1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
|
/* Copyright (c) 2013-2019, David Anderson
All rights reserved.
Redistribution and use in source and binary forms, with
or without modification, are permitted provided that the
following conditions are met:
Redistributions of source code must retain the above
copyright notice, this list of conditions and the following
disclaimer.
Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* The interfaces follow tsearch (See the Single
Unix Specification) but the implementation is
written without reference to the source of any
version of tsearch or any hashing code.
An additional interface is added (compared to
a real tsearch) to let the caller identify a
'hash' function with each hash table (called
a tree below, but that is a misnomer).
So read 'tree' below as hash table.
See http://www.prevanders.net/tsearch.html
for information and an example of use.
Based on Knuth, chapter 6.4
This uses a hash based on the key.
Collision resolution is by chaining.
twalk() and tdestroy() walk in a random order.
The 'preorder' etc labels mean nothing in a hash, so everything
is called a leaf.
*/
#include "config.h"
#ifdef HAVE_UNUSED_ATTRIBUTE
#define UNUSEDARG __attribute__ ((unused))
#else
#define UNUSEDARG
#endif
#ifdef HAVE_STDLIB_H
#include "stdlib.h" /* for malloc, free() etc */
#endif /* HAVE_STDLIB_H */
#ifdef HAVE_MALLOC_H
/* Useful include for some Windows compilers. */
#include <malloc.h>
#endif /* HAVE_MALLOC_H */
#include <stdio.h> /* for printf() */
#ifdef HAVE_STDINT_H
#include <stdint.h> /* for uintptr_t */
#endif /* HAVE_STDINT_H */
/* This must match the types and print options
found in libdwarf.h. */
#define Dwarf_Unsigned unsigned long long
#if defined(_WIN32) && defined(HAVE_NONSTANDARD_PRINTF_64_FORMAT)
#define DW_PR_DUx "I64x"
#define DW_PR_DUu "I64u"
#else
#define DW_PR_DUx "llx"
#define DW_PR_DUu "llu"
#endif /* DW_PR defines */
#include "dwarf_tsearch.h"
/* A table of primes used to size and resize the hash table.
From public sources of prime numbers, arbitrarily chosen
to approximately double in size at each step.
*/
static unsigned long primes[] =
{
#if 0 /* for testing only */
5,11, 17,23, 31, 47, 53,
#endif
79,
1009,
5591,
10007,
21839,
41413,
99907,
199967,
400009,
800029,
1600141,
3000089,
6000121,
12000257,
24000143,
48000203,
100000127,
200001611,
400000669,
800000573,
0 /* Here we are giving up */
};
static unsigned long allowed_fill_percent = 90;
struct hs_base {
unsigned long tablesize_;
unsigned long tablesize_entry_index_;
unsigned long allowed_fill_;
/* Record_count means number of active records,
counting all records on chains.
When the record_count is > 90% of a full
tablesize_ we redo the table before adding
a new entry. */
unsigned long record_count_;
/* hashtab_ is an array of hs_entry,
indexes 0 through tablesize_ -1. */
struct ts_entry * hashtab_;
DW_TSHASHTYPE (*hashfunc_)(const void *key);
};
struct ts_entry {
const void * keyptr;
/* So that a keyptr of 0 (if added) is
not confused with an empty hash slot,
we must mark used slots as used in the hash tab */
unsigned char entryused;
struct ts_entry *next;
};
enum search_intent_t
{
want_insert,
only_find,
want_delete
};
static struct ts_entry *
tsearch_inner( const void *key, struct hs_base* head,
int (*compar)(const void *, const void *),
const enum search_intent_t intent, int*inserted,
struct ts_entry **parent_ptr);
static void
dwarf_tdestroy_inner(struct hs_base*h,
void (*free_node)(void *nodep),
int depth);
/* A trivial integer-based percentage calculation.
Percents >100 are reasonable for a hash-with-chains
situation (even if they might not be the best choice
for performance). */
static unsigned long
calculate_allowed_fill(unsigned long fill_percent, unsigned long ct)
{
unsigned long v = 0;
if(ct < 100000) {
unsigned long v2 = (ct *fill_percent)/100;
return v2;
}
v = (ct /100)*fill_percent;
return v;
}
/* Initialize the hash and pass in the hash function.
If the entry count needed is unknown, pass in 0 as a count estimate,
but if the number of hash entries needed can be estimated,
pass in the estimate (which need not be prime, we actually use
the nearest higher prime from the above table).
If the estimated count is
Return the tree base, or return NULL if insufficient memory. */
void *
dwarf_initialize_search_hash( void **treeptr,
DW_TSHASHTYPE(*hashfunc)(const void *key),
unsigned long size_estimate)
{
unsigned long prime_to_use = primes[0];
unsigned entry_index = 0;
unsigned k = 0;
struct hs_base *base = 0;
base = *(struct hs_base **)treeptr;
if(base) {
/* initalized already. */
return base ;
}
base = calloc(sizeof(struct hs_base),1);
if(!base) {
/* Out of memory. */
return NULL ;
}
prime_to_use = primes[0];
while(size_estimate && (size_estimate > prime_to_use)) {
k = k +1;
prime_to_use = primes[k];
if(prime_to_use == 0) {
/* Oops. Too large. */
free(base);
return NULL;
}
entry_index = k;
}
base->tablesize_ = prime_to_use;
base->allowed_fill_ = calculate_allowed_fill(allowed_fill_percent,
prime_to_use);
if( base->allowed_fill_< (base->tablesize_/2)) {
free(base);
/* Oops. We are in trouble. Coding mistake here. */
return NULL;
}
base->record_count_ = 0;
base->tablesize_entry_index_ = entry_index;
/* hashtab_ is an array of hs_entry,
indexes 0 through tablesize_ -1. */
base->hashfunc_ = hashfunc;
base->hashtab_ = calloc(sizeof(struct ts_entry),base->tablesize_);
if(!base->hashtab_) {
free(base);
return NULL;
}
*treeptr = base;
return base;
}
/* We don't really care whether hashpos or chainpos
are 32 or 64 bits. 32 suffices. */
static void print_entry(struct ts_entry *t,const char *descr,
char *(* keyprint)(const void *),
unsigned long hashpos,
unsigned long chainpos)
{
char *v = 0;
if(!t->entryused) {
return;
}
v = keyprint(t->keyptr);
printf(
"[%4lu.%02lu] 0x%08" DW_PR_DUx
" <keyptr 0x%08" DW_PR_DUx
"> <key %s> %s\n",
hashpos,chainpos,
(Dwarf_Unsigned)(uintptr_t)t,
(Dwarf_Unsigned)(uintptr_t)t->keyptr,
v,
descr);
}
/* For debugging */
static void
dumptree_inner(const struct hs_base *h,
char *(* keyprint)(const void *),
const char *descr, int printdetails)
{
unsigned long ix = 0;
unsigned long tsize = h->tablesize_;
struct ts_entry *p = &h->hashtab_[0];
unsigned long hashused = 0;
unsigned long maxchainlength = 0;
unsigned long chainsgt1 = 0;
printf("dumptree head ptr : 0x%08" DW_PR_DUx
" size %" DW_PR_DUu
" entries %" DW_PR_DUu
" allowed %" DW_PR_DUu " %s\n",
(Dwarf_Unsigned)(uintptr_t)h,
(Dwarf_Unsigned)h->tablesize_,
(Dwarf_Unsigned)h->record_count_,
(Dwarf_Unsigned)h->allowed_fill_,
descr);
for( ; ix < tsize; ix++,p++) {
unsigned long chainlength = 0;
struct ts_entry*n = 0;
int chainpos = 0;
if(p->entryused) {
++hashused;
chainlength = 1;
if(printdetails) {
print_entry(p,"head",keyprint,ix,chainpos);
}
}
chainpos++;
for(n = p->next; n ; n = n->next) {
chainlength++;
if(printdetails) {
print_entry(n,"chain",keyprint,ix,chainpos);
}
}
if(chainlength > maxchainlength) {
maxchainlength = chainlength;
}
if (chainlength > 1) {
chainsgt1++;
}
}
printf("Hashtable: %lu of %lu hash entries used.\n",hashused,tsize);
printf("Hashtable: %lu chains length longer than 1. \n",chainsgt1);
printf("Hashtable: %lu is maximum chain length.\n",maxchainlength);
}
/* Dumping the tree.
*/
void
dwarf_tdump(const void*headp_in,
char *(* keyprint)(const void *),
const char *msg)
{
const struct hs_base *head = (const struct hs_base *)headp_in;
if(!head) {
printf("dumptree null tree ptr : %s\n",msg);
return;
}
dumptree_inner(head,keyprint,msg,1);
}
static struct ts_entry *
allocate_ts_entry(const void *key)
{
struct ts_entry *e = 0;
e = (struct ts_entry *) malloc(sizeof(struct ts_entry));
if(!e) {
return NULL;
}
e->keyptr = key;
e->entryused = 1;
e->next = 0;
return e;
}
static void
resize_table(struct hs_base *head,
int (*compar)(const void *, const void *))
{
struct hs_base newhead;
unsigned new_entry_index = 0;
unsigned long prime_to_use = 0;
/* Copy the values we have. */
newhead = *head;
/* But drop the hashtab_ from new. calloc below. */
newhead.hashtab_ = 0;
newhead.record_count_ = 0;
new_entry_index = head->tablesize_entry_index_ +1;
prime_to_use = primes[new_entry_index];
if(prime_to_use == 0) {
/* Oops, too large. Leave table size as is, though
it will get slow as it overfills. */
return;
}
newhead.tablesize_ = prime_to_use;
newhead.allowed_fill_ = calculate_allowed_fill(allowed_fill_percent,
prime_to_use);
if( newhead.allowed_fill_< (newhead.tablesize_/2)) {
/* Oops. We are in trouble. */
return;
}
newhead.tablesize_entry_index_ = new_entry_index;
newhead.hashtab_ = calloc(sizeof(struct ts_entry),newhead.tablesize_);
if(!newhead.hashtab_) {
/* Oops, too large. Leave table size as is, though
things will get slow as it overfills. */
free(newhead.hashtab_);
return;
}
{
/* Insert all the records from the old table into
the new table. */
int fillnewfail = 0;
unsigned long ix = 0;
unsigned long tsize = head->tablesize_;
struct ts_entry *p = &head->hashtab_[0];
for( ; ix < tsize; ix++,p++) {
int inserted = 0;
struct ts_entry*n = 0;
if(fillnewfail) {
break;
}
if(p->keyptr) {
tsearch_inner(p->keyptr,
&newhead,compar,
want_insert,
&inserted,
0);
if(!inserted) {
fillnewfail = 1;
break;
}
}
for(n = p->next; n ; n = n->next) {
inserted = 0;
tsearch_inner(n->keyptr,
&newhead,compar,
want_insert,
&inserted,
0);
if(!inserted) {
fillnewfail = 1;
break;
}
}
}
if(fillnewfail) {
free(newhead.hashtab_);
return;
}
}
/* Now get rid of the chain entries of the old table. */
dwarf_tdestroy_inner(head,0,0);
/* Now get rid of the old table itself. */
free(head->hashtab_);
head->hashtab_ = 0;
*head = newhead;
return;
}
/* Inner search of the hash and synonym chains.
*/
static struct ts_entry *
tsearch_inner( const void *key, struct hs_base* head,
int (*compar)(const void *, const void *),
const enum search_intent_t intent, int*inserted,
/* owner_ptr used for delete. Only set
if the to-be-deleted item is on a chain,
not in the hashtab. Points to the item
pointing to the to-be-deleted-item.*/
struct ts_entry **owner_ptr)
{
struct ts_entry *s =0;
struct ts_entry *c =0;
struct ts_entry *q =0;
int kc = 0;
DW_TSHASHTYPE keyhash = 0;
DW_TSHASHTYPE hindx = 0;
struct ts_entry *chain_parent = 0;
if(! head->hashfunc_) {
/* Not fully initialized. */
return NULL;
}
keyhash = head->hashfunc_(key);
if (intent == want_insert) {
if( head->record_count_ > head->allowed_fill_) {
resize_table(head,compar);
}
}
hindx = keyhash%head->tablesize_;
s = &head->hashtab_[hindx];
if(!s->entryused) {
/* Not found. */
if(intent != want_insert) {
return NULL;
}
/* Insert in the base hash table in an
empty slot. */
*inserted = 1;
head->record_count_++;
s->keyptr = (const void *)key;
s->entryused = 1;
s->next = 0;
return s;
}
kc = compar(key,s->keyptr);
if(kc == 0 ) {
/* found! */
if(want_delete) {
*owner_ptr = 0;
}
return (void *)&(s->keyptr);
}
chain_parent = s;
for(c = s->next; c; c = c->next) {
kc = compar(key,c->keyptr);
if(kc == 0 ) {
/* found! */
if(want_delete) {
*owner_ptr = chain_parent;
}
return (void *)&(c->keyptr);
}
chain_parent = c;
}
if(intent != want_insert) {
return NULL;
}
/* Insert following head record of the chain. */
q = allocate_ts_entry(key);
if (!q) {
return q;
}
q->next = s->next;
s->next = q;
head->record_count_++;
*inserted = 1;
return q;
}
/* Search and, if missing, insert. */
void *
dwarf_tsearch(const void *key, void **headin,
int (*compar)(const void *, const void *))
{
struct hs_base **rootp = (struct hs_base **)headin;
struct hs_base *head = *rootp;
struct ts_entry *r = 0;
int inserted = 0;
/* nullme won't be set. */
struct ts_entry *nullme = 0;
if (!head) {
/* something is wrong here, not initialized. */
return NULL;
}
r = tsearch_inner(key,head,compar,want_insert,&inserted,&nullme);
if (!r) {
return NULL;
}
return (void *)&(r->keyptr);
}
/* Search. */
void *
dwarf_tfind(const void *key, void *const *rootp,
int (*compar)(const void *, const void *))
{
/* Nothing will change, but we discard const
so we can use tsearch_inner(). */
struct hs_base **proot = (struct hs_base **)rootp;
struct hs_base *head = *proot;
struct ts_entry *r = 0;
/* inserted flag won't be set. */
int inserted = 0;
/* nullme won't be set. */
struct ts_entry * nullme = 0;
/* Get to actual tree. */
if (!head) {
return NULL;
}
r = tsearch_inner(key,head,compar,only_find,&inserted,&nullme);
if(!r) {
return NULL;
}
return (void *)(&(r->keyptr));
}
/* Unlike the simple binary tree case,
a fully-empty hash situation does not null the *rootp
*/
void *
dwarf_tdelete(const void *key, void **rootp,
int (*compar)(const void *, const void *))
{
struct hs_base **proot = (struct hs_base **)rootp;
struct hs_base *head = *proot;
struct ts_entry *found = 0;
/* inserted flag won't be set. */
int inserted = 0;
struct ts_entry * parentp = 0;
if (!head) {
return NULL;
}
found = tsearch_inner(key,head,compar,want_delete,&inserted,
&parentp);
if(found) {
if(parentp) {
/* Delete a chain entry. */
head->record_count_--;
parentp->next = found->next;
/* We free our storage. It would be up
to caller to do a tfind to find
a record and delete content if necessary. */
free(found);
return (void *)&(parentp->keyptr);
}
/* So found is the head of a chain. */
if(found->next) {
/* Delete a chain entry, pull up to hash tab, freeing
up the chain entry. */
struct ts_entry *pullup = found->next;
*found = *pullup;
free(pullup);
head->record_count_--;
return (void *)&(found->keyptr);
} else {
/* Delete a main hash table entry.
Problem: what the heck to return as a keyptr pointer?
Well, we return NULL. As in the standard
tsearch, returning NULL does not mean
failure! Here it just means 'empty chain somewhere'.
*/
head->record_count_--;
found->next = 0;
found->keyptr = 0;
found->entryused = 0;
return NULL;
}
}
return NULL;
}
static void
dwarf_twalk_inner(const struct hs_base *h,
struct ts_entry *p,
void (*action)(const void *nodep, const DW_VISIT which,
UNUSEDARG const int depth),
UNUSEDARG unsigned level)
{
unsigned long ix = 0;
unsigned long tsize = h->tablesize_;
for( ; ix < tsize; ix++,p++) {
struct ts_entry*n = 0;
if(p->keyptr) {
action((void *)(&(p->keyptr)),dwarf_leaf,level);
}
for(n = p->next; n ; n = n->next) {
action((void *)(&(n->keyptr)),dwarf_leaf,level);
}
}
}
void
dwarf_twalk(const void *rootp,
void (*action)(const void *nodep, const DW_VISIT which,
UNUSEDARG const int depth))
{
const struct hs_base *head = (const struct hs_base *)rootp;
struct ts_entry *root = 0;
if(!head) {
return;
}
root = head->hashtab_;
/* Get to actual tree. */
dwarf_twalk_inner(head,root,action,0);
}
static void
dwarf_tdestroy_inner(struct hs_base*h,
void (*free_node)(void *nodep),
UNUSEDARG int depth)
{
unsigned long ix = 0;
unsigned long tsize = h->tablesize_;
struct ts_entry *p = &h->hashtab_[0];
for( ; ix < tsize; ix++,p++) {
struct ts_entry*n = 0;
struct ts_entry*prev = 0;
if(p->keyptr && p->entryused) {
if(free_node) {
free_node((void *)(p->keyptr));
}
--h->record_count_;
}
/* Now walk and free up the chain entries. */
for(n = p->next; n ; ) {
if(free_node) {
free_node((void *)(n->keyptr));
}
--h->record_count_;
prev = n;
n = n->next;
free(prev);
}
}
}
/* Walk the tree, freeing all space in the tree
and calling the user's callback function on each node.
It is up to the caller to zero out anything pointing to
head (ie, that has the value rootp holds) after this
returns.
*/
void
dwarf_tdestroy(void *rootp, void (*free_node)(void *nodep))
{
struct hs_base *head = (struct hs_base *)rootp;
struct ts_entry *root = 0;
if(!head) {
return;
}
root = head->hashtab_;
dwarf_tdestroy_inner(head,free_node,0);
free(root);
free(head);
}
|