1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
|
/* @(#)resample.c 1.11 01/10/27 Copyright 1998,1999,2000 Heiko Eissfeldt */
#ifndef lint
static char sccsid[] =
"@(#)resample.c 1.11 01/10/27 Copyright 1998,1999,2000 Heiko Eissfeldt";
#endif
/* resampling module
*
* The audio data has been read. Here are the
* functions to ensure a correct continuation
* of the output stream and to convert to a
* lower sample rate.
*
*/
#undef DEBUG_VOTE_ENDIANESS
#undef DEBUG_SHIFTS /* simulate bad cdrom drives */
#undef DEBUG_MATCHING
#undef SHOW_JITTER
#undef CHECK_MEM
#include "config.h"
#include <timedefs.h>
#include <stdio.h>
#include <stdxlib.h>
#include <utypes.h>
#include <unixstd.h>
#include <standard.h>
#include <strdefs.h>
#include <limits.h>
#include <assert.h>
#include <math.h>
#include <scg/scsitransp.h>
#include "mytype.h"
#include "cdda2wav.h"
#include "interface.h"
#include "byteorder.h"
#include "ringbuff.h"
#include "resample.h"
#include "toc.h"
#include "sndfile.h"
#include "sndconfig.h"
#include "global.h"
int waitforsignal = 0; /* flag: wait for any audio response */
int any_signal = 0;
short undersampling; /* conversion factor */
short samples_to_do; /* loop variable for conversion */
int Halved; /* interpolate due to non integral divider */
static long lsum = 0, rsum = 0; /* accumulator for left/right channel */
static long ls2 = 0, rs2 = 0, ls3 = 0, rs3 = 0, auxl = 0, auxr = 0;
static const unsigned char *my_symmemmem __PR((const unsigned char *HAYSTACK, const size_t HAYSTACK_LEN, const unsigned char *const NEEDLE, const size_t NEEDLE_LEN));
static const unsigned char *my_memmem __PR((const unsigned char *HAYSTACK, const size_t HAYSTACK_LEN, const unsigned char *const NEEDLE, const size_t NEEDLE_LEN));
static const unsigned char *my_memrmem __PR((const unsigned char *HAYSTACK, const size_t HAYSTACK_LEN, const unsigned char *const NEEDLE, const size_t NEEDLE_LEN));
static const unsigned char *sync_buffers __PR((const unsigned char *const newbuf));
static long interpolate __PR((long p1, long p2, long p3));
static void emit_sample __PR((long lsumval, long rsumval, long channels));
static void change_endianness __PR((UINT4 *pSam, unsigned int Samples));
static void swap_channels __PR((UINT4 *pSam, unsigned int Samples));
static int guess_endianess __PR((UINT4 *p, Int16_t *p2, unsigned int SamplesToDo));
#ifdef CHECK_MEM
static void
check_mem __PR((const unsigned char *p, unsigned long amount, const unsigned char *q, unsigned line, char *file));
static void check_mem(p, amount, q, line, file)
const unsigned char *p;
unsigned long amount;
const unsigned char *q;
unsigned line;
char *file;
{
if (p < q || p+amount > q + ENTRY_SIZE) {
fprintf(stderr, "file %s, line %u: invalid buffer range (%p - %p), allowed is (%p - %p)\n",
file,line,p, p+amount-1, q, q + ENTRY_SIZE-1);
exit(1);
}
}
#endif
#ifdef DEBUG_MATCHING
int memcmp(const void * a, const void * b, size_t c)
{
return 1;
}
#endif
static const unsigned char *
my_symmemmem (const unsigned char *HAYSTACK, const size_t HAYSTACK_LEN, const unsigned char * const NEEDLE, const size_t NEEDLE_LEN)
{
const unsigned char * const UPPER_LIMIT = HAYSTACK + HAYSTACK_LEN - NEEDLE_LEN - 1;
const unsigned char * HAYSTACK2 = HAYSTACK-1;
while (HAYSTACK <= UPPER_LIMIT) {
if (memcmp(NEEDLE, HAYSTACK, NEEDLE_LEN) == 0) {
return HAYSTACK;
} else {
if (memcmp(NEEDLE, HAYSTACK2, NEEDLE_LEN) == 0) {
return HAYSTACK2;
}
HAYSTACK2--;
HAYSTACK++;
}
}
#ifdef DEBUG_MATCHING
HAYSTACK2++;
HAYSTACK--;
fprintf(stderr, "scompared %p-%p with %p-%p (%p)\n",
NEEDLE, NEEDLE + NEEDLE_LEN-1,
HAYSTACK2, HAYSTACK + NEEDLE_LEN-1, HAYSTACK);
#endif
return NULL;
}
static const unsigned char *
my_memmem (const unsigned char *HAYSTACK, const size_t HAYSTACK_LEN, const unsigned char * const NEEDLE, const size_t NEEDLE_LEN)
{
const unsigned char * const UPPER_LIMIT = HAYSTACK + HAYSTACK_LEN - NEEDLE_LEN;
while (HAYSTACK <= UPPER_LIMIT) {
if (memcmp(NEEDLE, HAYSTACK, NEEDLE_LEN) == 0) {
return HAYSTACK;
} else {
HAYSTACK++;
}
}
#ifdef DEBUG_MATCHING
HAYSTACK--;
fprintf(stderr, "fcompared %p-%p with %p-%p (%p)\n",
NEEDLE, NEEDLE + NEEDLE_LEN-1,
HAYSTACK - HAYSTACK_LEN + NEEDLE_LEN, HAYSTACK + NEEDLE_LEN-1,
HAYSTACK);
#endif
return NULL;
}
static const unsigned char *
my_memrmem (const unsigned char *HAYSTACK, const size_t HAYSTACK_LEN, const unsigned char * const NEEDLE, const size_t NEEDLE_LEN)
{
const unsigned char * const LOWER_LIMIT = HAYSTACK - (HAYSTACK_LEN - 1);
while (HAYSTACK >= LOWER_LIMIT) {
if (memcmp(NEEDLE, HAYSTACK, NEEDLE_LEN) == 0) {
return HAYSTACK;
} else {
HAYSTACK--;
}
}
#ifdef DEBUG_MATCHING
HAYSTACK++;
fprintf(stderr, "bcompared %p-%p with %p-%p (%p)\n",
NEEDLE, NEEDLE + NEEDLE_LEN-1,
HAYSTACK, HAYSTACK + (HAYSTACK_LEN - 1),
HAYSTACK + (HAYSTACK_LEN - 1) - NEEDLE_LEN - 1);
#endif
return NULL;
}
/* find continuation in new buffer */
static const unsigned char *
sync_buffers(const unsigned char * const newbuf)
{
const unsigned char *retval = newbuf;
if (global.overlap != 0) {
/* find position of SYNC_SIZE bytes
of the old buffer in the new buffer */
size_t haystack_len;
const size_t needle_len = SYNC_SIZE;
const unsigned char * const oldbuf = (const unsigned char *) (get_previous_read_buffer()->data);
const unsigned char * haystack;
const unsigned char * needle;
/* compare the previous buffer with the new one
*
* 1. symmetrical search:
* look for the last SYNC_SIZE bytes of the previous buffer
* in the new buffer (from the optimum to the outer positions).
*
* 2. if the first approach did not find anything do forward search
* look for the last SYNC_SIZE bytes of the previous buffer
* in the new buffer (from behind the overlap to the end).
*
*/
haystack_len = min((global.nsectors - global.overlap)*CD_FRAMESIZE_RAW
+SYNC_SIZE+1,
global.overlap*CD_FRAMESIZE_RAW);
/* expected here */
haystack = newbuf + CD_FRAMESIZE_RAW*global.overlap - SYNC_SIZE;
needle = oldbuf + CD_FRAMESIZE_RAW*global.nsectors - SYNC_SIZE;
#ifdef DEBUG_MATCHING
fprintf(stderr, "oldbuf %p-%p new %p-%p %u %u %u\n",
oldbuf, oldbuf + CD_FRAMESIZE_RAW*global.nsectors - 1,
newbuf, newbuf + CD_FRAMESIZE_RAW*global.nsectors - 1,
CD_FRAMESIZE_RAW*global.nsectors, global.nsectors, global.overlap);
#endif
retval = my_symmemmem(haystack, haystack_len, needle, needle_len);
if (retval != NULL) {
retval += SYNC_SIZE;
} else {
/* fallback to asymmetrical search */
/* if there is no asymmetrical part left, return with 'not found' */
if (2*global.overlap == global.nsectors) {
retval = NULL;
} else if (2*global.overlap > global.nsectors) {
/* the asymmetrical part is in front, search backwards */
haystack_len = (2*global.overlap-global.nsectors)*CD_FRAMESIZE_RAW;
haystack = newbuf + haystack_len - 1;
retval = my_memrmem(haystack, haystack_len, needle, needle_len);
} else {
/* the asymmetrical part is at the end, search forward */
haystack = newbuf + 2*(global.overlap*CD_FRAMESIZE_RAW - SYNC_SIZE);
haystack_len = (global.nsectors-2*global.overlap)*CD_FRAMESIZE_RAW + 2*SYNC_SIZE;
retval = my_memmem(haystack, haystack_len, needle, needle_len);
}
if (retval != NULL)
retval += SYNC_SIZE;
}
#ifdef SHOW_JITTER
if (retval) {
fprintf(stderr,"%d\n",
retval-(newbuf+global.overlap*CD_FRAMESIZE_RAW));
} else {
fprintf(stderr,"no match\n");
}
#endif
}
return retval;
}
/* quadratic interpolation
* p1, p3 span the interval 0 - 2. give interpolated value for 1/2 */
static long int
interpolate(long int p1, long int p2, long int p3)
{
return (3L*p1 + 6L*p2 - p3)/8L;
}
static unsigned char *pStart; /* running ptr defining end of output buffer */
static unsigned char *pDst; /* start of output buffer */
/*
* Write the filtered sample into the output buffer.
*/
static void
emit_sample(long lsumval, long rsumval, long channels)
{
if (global.findminmax) {
if (rsumval > global.maxamp[0]) global.maxamp[0] = rsumval;
if (rsumval < global.minamp[0]) global.minamp[0] = rsumval;
if (lsumval < global.minamp[1]) global.minamp[1] = lsumval;
if (lsumval > global.maxamp[1]) global.maxamp[1] = lsumval;
}
/* convert to output format */
if ( channels == 1 ) {
Int16_t sum; /* mono section */
sum = ( lsumval + rsumval ) >> (global.sh_bits + 1);
if ( global.sh_bits == 8 ) {
if ( waitforsignal == 1 ) {
if ( any_signal == 0 ) {
if ( ( (char) sum) != '\0' ) {
pStart = (unsigned char *) pDst;
any_signal = 1;
*pDst++ = ( unsigned char ) sum + ( 1 << 7 );
} else global.SkippedSamples++;
} else *pDst++ = ( unsigned char ) sum + ( 1 << 7 );
} else *pDst++ = ( unsigned char ) sum + ( 1 << 7 );
} else {
Int16_t * myptr = (Int16_t *) pDst;
if ( waitforsignal == 1 ) {
if ( any_signal == 0 ) {
if ( sum != 0 ) {
pStart = (unsigned char *) pDst;
any_signal = 1;
*myptr = sum; pDst += sizeof( Int16_t );
} else global.SkippedSamples++;
} else { *myptr = sum; pDst += sizeof( Int16_t ); }
} else { *myptr = sum; pDst += sizeof( Int16_t ); }
}
} else {
/* stereo section */
lsumval >>= global.sh_bits;
rsumval >>= global.sh_bits;
if ( global.sh_bits == 8 ) {
if ( waitforsignal == 1 ) {
if ( any_signal == 0 ) {
if ( ((( char ) lsumval != '\0') || (( char ) rsumval != '\0'))) {
pStart = (unsigned char *) pDst;
any_signal = 1;
*pDst++ = ( unsigned char )( short ) lsumval + ( 1 << 7 );
*pDst++ = ( unsigned char )( short ) rsumval + ( 1 << 7 );
} else global.SkippedSamples++;
} else {
*pDst++ = ( unsigned char )( short ) lsumval + ( 1 << 7 );
*pDst++ = ( unsigned char )( short ) rsumval + ( 1 << 7 );
}
} else {
*pDst++ = ( unsigned char )( short ) lsumval + ( 1 << 7 );
*pDst++ = ( unsigned char )( short ) rsumval + ( 1 << 7 );
}
} else {
Int16_t * myptr = (Int16_t *) pDst;
if ( waitforsignal == 1 ) {
if ( any_signal == 0 ) {
if ( ((( Int16_t ) lsumval != 0) || (( Int16_t ) rsumval != 0))) {
pStart = (unsigned char *) pDst;
any_signal = 1;
*myptr++ = ( Int16_t ) lsumval;
*myptr = ( Int16_t ) rsumval;
pDst += 2*sizeof( Int16_t );
} else global.SkippedSamples++;
} else {
*myptr++ = ( Int16_t ) lsumval;
*myptr = ( Int16_t ) rsumval;
pDst += 2*sizeof( Int16_t );
}
} else {
*myptr++ = ( Int16_t ) lsumval;
*myptr = ( Int16_t ) rsumval;
pDst += 2*sizeof( Int16_t );
}
}
}
}
static void change_endianness(UINT4 *pSam, unsigned int Samples)
{
UINT4 *pend = (pSam + Samples);
/* type UINT4 may not be greater than the assumed biggest type */
#if (SIZEOF_LONG_INT < 4)
error type unsigned long is too small
#endif
#if (SIZEOF_LONG_INT == 4)
unsigned long *plong = (unsigned long *)pSam;
for (; plong < pend;) {
*plong = ((*plong >> 8L) & UINT_C(0x00ff00ff)) |
((*plong << 8L) & UINT_C(0xff00ff00));
plong++;
}
#else /* sizeof long unsigned > 4 bytes */
#if (SIZEOF_LONG_INT == 8)
#define INTEGRAL_LONGS (SIZEOF_LONG_INT-1UL)
register unsigned long *plong;
unsigned long *pend0 = (unsigned long *) (((unsigned long) pend) & ~ INTEGRAL_LONGS);
if (((unsigned long) pSam) & INTEGRAL_LONGS) {
*pSam = ((*pSam >> 8L) & UINT_C(0x00ff00ff)) |
((*pSam << 8L) & UINT_C(0xff00ff00));
pSam++;
}
plong = (unsigned long *)pSam;
for (; plong < pend0;) {
*plong = ((*plong >> 8L) & ULONG_C(0x00ff00ff00ff00ff)) |
((*plong << 8L) & ULONG_C(0xff00ff00ff00ff00));
plong++;
}
if (((unsigned long *) pend) != pend0) {
UINT4 *pint = (UINT4 *) pend0;
for (;pint < pend;) {
*pint = ((*pint >> 8) & UINT_C(0x00ff00ff)) |
((*pint << 8) & UINT_C(0xff00ff00));
pint++;
}
}
#else /* sizeof long unsigned > 4 bytes but not 8 */
{
UINT4 *pint = pSam;
for (;pint < pend;) {
*pint = ((*pint >> 8) & UINT_C(0x00ff00ff)) |
((*pint << 8) & UINT_C(0xff00ff00));
pint++;
}
}
#endif
#endif
}
static void swap_channels(UINT4 *pSam, unsigned int Samples)
{
UINT4 *pend = (pSam + Samples);
/* type UINT4 may not be greater than the assumed biggest type */
#if (SIZEOF_LONG_INT < 4)
error type unsigned long is too small
#endif
#if (SIZEOF_LONG_INT == 4)
unsigned long *plong = (unsigned long *)pSam;
for (; plong < pend;) {
*plong = ((*plong >> 16L) & UINT_C(0x0000ffff)) |
((*plong << 16L) & UINT_C(0xffff0000));
plong++;
}
#else /* sizeof long unsigned > 4 bytes */
#if (SIZEOF_LONG_INT == 8)
#define INTEGRAL_LONGS (SIZEOF_LONG_INT-1UL)
register unsigned long *plong;
unsigned long *pend0 = (unsigned long *) (((unsigned long) pend) & ~ INTEGRAL_LONGS);
if (((unsigned long) pSam) & INTEGRAL_LONGS) {
*pSam = ((*pSam >> 16L) & UINT_C(0x0000ffff)) |
((*pSam << 16L) & UINT_C(0xffff0000));
pSam++;
}
plong = (unsigned long *)pSam;
for (; plong < pend0;) {
*plong = ((*plong >> 16L) & ULONG_C(0x0000ffff0000ffff)) |
((*plong << 16L) & ULONG_C(0xffff0000ffff0000));
plong++;
}
if (((unsigned long *) pend) != pend0) {
UINT4 *pint = (UINT4 *) pend0;
for (;pint < pend;) {
*pint = ((*pint >> 16L) & UINT_C(0x0000ffff)) |
((*pint << 16L) & UINT_C(0xffff0000));
pint++;
}
}
#else /* sizeof long unsigned > 4 bytes but not 8 */
{
UINT4 *pint = pSam;
for (;pint < pend;) {
*pint = ((*pint >> 16L) & UINT_C(0x0000ffff)) |
((*pint << 16L) & UINT_C(0xffff0000));
pint++;
}
}
#endif
#endif
}
#ifdef ECHO_TO_SOUNDCARD
static long ReSampleBuffer __PR((unsigned char *p, unsigned char *newp, long samples, int samplesize));
static long ReSampleBuffer( unsigned char *p, unsigned char *newp, long samples, int samplesize)
{
double idx=0.0;
UINT4 di=0,si=0;
if (global.playback_rate == 100.0) {
memcpy(newp, p, samplesize* samples);
di = samples;
} else while( si < (UINT4)samples ){
memcpy( newp+(di*samplesize), p+(si*samplesize), samplesize );
idx += (double)(global.playback_rate/100.0);
si = (UINT4)idx;
di++;
}
return di*samplesize;
}
#endif
static int guess_endianess(UINT4 *p, Int16_t *p2, unsigned SamplesToDo)
{
/* analyse samples */
int vote_for_little = 0;
int vote_for_big = 0;
int total_votes;
while (((UINT4 *)p2 - p) + (unsigned) 1 < SamplesToDo) {
unsigned char *p3 = (unsigned char *)p2;
#if MY_LITTLE_ENDIAN == 1
int diff_lowl = *(p2+0) - *(p2+2);
int diff_lowr = *(p2+1) - *(p2+3);
int diff_bigl = ((*(p3 ) << 8) + *(p3+1)) - ((*(p3+4) << 8) + *(p3+5));
int diff_bigr = ((*(p3+2) << 8) + *(p3+3)) - ((*(p3+6) << 8) + *(p3+7));
#else
int diff_lowl = ((*(p3+1) << 8) + *(p3 )) - ((*(p3+5) << 8) + *(p3+4));
int diff_lowr = ((*(p3+3) << 8) + *(p3+2)) - ((*(p3+7) << 8) + *(p3+6));
int diff_bigl = *(p2+0) - *(p2+2);
int diff_bigr = *(p2+1) - *(p2+3);
#endif
if ((abs(diff_lowl) + abs(diff_lowr)) <
(abs(diff_bigl) + abs(diff_bigr))) {
vote_for_little++;
} else {
if ((abs(diff_lowl) + abs(diff_lowr)) >
(abs(diff_bigl) + abs(diff_bigr))) {
vote_for_big++;
}
}
p2 += 2;
}
#ifdef DEBUG_VOTE_ENDIANESS
if (global.quiet != 1)
fprintf(stderr, "votes for little: %4d, votes for big: %4d\n",
vote_for_little, vote_for_big);
#endif
total_votes = vote_for_big + vote_for_little;
if (total_votes < 3
|| abs(vote_for_big - vote_for_little) < total_votes/3) {
return -1;
} else {
if (vote_for_big > vote_for_little)
return 1;
else
return 0;
}
}
int jitterShift = 0;
unsigned char *synchronize(UINT4 *p, unsigned SamplesToDo, unsigned TotSamplesDone)
{
static int jitter = 0;
char *pSrc; /* start of cdrom buffer */
/* if endianess is unknown, guess endianess based on
differences between succesive samples. If endianess
is correct, the differences are smaller than with the
opposite byte order.
*/
if ((*in_lendian) < 0) {
Int16_t *p2 = (Int16_t *)p;
/* skip constant samples */
while ((((UINT4 *)p2 - p) + (unsigned) 1 < SamplesToDo)
&& *p2 == *(p2+2)) p2++;
if (((UINT4 *)p2 - p) + (unsigned) 1 < SamplesToDo) {
switch (guess_endianess(p, p2, SamplesToDo)) {
case -1: break;
case 1: (*in_lendian) = 0;
#if 0
if (global.quiet != 1)
fprintf(stderr, "big endian detected\n");
#endif
break;
case 0: (*in_lendian) = 1;
#if 0
if (global.quiet != 1)
fprintf(stderr, "little endian detected\n");
#endif
break;
}
}
}
/* ENDIAN ISSUES:
* the individual endianess of cdrom/cd-writer, cpu,
* sound card and audio output format need a careful treatment.
*
* For possible sample processing (rate conversion) we need
* the samples in cpu byte order. This is the first conversion.
*
* After processing it depends on the endianness of the output
* format, whether a second conversion is needed.
*
*/
if (global.need_hostorder && (*in_lendian) != MY_LITTLE_ENDIAN) {
/* change endianess of delivered samples to native cpu order */
change_endianness(p, SamplesToDo);
}
/* synchronisation code */
if (TotSamplesDone != 0 && global.overlap != 0 && SamplesToDo > CD_FRAMESAMPLES) {
pSrc = (char *) sync_buffers((unsigned char *)p);
if (!pSrc ) {
return NULL;
}
if (pSrc) {
jitter = ((unsigned char *)pSrc - (((unsigned char *)p) + global.overlap*CD_FRAMESIZE_RAW))/4;
jitterShift += jitter;
SamplesToDo -= jitter + global.overlap*CD_FRAMESAMPLES;
#if 0
fprintf(stderr,
"Length: pre %d, diff1 %ld, diff2 %ld, min %ld\n", SamplesToDo,
(TotSamplesWanted - TotSamplesDone),
SamplesNeeded((TotSamplesWanted - TotSamplesDone), undersampling),
min(SamplesToDo, SamplesNeeded((TotSamplesWanted - TotSamplesDone), undersampling)));
#endif
}
} else {
pSrc = ( char * ) p;
}
return (unsigned char *) pSrc;
}
/* convert cdda data to required output format
* sync code for unreliable cdroms included
*
*/
long
SaveBuffer (UINT4 *p, unsigned long SamplesToDo, unsigned long *TotSamplesDone)
{
UINT4 *pSrc; /* start of cdrom buffer */
UINT4 *pSrcStop; /* end of cdrom buffer */
/* in case of different endianness between host and output format,
or channel swaps, or deemphasizing
copy in a seperate buffer and modify the local copy */
if ( ((((!global.need_hostorder && global.need_big_endian == (*in_lendian)) ||
(global.need_hostorder && global.need_big_endian != MY_BIG_ENDIAN)
) || (global.deemphasize != 0)
) && (global.OutSampleSize > 1)
) || global.swapchannels != 0) {
static UINT4 *localoutputbuffer;
if (localoutputbuffer == NULL) {
localoutputbuffer = (UINT4 *) malloc(global.nsectors*CD_FRAMESIZE_RAW);
if (localoutputbuffer == NULL) {
perror("cannot allocate local buffer");
return 1;
}
}
memcpy(localoutputbuffer, p, SamplesToDo*4);
p = localoutputbuffer;
}
pSrc = p;
pDst = (unsigned char *) p;
pStart = ( unsigned char * ) pSrc;
pSrcStop = pSrc + SamplesToDo;
/* code for subsampling and output stage */
if (global.ismono && global.findmono) {
Int16_t *pmm;
for (pmm = (Int16_t *)pStart; (UINT4 *) pmm < pSrcStop; pmm += 2) {
if (*pmm != *(pmm+1)) {
global.ismono = 0;
break;
}
}
}
/* optimize the case of no conversion */
if (1 && undersampling == 1 && samples_to_do == 1 &&
global.channels == 2 && global.OutSampleSize == 2 && Halved == 0) {
/* output format is the original cdda format ->
* just forward the buffer
*/
if ( waitforsignal != 0 && any_signal == 0) {
UINT4 *myptr = (UINT4 *)pStart;
while (myptr < pSrcStop && *myptr == 0) myptr++;
pStart = (unsigned char *) myptr;
/* scan for first signal */
if ( (UINT4 *)pStart != pSrcStop ) {
/* first non null amplitude is found in buffer */
any_signal = 1;
global.SkippedSamples += ((UINT4 *)pStart - p);
} else {
global.SkippedSamples += (pSrcStop - p);
}
}
pDst = (unsigned char *) pSrcStop; /* set pDst to end */
if (global.deemphasize && (Get_Preemphasis(get_current_track()-1)) ) {
/* this implements an attenuation treble shelving filter
to undo the effect of pre-emphasis. The filter is of
a recursive first order */
static Int16_t lastin[2] = { 0, 0 };
static double lastout[2] = { 0.0, 0.0 };
Int16_t *pmm;
/* Here is the gnuplot file for the frequency response
of the deemphasis. The error is below +-0.1dB
# first define the ideal filter. We use the tenfold sampling frequency.
T=1./441000.
OmegaU=1./15E-6
OmegaL=15./50.*OmegaU
V0=OmegaL/OmegaU
H0=V0-1.
B=V0*tan(OmegaU*T/2.)
# the coefficients follow
a1=(B - 1.)/(B + 1.)
b0=(1.0 + (1.0 - a1) * H0/2.)
b1=(a1 + (a1 - 1.0) * H0/2.)
# helper variables
D=b1/b0
o=2*pi*T
H2(f)=b0*sqrt((1+2*cos(f*o)*D+D*D)/(1+2*cos(f*o)*a1+a1*a1))
# now approximate the ideal curve with a fitted one for sampling frequency
# of 44100 Hz.
T2=1./44100.
V02=0.3365
OmegaU2=1./19E-6
B2=V02*tan(OmegaU2*T2/2.)
# the coefficients follow
a12=(B2 - 1.)/(B2 + 1.)
b02=(1.0 + (1.0 - a12) * (V02-1.)/2.)
b12=(a12 + (a12 - 1.0) * (V02-1.)/2.)
# helper variables
D2=b12/b02
o2=2*pi*T2
H(f)=b02*sqrt((1+2*cos(f*o2)*D2+D2*D2)/(1+2*cos(f*o2)*a12+a12*a12))
# plot best, real, ideal, level with halved attenuation,
# level at full attentuation, 10fold magnified error
set logscale x
set grid xtics ytics mxtics mytics
plot [f=1000:20000] [-12:2] 20*log10(H(f)),20*log10(H2(f)), 20*log10(OmegaL/(2*pi*f)), 0.5*20*log10(V0), 20*log10(V0), 200*log10(H(f)/H2(f))
pause -1 "Hit return to continue"
*/
#ifdef TEST
#define V0 0.3365
#define OMEGAG (1./19e-6)
#define T (1./44100.)
#define H0 (V0-1.)
#define B (V0*tan((OMEGAG * T)/2.0))
#define a1 ((B - 1.)/(B + 1.))
#define b0 (1.0 + (1.0 - a1) * H0/2.0)
#define b1 (a1 + (a1 - 1.0) * H0/2.0)
#undef V0
#undef OMEGAG
#undef T
#undef H0
#undef B
#else
#define a1 -0.62786881719628784282
#define b0 0.45995451989513153057
#define b1 -0.08782333709141937339
#endif
for (pmm = (Int16_t *)pStart; pmm < (Int16_t *)pDst;) {
lastout[0] = *pmm * b0 + lastin[0] * b1 - lastout[0] * a1;
lastin[0] = *pmm;
*pmm++ = lastout[0] > 0.0 ? lastout[0] + 0.5 : lastout[0] - 0.5;
lastout[1] = *pmm * b0 + lastin[1] * b1 - lastout[1] * a1;
lastin[1] = *pmm;
*pmm++ = lastout[1] > 0.0 ? lastout[1] + 0.5 : lastout[1] - 0.5;
}
#undef a1
#undef b0
#undef b1
}
if (global.swapchannels == 1) {
swap_channels((UINT4 *)pStart, SamplesToDo);
}
if (global.findminmax) {
Int16_t *pmm;
for (pmm = (Int16_t *)pStart; pmm < (Int16_t *)pDst; pmm++) {
if (*pmm < global.minamp[1]) global.minamp[1] = *pmm;
if (*pmm > global.maxamp[1]) global.maxamp[1] = *pmm;
pmm++;
if (*pmm < global.minamp[0]) global.minamp[0] = *pmm;
if (*pmm > global.maxamp[0]) global.maxamp[0] = *pmm;
}
}
} else {
#define none_missing 0
#define one_missing 1
#define two_missing 2
#define collecting 3
static int sample_state = collecting;
static int Toggle_on = 0;
if (global.channels == 2 && global.swapchannels == 1) {
swap_channels((UINT4 *)pStart, SamplesToDo);
}
/* conversion required */
while ( pSrc < pSrcStop ) {
long l,r;
long iSamples_left = (pSrcStop - pSrc) / sizeof(Int16_t) / 2;
Int16_t *myptr = (Int16_t *) pSrc;
/* LSB l, MSB l */
l = *myptr++; /* left channel */
r = *myptr++; /* right channel */
pSrc = (UINT4 *) myptr;
switch (sample_state) {
case two_missing:
two__missing:
ls2 += l; rs2 += r;
if (undersampling > 1) {
ls3 += l; rs3 += r;
}
sample_state = one_missing;
break;
case one_missing:
auxl = l; auxr = r;
ls3 += l; rs3 += r;
sample_state = none_missing;
/* FALLTHROUGH */
none__missing:
case none_missing:
/* Filtered samples are complete. Now interpolate and scale. */
if (Halved != 0 && Toggle_on == 0) {
lsum = interpolate(lsum, ls2, ls3)/(int) undersampling;
rsum = interpolate(rsum, rs2, rs3)/(int) undersampling;
} else {
lsum /= (int) undersampling;
rsum /= (int) undersampling;
}
emit_sample(lsum, rsum, global.channels);
/* reload counter */
samples_to_do = undersampling - 1;
lsum = auxl;
rsum = auxr;
/* reset sample register */
auxl = ls2 = ls3 = 0;
auxr = rs2 = rs3 = 0;
Toggle_on ^= 1;
sample_state = collecting;
break;
case collecting:
if ( samples_to_do > 0) {
samples_to_do--;
if (Halved != 0 && Toggle_on == 0) {
/* Divider x.5 : we need data for quadratic interpolation */
iSamples_left--;
lsum += l; rsum += r;
if ( samples_to_do < undersampling - 1) {
ls2 += l; rs2 += r;
}
if ( samples_to_do < undersampling - 2) {
ls3 += l; rs3 += r;
}
} else {
/* integral divider */
lsum += l;
rsum += r;
iSamples_left--;
}
} else {
if (Halved != 0 && Toggle_on == 0) {
sample_state = two_missing;
goto two__missing;
} else {
auxl = l;
auxr = r;
sample_state = none_missing;
goto none__missing;
}
}
break;
} /* switch state */
} /* while */
/* flush_buffer */
if ((samples_to_do == 0 && Halved == 0))
{
if (Halved != 0 && Toggle_on == 0) {
lsum = interpolate(lsum, ls2, ls3)/(int) undersampling;
rsum = interpolate(rsum, rs2, rs3)/(int) undersampling;
} else {
lsum /= (int) undersampling;
rsum /= (int) undersampling;
}
emit_sample(lsum, rsum, global.channels);
/* reload counter */
samples_to_do = undersampling;
/* reset sample register */
lsum = auxl = ls2 = ls3 = 0;
rsum = auxr = rs2 = rs3 = 0;
Toggle_on ^= 1;
sample_state = collecting;
}
} /* if optimize else */
if ( waitforsignal == 0 ) pStart = (unsigned char *)p;
if ( waitforsignal == 0 || any_signal != 0) {
int retval = 0;
unsigned outlen;
unsigned todo;
assert(pDst >= pStart);
outlen = (size_t) (pDst - pStart);
if (outlen <= 0) return 0;
#ifdef ECHO_TO_SOUNDCARD
/* this assumes the soundcard needs samples in native cpu byte order */
if (global.echo != 0) {
static unsigned char *newp;
unsigned newlen;
newlen = (100*(outlen/4))/global.playback_rate;
newlen = (newlen*4);
if ( (newp != NULL) || (newp = (unsigned char *) malloc( 2*global.nsectors*CD_FRAMESIZE_RAW+32 )) ) {
newlen = ReSampleBuffer( pStart, newp, outlen/4, global.OutSampleSize*global.channels );
write_snd_device((char *)newp, newlen);
}
}
#endif
if ( global.no_file != 0 ) {
*TotSamplesDone += SamplesToDo;
return 0;
}
if ( (!global.need_hostorder && global.need_big_endian == (*in_lendian)) ||
(global.need_hostorder && global.need_big_endian != MY_BIG_ENDIAN)) {
if ( global.OutSampleSize > 1) {
/* change endianness from input sample or native cpu order
to required output endianness */
change_endianness((UINT4 *)pStart, outlen/4);
}
}
{
unsigned char * p2 = pStart;
todo = outlen;
while (todo != 0) {
int retval_;
retval_ = global.audio_out->WriteSound ( global.audio, p2, todo );
if (retval_ < 0) break;
p2 += retval_;
todo -= retval_;
}
}
if (todo == 0) {
*TotSamplesDone += SamplesToDo;
return 0;
} else {
fprintf(stderr, "write(audio, 0x%p, %u) = %d\n",pStart,outlen,retval);
perror("Probably disk space exhausted");
return 1;
}
} else {
*TotSamplesDone += SamplesToDo;
return 0;
}
}
|