_opp_to_side[MAX_SIDES_OF_ELEM];
    INT opposite_edge[MAX_EDGES_OF_ELEM];
    INT side_opp_to_corner[MAX_CORNERS_OF_ELEM];
    INT edge_of_corner[MAX_CORNERS_OF_ELEM][MAX_EDGES_OF_ELEM];
    INT edge_of_two_sides[MAX_SIDES_OF_ELEM][MAX_SIDES_OF_ELEM];

   } GENERAL_ELEMENT;
   \endverbatim


   This function processes a topology description of an element type and computes
   index mappings. Currently descriptions for triangles,
   quadrilaterals and tetrahedra are included. Hexahedral elements have been implemented
   in a prototype version.

   CAUTION: The above data structure is filled UP TO appropriate sizes for memory allocation
   as well as offsets in the 'refs' array of the 'generic_element'! For complete filling
   you will have to call 'ProcessElementDescription'

   Only the following components of the GENERAL_ELEMENT structure must be provided.
   All other components are derived from the given information.

   . tag - New tag for the elememt which will be delivered by the 'TAG' macro.
   . max_sons_of_elem - Max number of sons allowed for that element type.
   . sides_of_elem - Number of sides for that element type.
   . corners_of_elem - Number of corners for that element type.
   . edges_of_elem - Number of edges for that element type.
   . edges_of_side - Number of edges for each side.
   . corners_of_side - Number of corners of each side.
   . corners_of_edge - is always 2.
   . edge_of_side[s][e] - The edges are numbered in the element and in each side of the
   element. This array provides a mapping that tells you the number of edge 'e' of side
   's' with respect to the numbering in the element.
   . corner_of_side[s][c] - The corners edges are numbered in the element and in each side of the
   element. This array provides a mapping that tells you the number of corner 'c' of side
   's' with respect to the numbering in the element.
   . corner_of_edge[e][c] - Tells you the number of corner 'c' in edge 'e' with respect
   to the numbering in the element.

   SEE ALSO:

   'ELEMENT', 'ProcessElementDescription'.

   \return <ul>
   <li> GM_OK if ok </li>
   <li> GM_ERROR if error occured </li>
   <ul>
 */
/****************************************************************************/

static INT PreProcessElementDescription (GENERAL_ELEMENT *el)
{
  INT tag;
  INT i,j,k,l,n,from,to;
        #ifdef __THREEDIM__
  INT m,n1,n2;
        #endif

  tag = el->tag;

  /* derive additional index fields */

  /* edge_with_corners(i,j) : number of edge between corners i and j, -1 if no such edge ex. */
  for (i=0; i<MAX_CORNERS_OF_ELEM; i++)
    for (j=0; j<MAX_CORNERS_OF_ELEM; j++) el->edge_with_corners[i][j] = -1;
  for (i=0; i<el->edges_of_elem; i++)
  {
    el->edge_with_corners[el->corner_of_edge[i][0]][el->corner_of_edge[i][1]] = i;
    el->edge_with_corners[el->corner_of_edge[i][1]][el->corner_of_edge[i][0]] = i;
  }

  /* side_with_edge(i,j) : edge i is an edge of side side_with_edge(i,j) */
  for (i=0; i<MAX_EDGES_OF_ELEM; i++)
    for (j=0; j<MAX_SIDES_OF_EDGE; j++) el->side_with_edge[i][j] = -1;
  for (k=0; k<el->edges_of_elem; k++)
  {
    from = el->corner_of_edge[k][0];
    to   = el->corner_of_edge[k][1];

    for (i=0; i<el->sides_of_elem; i++) {
      n = el->corners_of_side[i];
      for (j=0; j<n; j++)
      {
        if ((el->corner_of_side[i][j]==from)&&(el->corner_of_side[i][(j+1)%n]==to))
          el->side_with_edge[k][1] = i;
        if ((el->corner_of_side[i][j]==to)&&(el->corner_of_side[i][(j+1)%n]==from))
          el->side_with_edge[k][0] = i;
      }
    }
  }

  /* corner_of_side_inv(i,j) : j is number of a corner in the element. Then this
     array returns the local number of this corner within side i or -1 if side i
     does not contain this corner. */
  for (i=0; i<MAX_SIDES_OF_ELEM; i++)
    for (j=0; j<MAX_CORNERS_OF_ELEM; j++) el->corner_of_side_inv[i][j] = -1;
  for (i=0; i<el->sides_of_elem; i++)
    for (j=0; j<el->corners_of_side[i]; j++)
    {
      n = el->corner_of_side[i][j];
      el->corner_of_side_inv[i][n] = j;
    }

  /* edges_of_corner(i,j) : i is a number of a corner within the element, then
     edges_of_corner(i,j) gives the number of an edge adjacent to corner i or -1 */
  for (i=0; i<MAX_CORNERS_OF_ELEM; i++)
    for (j=0; j<MAX_EDGES_OF_ELEM; j++) el->edges_of_corner[i][j] = -1;
  for (i=0; i<el->edges_of_elem; i++)
    for (j=0; j<el->corners_of_edge; j++)
    {
      n = el->corner_of_edge[i][j];
      for (k=0; k<MAX_EDGES_OF_ELEM; k++)
        if (el->edges_of_corner[n][k]<0)
        {
          el->edges_of_corner[n][k] = i;
          break;
        }
    }


  /* fields not valid for all elements */

  /* corner_of_oppedge(i,j) */
  for (i=0; i<MAX_EDGES_OF_ELEM; i++)
    for (j=0; j<MAX_CORNERS_OF_EDGE; j++)
      el->corner_of_oppedge[i][j] = -1;

  /* corner_opp_to_side(i) */
  for (i=0; i<MAX_SIDES_OF_ELEM; i++)
    el->corner_opp_to_side[i] = -1;

  /* opposite_edge(i) */
  for (i=0; i<MAX_EDGES_OF_ELEM; i++)
    el->opposite_edge[i] = -1;

  /* side_opp_to_corner(i) */
  for (i=0; i<MAX_CORNERS_OF_ELEM; i++)
    el->side_opp_to_corner[i] = -1;

  /* edge_of_corner(i,j) */
  for (i=0; i<MAX_CORNERS_OF_ELEM; i++)
    for (j=0; j<MAX_EDGES_OF_ELEM; j++)
      el->edge_of_corner[i][j] = -1;

#ifdef __TWODIM__
  switch (tag)
  {
  case TRIANGLE :
    /* corner_of_oppedge(i,j) */
    /* is not defined!		  */

    /* corner_opp_to_side(i)  */
    /* is not defined!		  */

    /* opposite_edge(i)		  */
    /* is not defined!		  */

    /* side_opp_to_corner(i)  */
    /* is not defined!		  */

    /* edge_of_corner(i,j)	  */
    for (i=0; i<el->edges_of_elem; i++) {
      for (j=0; j<el->corners_of_edge; j++) {
        if (el->corner_of_edge[i][j] >=0) {
          for (k=0; k<el->edges_of_elem; k++)
            if (el->edge_of_corner[el->corner_of_edge[i][j]][k] < 0)
              break;
          assert(k<el->edges_of_elem);
          el->edge_of_corner[el->corner_of_edge[i][j]][k] = i;
        }
      }
    }

    break;

  case QUADRILATERAL :
    /* corner_of_oppedge(i,j) */
    for (i=0; i<el->edges_of_elem; i++) {
      for (j=0; j<el->edges_of_elem; j++) {
        n=1;
        for (k=0; k<el->corners_of_edge; k++)
          for (l=0; l<el->corners_of_edge; l++)
            if (el->corner_of_edge[i][k]==el->corner_of_edge[j][l])
              n=0;
        if (n) {
          el->corner_of_oppedge[i][0] = el->corner_of_edge[j][0];
          el->corner_of_oppedge[i][1] = el->corner_of_edge[j][1];
          break;
        }
      }
      assert(j<el->edges_of_elem);
    }

    /* corner_opp_to_side(i)  */
    /* is not defined!		  */

    /* opposite_edge(i)		  */
    for (i=0; i<el->edges_of_elem; i++) {
      n = 0;
      for (j=0; j<el->corners_of_edge; j++) {
        for (k=0; k<el->edges_of_elem; k++) {
          if (el->edges_of_corner[el->corner_of_edge[i][j]][k] >= 0)
            n |= (0x1<<(el->edges_of_corner[el->corner_of_edge[i][j]][k]));
        }
      }
      for (j=0; j<el->edges_of_elem; j++)
        if (((n>>j) & 0x1) == 0)
          break;
      assert(j<el->edges_of_elem);

      el->opposite_edge[i] = j;
    }

    /* side_opp_to_corner(i)  */
    /* is not defined!		  */

    /* edge_of_corner(i,j)	  */
    for (i=0; i<el->edges_of_elem; i++) {
      for (j=0; j<el->corners_of_edge; j++) {
        if (el->corner_of_edge[i][j] >=0) {
          for (k=0; k<el->edges_of_elem; k++)
            if (el->edge_of_corner[el->corner_of_edge[i][j]][k] < 0)
              break;
          assert(k<el->edges_of_elem);
          el->edge_of_corner[el->corner_of_edge[i][j]][k] = i;
        }
      }
    }

    break;
  }
#endif

#ifdef __THREEDIM__
  /* edge_of_two_sides(i,j) */
  for (i=0; i<MAX_SIDES_OF_ELEM; i++)
    for (j=0; j<MAX_SIDES_OF_ELEM; j++)
      el->edge_of_two_sides[i][j] = -1;

  switch (tag)
  {
  case TETRAHEDRON :

    /* corner_of_oppedge(i,j) */
    for (i=0; i<el->edges_of_elem; i++) {
      for (j=0; j<el->edges_of_elem; j++) {
        n=1;
        for (k=0; k<el->corners_of_edge; k++)
          for (l=0; l<el->corners_of_edge; l++)
            if (el->corner_of_edge[i][k]==el->corner_of_edge[j][l])
              n=0;
        if (n) {
          el->corner_of_oppedge[i][0] = el->corner_of_edge[j][0];
          el->corner_of_oppedge[i][1] = el->corner_of_edge[j][1];
          break;
        }
      }
      assert(j<el->edges_of_elem);
    }

    /* corner_opp_to_side(i) */
    for (i=0; i<el->sides_of_elem; i++) {
      n = 0;
      for (j=0; j<el->corners_of_side[i]; j++) {
        n |= (0x1<<(el->corner_of_side[i][j]));
      }
      for (j=0; j<el->corners_of_elem; j++) {
        if (((n>>j) & 0x1) == 0)
          break;
      }
      assert(j<el->corners_of_elem);
      el->corner_opp_to_side[i] = j;
    }

    /* opposite_edge(i)		  */
    for (i=0; i<el->edges_of_elem; i++) {
      n = 0;
      for (j=0; j<el->corners_of_edge; j++) {
        for (k=0; k<el->edges_of_elem; k++) {
          if (el->edges_of_corner[el->corner_of_edge[i][j]][k] >= 0)
            n |= (0x1<<(el->edges_of_corner[el->corner_of_edge[i][j]][k]));
        }
      }
      for (j=0; j<el->edges_of_elem; j++)
        if (((n>>j) & 0x1) == 0)
          break;
      assert(j<el->edges_of_elem);

      el->opposite_edge[i] = j;
    }

    /* side_opp_to_corner(i)  */
    for (i=0; i<el->corners_of_elem; i++) {
      for (j=0; j<el->sides_of_elem; j++) {
        n = 0;
        for (k=0; k<el->corners_of_side[j]; k++)
          n |= (0x1<<(el->corner_of_side[j][k]));
        if (((n>>i) & 0x1) == 0) {
          el->side_opp_to_corner[i] = j;
          break;
        }
      }
      assert(j<el->sides_of_elem);
    }

    /* edge_of_corner(i,j)	  */
    for (i=0; i<el->edges_of_elem; i++) {
      for (j=0; j<el->corners_of_edge; j++) {
        if (el->corner_of_edge[i][j] >=0) {
          for (k=0; k<el->edges_of_elem; k++)
            if (el->edge_of_corner[el->corner_of_edge[i][j]][k] < 0)
              break;
          assert(k<el->edges_of_elem);
          el->edge_of_corner[el->corner_of_edge[i][j]][k] = i;
        }
      }
    }

    break;

  case PYRAMID :

    /* corner_of_oppedge(i,j) */
    /* is not defined!		  */

    /* corner_opp_to_side(i) */
    for (i=0; i<el->sides_of_elem; i++) {
      if (el->corners_of_side[i] == 4) {
        n = 0;
        for (j=0; j<el->corners_of_side[i]; j++) {
          n |= (0x1<<(el->corner_of_side[i][j]));
        }
        for (j=0; j<el->corners_of_elem; j++) {
          if (((n>>j) & 0x1) == 0)
            break;
        }
        assert(j<el->corners_of_elem);
        el->corner_opp_to_side[i] = j;
      }
    }

    /* opposite_edge(i)		  */
    /* is not defined!		  */

    /* side_opp_to_corner(i)  */
    for (i=0; i<el->corners_of_elem; i++) {
      for (j=0; j<el->sides_of_elem; j++) {
        n = 0;
        for (k=0; k<el->corners_of_side[j]; k++)
          n |= (0x1<<(el->corner_of_side[j][k]));
        if (((n>>i) & 0x1) == 0) {
          el->side_opp_to_corner[i] = j;
          break;
        }
      }
      assert(j<el->sides_of_elem);
    }

    /* edge_of_corner(i,j)	  */
    for (i=0; i<el->edges_of_elem; i++) {
      for (j=0; j<el->corners_of_edge; j++) {
        if (el->corner_of_edge[i][j] >=0) {
          for (k=0; k<el->edges_of_elem; k++)
            if (el->edge_of_corner[el->corner_of_edge[i][j]][k] < 0)
              break;
          assert(k<el->edges_of_elem);
          el->edge_of_corner[el->corner_of_edge[i][j]][k] = i;
        }
      }
    }

    break;

  case PRISM :

    /* corner_of_oppedge(i,j) */
    /* is not defined!		  */

    /* corner_opp_to_side(i)  */
    /* is not defined!		  */

    /* opposite_edge(i)		  */
    /* is not defined!		  */

    /* side_opp_to_corner(i)  */
    /* is not defined!		  */

    /* edge_of_corner(i,j)	  */
    for (i=0; i<el->edges_of_elem; i++) {
      for (j=0; j<el->corners_of_edge; j++) {
        if (el->corner_of_edge[i][j] >=0) {
          for (k=0; k<el->edges_of_elem; k++)
            if (el->edge_of_corner[el->corner_of_edge[i][j]][k] < 0)
              break;
          assert(k<el->edges_of_elem);
          el->edge_of_corner[el->corner_of_edge[i][j]][k] = i;
        }
      }
    }

    break;

  case HEXAHEDRON :

    /* corner_of_oppedge(i,j) */
    for (i=0; i<el->edges_of_elem; i++) {
      n = 0;
      for (j=0; j<el->corners_of_edge; j++) {
        n1 = el->corner_of_edge[i][j];
        for (k=0; k<el->edges_of_elem; k++) {
          if (el->edges_of_corner[n1][k] >= 0) {
            n |= (0x1<<(el->edges_of_corner[n1][k]));
            for (l=0; l<el->corners_of_edge; l++) {
              n2 = el->corner_of_edge[el->edges_of_corner[n1][k]][l];
              if (n2 != n1) {
                for (m=0; m<el->edges_of_elem; m++)
                  if (el->edges_of_corner[n2][m] >= 0)
                    n |= (0x1<<(el->edges_of_corner[n2][m]));
              }
            }
          }
        }
      }
      for (k=0; k<el->edges_of_elem; k++)
        if (((n>>k) & 0x1) == 0)
          break;
      assert(k<el->edges_of_elem);

      el->corner_of_oppedge[i][0] = el->corner_of_edge[k][0];
      el->corner_of_oppedge[i][1] = el->corner_of_edge[k][1];
    }

    /* corner_opp_to_side(i)  */
    /* is not defined!		  */

    /* opposite_edge(i)		  */
    for (i=0; i<el->edges_of_elem; i++) {
      n = 0;
      for (j=0; j<el->corners_of_edge; j++) {
        n1 = el->corner_of_edge[i][j];
        for (k=0; k<el->edges_of_elem; k++) {
          if (el->edges_of_corner[n1][k] >= 0) {
            n |= (0x1<<(el->edges_of_corner[n1][k]));
            for (l=0; l<el->corners_of_edge; l++) {
              n2 = el->corner_of_edge[el->edges_of_corner[n1][k]][l];
              if (n2 != n1) {
                for (m=0; m<el->edges_of_elem; m++) {
                  if (el->edges_of_corner[n2][m] >= 0)
                    n |= (0x1<<(el->edges_of_corner[n2][m]));
                }
              }
            }
          }
        }
      }
      for (k=0; k<el->edges_of_elem; k++)
        if (((n>>k) & 0x1) == 0)
          break;
      assert(k<el->edges_of_elem);

      el->opposite_edge[i] = k;
    }

    /* side_opp_to_corner(i)  */
    /* is not defined!		  */

    /* edge_of_corner(i,j)	  */
    for (i=0; i<el->edges_of_elem; i++) {
      for (j=0; j<el->corners_of_edge; j++) {
        if (el->corner_of_edge[i][j] >=0) {
          for (k=0; k<el->edges_of_elem; k++)
            if (el->edge_of_corner[el->corner_of_edge[i][j]][k] < 0)
              break;
          assert(k<el->edges_of_elem);
          el->edge_of_corner[el->corner_of_edge[i][j]][k] = i;
        }
      }
    }

    break;
  }

  for (i=0; i<el->sides_of_elem; i++)
    for (j=0; j<el->sides_of_elem; j++)
      for (k=0; k<el->edges_of_side[i]; k++)
        for (l=0; l<el->edges_of_side[j]; l++)
          if (el->edge_of_side[i][k] == el->edge_of_side[j][l])
          {
            assert( (i==j) || (el->edge_of_two_sides[i][j]==-1) ||
                    (el->edge_of_two_sides[i][j]==el->edge_of_side[i][k]) );
            el->edge_of_two_sides[i][j] = el->edge_of_side[i][k];
          }
#endif

  /* make description globally available */
  element_descriptors[tag] = el;
  reference_descriptors[el->corners_of_elem] = el;
  reference2tag[el->corners_of_elem] = tag;

  return(GM_OK);
}

/****************************************************************************/
/** \brief Compute offsets and size for a given element type

   \param theMG multigrid for format dependent pointer offsets in elements
   \param el    pointer to an element description

   STRUCTURES:
   \verbatim
   typedef struct {
    INT tag;                                // element type to be defined

    // the following parameters determine size of refs array in element
    INT max_sons_of_elem;                   // max number of sons for this type
    INT sides_of_elem;                      // how many sides ?
    INT corners_of_elem;                    // how many corners ?

    // more size parameters
    INT edges_of_elem;                      // how many edges ?
    INT edges_of_side[MAX_SIDES_OF_ELEM];   // number of edges for each side
    INT corners_of_side[MAX_SIDES_OF_ELEM]; // number of corners for each side
    INT corners_of_edge;                    // is always 2 !

    // index computations
    // Within each element sides, edges, corners are numbered in some way.
    // Within each side the edges and corners are numbered, within the edge the
    // corners are numbered. The following arrays map the local numbers within
    // the side or edge to the numbering within the element.
    INT edge_of_side[MAX_SIDES_OF_ELEM][MAX_EDGES_OF_SIDE];
    INT corner_of_side[MAX_SIDES_OF_ELEM][MAX_CORNERS_OF_SIDE];
    INT corner_of_edge[MAX_EDGES_OF_ELEM][MAX_CORNERS_OF_EDGE];

    // the following parameters are derived from data above
    INT mapped_inner_objt;                  // tag to objt mapping for free list
    INT mapped_bnd_objt;                    // tag to objt mapping for free list
    INT inner_size, bnd_size;               // size in bytes used for alloc
    INT edge_with_corners[MAX_CORNERS_OF_ELEM][MAX_CORNERS_OF_ELEM];
    INT side_with_edge[MAX_EDGES_OF_ELEM][MAX_SIDES_OF_EDGE];
    INT corner_of_side_inv[MAX_SIDES_OF_ELEM][MAX_CORNERS_OF_ELEM];
    INT edges_of_corner[MAX_CORNERS_OF_ELEM][MAX_EDGES_OF_ELEM];
        INT corner_of_oppedge[MAX_EDGES_OF_ELEM][MAX_CORNERS_OF_EDGE];
        INT corner_opp_to_side[MAX_SIDES_OF_ELEM];
        INT opposite_edge[MAX_EDGES_OF_ELEM];
        INT side_opp_to_corner[MAX_CORNERS_OF_ELEM];
        INT edge_of_corner[MAX_CORNERS_OF_ELEM][MAX_EDGES_OF_ELEM];
        INT edge_of_two_sides[MAX_SIDES_OF_ELEM][MAX_SIDES_OF_ELEM];

   } GENERAL_ELEMENT;
   \endverbatim

   This function processes a topology description of an element type and computes
   the appropriate sizes for memory allocation and offsets in the 'refs' array of the
   'generic_element'. All other data are fixed and do not depend on the multigrid or format.
   Before calling this function 'PreProcessElementDescription' has to be called once
   during initialization.

   SEE ALSO:

   'ELEMENT', 'PreProcessElementDescription'.

   \return <ul>
   <li> GM_OK if ok </li>
   <li> GM_ERROR if error occured. </li>
   </ul>
 */
/****************************************************************************/

static INT ProcessElementDescription (MULTIGRID *theMG, GENERAL_ELEMENT *el)
{
  INT p_count, tag;

  tag = el->tag;
  p_count = 0;

  /* the corners */
  n_offset[tag] = p_count; p_count += el->corners_of_elem;

  /* the father */
  father_offset[tag] = p_count; p_count++;

  /* the sons */
  sons_offset[tag] = 0;
  /*
     #ifdef __TWODIM__
                  sons_offset[tag] = p_count; p_count += el->max_sons_of_elem;
     #endif
     #ifdef __THREEDIM__
                  sons_offset[tag] = p_count; p_count++;
     #endif
   */
  /* for 2D/3D one son pointer is stored in serial case     */
  /* for 2D/3D two son pointer are stored in parallel case: */
  /*    one to master elements, other to (h/v) ghosts       */
        #ifdef ModelP
  sons_offset[tag] = p_count; p_count+=2;
        #else
  sons_offset[tag] = p_count; p_count++;
        #endif

  /* the neighbors */
  nb_offset[tag] = p_count; p_count += el->sides_of_elem;

  /* element vector */
  evector_offset[tag] = 0;
  if (VEC_DEF_IN_OBJ_OF_MG(theMG,ELEMVEC))
  {
    evector_offset[tag] = p_count;
    p_count++;
  }

  /* side vector */
  svector_offset[tag] = 0;
        #ifdef __THREEDIM__
  if (VEC_DEF_IN_OBJ_OF_MG(theMG,SIDEVEC))
  {
    svector_offset[tag] = p_count;
    p_count += el->sides_of_elem;
  }
        #endif

  /* so far for an inner element */
  el->inner_size = sizeof(struct generic_element) + (p_count-1)*sizeof(void *);

  /* the element sides */
  side_offset[tag] = p_count; p_count += el->sides_of_elem;

  /* now the size of an element on the boundary */
  el->bnd_size = sizeof(struct generic_element) + (p_count-1)*sizeof(void *);

  /* get a free object id for free list */
  /** \todo OBJT is always allocated when this functions is called but never released
                   this will probably cause problems when several mgs are open: switching between
                   them will lead to an overflow of the UsedOBJT variable in ugm.c
                   possible remedy: store element OBJT in mg and release when it is closed. Also
                   don't reallocate them for a given mg */
  el->mapped_inner_objt = GetFreeOBJT();
  if (el->mapped_inner_objt < 0) return(GM_ERROR);

#ifndef ModelP
  if (nOBJT>=MAXOBJECTS-1) return(GM_ERROR);
  OBJT4Elements[nOBJT++]=el->mapped_inner_objt;
#endif

  el->mapped_bnd_objt = GetFreeOBJT();
  if (el->mapped_bnd_objt < 0) return(GM_ERROR);

#ifndef ModelP
  OBJT4Elements[nOBJT++]=el->mapped_bnd_objt;
  if (nOBJT>=MAXOBJECTS-1) return(GM_ERROR);
#endif

  return(GM_OK);
}

/****************************************************************************/
/** \brief Pre-initialize general element data up to multigrid dependent stuff

   This function pre-initializes the general element data up to multigrid dependent stuff.

   \return <ul>
   <li> GM_OK if ok </li>
   <li> GM_ERROR if error occured. </li>
   </ul>
 */
/****************************************************************************/

INT NS_DIM_PREFIX PreInitElementTypes (void)
{
  INT err;

#ifdef __TWODIM__
  err = PreProcessElementDescription(&def_triangle);
  if (err!=GM_OK) return(err);
  err = PreProcessElementDescription(&def_quadrilateral);
  if (err!=GM_OK) return(err);
#endif

#ifdef __THREEDIM__
  err = PreProcessElementDescription(&def_tetrahedron);
  if (err!=GM_OK) return(err);
  err = PreProcessElementDescription(&def_pyramid);
  if (err!=GM_OK) return(err);
  err = PreProcessElementDescription(&def_prism);
  if (err!=GM_OK) return(err);
  err = PreProcessElementDescription(&def_hexahedron);
  if (err!=GM_OK) return(err);
#endif

  return (0);
}

/****************************************************************************/
/** \brief Initialize topological information for element types

   This function initializes topological information for element types and
   is called once during startup. Add your initialization of a new element
   type here.

   \return <ul>
   <li> GM_OK if ok </li>
   <li> GM_ERROR if error occured </li>
   </ul>
 */
/****************************************************************************/

INT NS_DIM_PREFIX InitElementTypes (MULTIGRID *theMG)
{
  INT err;

  if (theMG==NULL)
    return(GM_ERROR);

#ifndef ModelP
  /* release allocated OBJTs */
  for (INT i=0; i<nOBJT; i++)
    if (ReleaseOBJT (OBJT4Elements[i]))
      return (GM_ERROR);
  nOBJT=0;
#endif

#ifdef __TWODIM__
  err = ProcessElementDescription(theMG,&def_triangle);
  if (err!=GM_OK) return(err);
  err = ProcessElementDescription(theMG,&def_quadrilateral);
  if (err!=GM_OK) return(err);
#endif

#ifdef __THREEDIM__
  err = ProcessElementDescription(theMG,&def_tetrahedron);
  if (err!=GM_OK) return(err);
  err = ProcessElementDescription(theMG,&def_pyramid);
  if (err!=GM_OK) return(err);
  err = ProcessElementDescription(theMG,&def_prism);
  if (err!=GM_OK) return(err);
  err = ProcessElementDescription(theMG,&def_hexahedron);
  if (err!=GM_OK) return(err);
#endif

#ifdef ModelP
  InitCurrMG(theMG);
#endif

  return(GM_OK);
}