File: engine.py

package info (click to toggle)
dupeguru 4.3.1-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,604 kB
  • sloc: python: 16,846; ansic: 424; makefile: 123
file content (545 lines) | stat: -rw-r--r-- 19,921 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
# Created By: Virgil Dupras
# Created On: 2006/01/29
# Copyright 2015 Hardcoded Software (http://www.hardcoded.net)
#
# This software is licensed under the "GPLv3" License as described in the "LICENSE" file,
# which should be included with this package. The terms are also available at
# http://www.gnu.org/licenses/gpl-3.0.html

import difflib
import itertools
import logging
import string
from collections import defaultdict, namedtuple
from unicodedata import normalize

from hscommon.util import flatten, multi_replace
from hscommon.trans import tr
from hscommon.jobprogress import job

(
    WEIGHT_WORDS,
    MATCH_SIMILAR_WORDS,
    NO_FIELD_ORDER,
) = range(3)

JOB_REFRESH_RATE = 100
PROGRESS_MESSAGE = tr("%d matches found from %d groups")


def getwords(s):
    # We decompose the string so that ascii letters with accents can be part of the word.
    s = normalize("NFD", s)
    s = multi_replace(s, "-_&+():;\\[]{}.,<>/?~!@#$*", " ").lower()
    # logging.debug(f"DEBUG chars for: {s}\n"
    #               f"{[c for c in s if ord(c) != 32]}\n"
    #               f"{[ord(c) for c in s if ord(c) != 32]}")
    # HACK We shouldn't ignore non-ascii characters altogether. Any Unicode char
    # above common european characters that cannot be "sanitized" (ie. stripped
    # of their accents, etc.) are preserved as is. The arbitrary limit is
    # obtained from this one: ord("\u037e") GREEK QUESTION MARK
    s = "".join(
        c
        for c in s
        if (ord(c) <= 894 and c in string.ascii_letters + string.digits + string.whitespace) or ord(c) > 894
    )
    return [_f for _f in s.split(" ") if _f]  # remove empty elements


def getfields(s):
    fields = [getwords(field) for field in s.split(" - ")]
    return [_f for _f in fields if _f]


def unpack_fields(fields):
    result = []
    for field in fields:
        if isinstance(field, list):
            result += field
        else:
            result.append(field)
    return result


def compare(first, second, flags=()):
    """Returns the % of words that match between ``first`` and ``second``

    The result is a ``int`` in the range 0..100.
    ``first`` and ``second`` can be either a string or a list (of words).
    """
    if not (first and second):
        return 0
    if any(isinstance(element, list) for element in first):
        return compare_fields(first, second, flags)
    second = second[:]  # We must use a copy of second because we remove items from it
    match_similar = MATCH_SIMILAR_WORDS in flags
    weight_words = WEIGHT_WORDS in flags
    joined = first + second
    total_count = sum(len(word) for word in joined) if weight_words else len(joined)
    match_count = 0
    in_order = True
    for word in first:
        if match_similar and (word not in second):
            similar = difflib.get_close_matches(word, second, 1, 0.8)
            if similar:
                word = similar[0]
        if word in second:
            if second[0] != word:
                in_order = False
            second.remove(word)
            match_count += len(word) if weight_words else 1
    result = round(((match_count * 2) / total_count) * 100)
    if (result == 100) and (not in_order):
        result = 99  # We cannot consider a match exact unless the ordering is the same
    return result


def compare_fields(first, second, flags=()):
    """Returns the score for the lowest matching :ref:`fields`.

    ``first`` and ``second`` must be lists of lists of string. Each sub-list is then compared with
    :func:`compare`.
    """
    if len(first) != len(second):
        return 0
    if NO_FIELD_ORDER in flags:
        results = []
        # We don't want to remove field directly in the list. We must work on a copy.
        second = second[:]
        for field1 in first:
            max_score = 0
            matched_field = None
            for field2 in second:
                r = compare(field1, field2, flags)
                if r > max_score:
                    max_score = r
                    matched_field = field2
            results.append(max_score)
            if matched_field:
                second.remove(matched_field)
    else:
        results = [compare(field1, field2, flags) for field1, field2 in zip(first, second)]
    return min(results) if results else 0


def build_word_dict(objects, j=job.nulljob):
    """Returns a dict of objects mapped by their words.

    objects must have a ``words`` attribute being a list of strings or a list of lists of strings
    (:ref:`fields`).

    The result will be a dict with words as keys, lists of objects as values.
    """
    result = defaultdict(set)
    for object in j.iter_with_progress(objects, "Prepared %d/%d files", JOB_REFRESH_RATE):
        for word in unpack_fields(object.words):
            result[word].add(object)
    return result


def merge_similar_words(word_dict):
    """Take all keys in ``word_dict`` that are similar, and merge them together.

    ``word_dict`` has been built with :func:`build_word_dict`. Similarity is computed with Python's
    ``difflib.get_close_matches()``, which computes the number of edits that are necessary to make
    a word equal to the other.
    """
    keys = list(word_dict.keys())
    keys.sort(key=len)  # we want the shortest word to stay
    while keys:
        key = keys.pop(0)
        similars = difflib.get_close_matches(key, keys, 100, 0.8)
        if not similars:
            continue
        objects = word_dict[key]
        for similar in similars:
            objects |= word_dict[similar]
            del word_dict[similar]
            keys.remove(similar)


def reduce_common_words(word_dict, threshold):
    """Remove all objects from ``word_dict`` values where the object count >= ``threshold``

    ``word_dict`` has been built with :func:`build_word_dict`.

    The exception to this removal are the objects where all the words of the object are common.
    Because if we remove them, we will miss some duplicates!
    """
    uncommon_words = {word for word, objects in word_dict.items() if len(objects) < threshold}
    for word, objects in list(word_dict.items()):
        if len(objects) < threshold:
            continue
        reduced = set()
        for o in objects:
            if not any(w in uncommon_words for w in unpack_fields(o.words)):
                reduced.add(o)
        if reduced:
            word_dict[word] = reduced
        else:
            del word_dict[word]


# Writing docstrings in a namedtuple is tricky. From Python 3.3, it's possible to set __doc__, but
# some research allowed me to find a more elegant solution, which is what is done here. See
# http://stackoverflow.com/questions/1606436/adding-docstrings-to-namedtuples-in-python


class Match(namedtuple("Match", "first second percentage")):
    """Represents a match between two :class:`~core.fs.File`.

    Regarless of the matching method, when two files are determined to match, a Match pair is created,
    which holds, of course, the two matched files, but also their match "level".

    .. attribute:: first

        first file of the pair.

    .. attribute:: second

        second file of the pair.

    .. attribute:: percentage

        their match level according to the scan method which found the match. int from 1 to 100. For
        exact scan methods, such as Contents scans, this will always be 100.
    """

    __slots__ = ()


def get_match(first, second, flags=()):
    # it is assumed here that first and second both have a "words" attribute
    percentage = compare(first.words, second.words, flags)
    return Match(first, second, percentage)


def getmatches(
    objects,
    min_match_percentage=0,
    match_similar_words=False,
    weight_words=False,
    no_field_order=False,
    j=job.nulljob,
):
    """Returns a list of :class:`Match` within ``objects`` after fuzzily matching their words.

    :param objects: List of :class:`~core.fs.File` to match.
    :param int min_match_percentage: minimum % of words that have to match.
    :param bool match_similar_words: make similar words (see :func:`merge_similar_words`) match.
    :param bool weight_words: longer words are worth more in match % computations.
    :param bool no_field_order: match :ref:`fields` regardless of their order.
    :param j: A :ref:`job progress instance <jobs>`.
    """
    COMMON_WORD_THRESHOLD = 50
    LIMIT = 5000000
    j = j.start_subjob(2)
    sj = j.start_subjob(2)
    for o in objects:
        if not hasattr(o, "words"):
            o.words = getwords(o.name)
    word_dict = build_word_dict(objects, sj)
    reduce_common_words(word_dict, COMMON_WORD_THRESHOLD)
    if match_similar_words:
        merge_similar_words(word_dict)
    match_flags = []
    if weight_words:
        match_flags.append(WEIGHT_WORDS)
    if match_similar_words:
        match_flags.append(MATCH_SIMILAR_WORDS)
    if no_field_order:
        match_flags.append(NO_FIELD_ORDER)
    j.start_job(len(word_dict), PROGRESS_MESSAGE % (0, 0))
    compared = defaultdict(set)
    result = []
    try:
        word_count = 0
        # This whole 'popping' thing is there to avoid taking too much memory at the same time.
        while word_dict:
            items = word_dict.popitem()[1]
            while items:
                ref = items.pop()
                compared_already = compared[ref]
                to_compare = items - compared_already
                compared_already |= to_compare
                for other in to_compare:
                    m = get_match(ref, other, match_flags)
                    if m.percentage >= min_match_percentage:
                        result.append(m)
                        if len(result) >= LIMIT:
                            return result
            word_count += 1
            j.add_progress(desc=PROGRESS_MESSAGE % (len(result), word_count))
    except MemoryError:
        # This is the place where the memory usage is at its peak during the scan.
        # Just continue the process with an incomplete list of matches.
        del compared  # This should give us enough room to call logging.
        logging.warning("Memory Overflow. Matches: %d. Word dict: %d" % (len(result), len(word_dict)))
        return result
    return result


def getmatches_by_contents(files, bigsize=0, j=job.nulljob):
    """Returns a list of :class:`Match` within ``files`` if their contents is the same.

    :param bigsize: The size in bytes over which we consider files big enough to
                    justify taking samples of the file for hashing. If 0, compute digest as usual.
    :param j: A :ref:`job progress instance <jobs>`.
    """
    size2files = defaultdict(set)
    for f in files:
        size2files[f.size].add(f)
    del files
    possible_matches = [files for files in size2files.values() if len(files) > 1]
    del size2files
    result = []
    j.start_job(len(possible_matches), PROGRESS_MESSAGE % (0, 0))
    group_count = 0
    for group in possible_matches:
        for first, second in itertools.combinations(group, 2):
            if first.is_ref and second.is_ref:
                continue  # Don't spend time comparing two ref pics together.
            if first.size == 0 and second.size == 0:
                # skip hashing for zero length files
                result.append(Match(first, second, 100))
                continue
            # if digests are the same (and not None) then files match
            if first.digest_partial == second.digest_partial and first.digest_partial is not None:
                if bigsize > 0 and first.size > bigsize:
                    if first.digest_samples == second.digest_samples and first.digest_samples is not None:
                        result.append(Match(first, second, 100))
                else:
                    if first.digest == second.digest and first.digest is not None:
                        result.append(Match(first, second, 100))
        group_count += 1
        j.add_progress(desc=PROGRESS_MESSAGE % (len(result), group_count))
    return result


class Group:
    """A group of :class:`~core.fs.File` that match together.

    This manages match pairs into groups and ensures that all files in the group match to each
    other.

    .. attribute:: ref

        The "reference" file, which is the file among the group that isn't going to be deleted.

    .. attribute:: ordered

        Ordered list of duplicates in the group (including the :attr:`ref`).

    .. attribute:: unordered

        Set duplicates in the group (including the :attr:`ref`).

    .. attribute:: dupes

        An ordered list of the group's duplicate, without :attr:`ref`. Equivalent to
        ``ordered[1:]``

    .. attribute:: percentage

        Average match percentage of match pairs containing :attr:`ref`.
    """

    # ---Override
    def __init__(self):
        self._clear()

    def __contains__(self, item):
        return item in self.unordered

    def __getitem__(self, key):
        return self.ordered.__getitem__(key)

    def __iter__(self):
        return iter(self.ordered)

    def __len__(self):
        return len(self.ordered)

    # ---Private
    def _clear(self):
        self._percentage = None
        self._matches_for_ref = None
        self.matches = set()
        self.candidates = defaultdict(set)
        self.ordered = []
        self.unordered = set()

    def _get_matches_for_ref(self):
        if self._matches_for_ref is None:
            ref = self.ref
            self._matches_for_ref = [match for match in self.matches if ref in match]
        return self._matches_for_ref

    # ---Public
    def add_match(self, match):
        """Adds ``match`` to internal match list and possibly add duplicates to the group.

        A duplicate can only be considered as such if it matches all other duplicates in the group.
        This method registers that pair (A, B) represented in ``match`` as possible candidates and,
        if A and/or B end up matching every other duplicates in the group, add these duplicates to
        the group.

        :param tuple match: pair of :class:`~core.fs.File` to add
        """

        def add_candidate(item, match):
            matches = self.candidates[item]
            matches.add(match)
            if self.unordered <= matches:
                self.ordered.append(item)
                self.unordered.add(item)

        if match in self.matches:
            return
        self.matches.add(match)
        first, second, _ = match
        if first not in self.unordered:
            add_candidate(first, second)
        if second not in self.unordered:
            add_candidate(second, first)
        self._percentage = None
        self._matches_for_ref = None

    def discard_matches(self):
        """Remove all recorded matches that didn't result in a duplicate being added to the group.

        You can call this after the duplicate scanning process to free a bit of memory.
        """
        discarded = {m for m in self.matches if not all(obj in self.unordered for obj in [m.first, m.second])}
        self.matches -= discarded
        self.candidates = defaultdict(set)
        return discarded

    def get_match_of(self, item):
        """Returns the match pair between ``item`` and :attr:`ref`."""
        if item is self.ref:
            return
        for m in self._get_matches_for_ref():
            if item in m:
                return m

    def prioritize(self, key_func, tie_breaker=None):
        """Reorders :attr:`ordered` according to ``key_func``.

        :param key_func: Key (f(x)) to be used for sorting
        :param tie_breaker: function to be used to select the reference position in case the top
                            duplicates have the same key_func() result.
        """
        # tie_breaker(ref, dupe) --> True if dupe should be ref
        # Returns True if anything changed during prioritization.
        new_order = sorted(self.ordered, key=lambda x: (-x.is_ref, key_func(x)))
        changed = new_order != self.ordered
        self.ordered = new_order
        if tie_breaker is None:
            return changed
        ref = self.ref
        key_value = key_func(ref)
        for dupe in self.dupes:
            if key_func(dupe) != key_value:
                break
            if tie_breaker(ref, dupe):
                ref = dupe
        if ref is not self.ref:
            self.switch_ref(ref)
            return True
        return changed

    def remove_dupe(self, item, discard_matches=True):
        try:
            self.ordered.remove(item)
            self.unordered.remove(item)
            self._percentage = None
            self._matches_for_ref = None
            if (len(self) > 1) and any(not getattr(item, "is_ref", False) for item in self):
                if discard_matches:
                    self.matches = {m for m in self.matches if item not in m}
            else:
                self._clear()
        except ValueError:
            pass

    def switch_ref(self, with_dupe):
        """Make the :attr:`ref` dupe of the group switch position with ``with_dupe``."""
        if self.ref.is_ref:
            return False
        try:
            self.ordered.remove(with_dupe)
            self.ordered.insert(0, with_dupe)
            self._percentage = None
            self._matches_for_ref = None
            return True
        except ValueError:
            return False

    dupes = property(lambda self: self[1:])

    @property
    def percentage(self):
        if self._percentage is None:
            if self.dupes:
                matches = self._get_matches_for_ref()
                self._percentage = sum(match.percentage for match in matches) // len(matches)
            else:
                self._percentage = 0
        return self._percentage

    @property
    def ref(self):
        if self:
            return self[0]


def get_groups(matches):
    """Returns a list of :class:`Group` from ``matches``.

    Create groups out of match pairs in the smartest way possible.
    """
    matches.sort(key=lambda match: -match.percentage)
    dupe2group = {}
    groups = []
    try:
        for match in matches:
            first, second, _ = match
            first_group = dupe2group.get(first)
            second_group = dupe2group.get(second)
            if first_group:
                if second_group:
                    if first_group is second_group:
                        target_group = first_group
                    else:
                        continue
                else:
                    target_group = first_group
                    dupe2group[second] = target_group
            else:
                if second_group:
                    target_group = second_group
                    dupe2group[first] = target_group
                else:
                    target_group = Group()
                    groups.append(target_group)
                    dupe2group[first] = target_group
                    dupe2group[second] = target_group
            target_group.add_match(match)
    except MemoryError:
        del dupe2group
        del matches
        # should free enough memory to continue
        logging.warning(f"Memory Overflow. Groups: {len(groups)}")
    # Now that we have a group, we have to discard groups' matches and see if there're any "orphan"
    # matches, that is, matches that were candidate in a group but that none of their 2 files were
    # accepted in the group. With these orphan groups, it's safe to build additional groups
    matched_files = set(flatten(groups))
    orphan_matches = []
    for group in groups:
        orphan_matches += {
            m for m in group.discard_matches() if not any(obj in matched_files for obj in [m.first, m.second])
        }
    if groups and orphan_matches:
        groups += get_groups(orphan_matches)  # no job, as it isn't supposed to take a long time
    return groups