1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
/*
Copyright (C) 2000,2004 Silicon Graphics, Inc. All Rights Reserved.
Portions Copyright 2011-2020 David Anderson. All Rights Reserved.
This program is free software; you can redistribute it
and/or modify it under the terms of version 2.1 of the
GNU Lesser General Public License as published by the Free
Software Foundation.
This program is distributed in the hope that it would be
useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.
Further, this software is distributed without any warranty
that it is free of the rightful claim of any third person
regarding infringement or the like. Any license provided
herein, whether implied or otherwise, applies only to this
software file. Patent licenses, if any, provided herein
do not apply to combinations of this program with other
software, or any other product whatsoever.
You should have received a copy of the GNU Lesser General
Public License along with this program; if not, write the
Free Software Foundation, Inc., 51 Franklin Street - Fifth
Floor, Boston MA 02110-1301, USA.
*/
#include "config.h"
#include <stdio.h>
#include "dwarf_incl.h"
#include "dwarf_error.h"
#include "dwarf_util.h"
/* Note that with 'make check')
many of the test items
only make sense if Dwarf_Unsigned (and Dwarf_Signed)
are 64 bits. The encode/decode logic should
be fine whether those types are 64 or 32 bits.
See runtests.sh */
/* 10 bytes of leb, 7 bits each part of the number, gives
room for a 64bit number.
While any number of leading zeroes would be legal, so
no max is really truly required here, why would a
compiler generate leading zeros (for unsigned leb)?
That would seem strange except in rare circumstances
a compiler may want, for overall alignment, to
add extra bytes..
So we allow more than 10 as it is legal for a compiler to
generate an leb with correct but useless trailing
zero bytes (note the interaction with sign in the signed case).
The value of BYTESLEBMAX is arbitrary but allows catching
corrupt data before dark.
Before April 2021 BYTESLEBMAX was 10.
*/
#define BYTESLEBMAX 24
#define BITSPERBYTE 8
#define TRUE 1
#define FALSE 0
/* Decode ULEB with checking */
int
_dwarf_decode_u_leb128_chk(Dwarf_Small * leb128,
Dwarf_Unsigned * leb128_length,
Dwarf_Unsigned *outval,
Dwarf_Byte_Ptr endptr)
{
unsigned byte = 0;
Dwarf_Unsigned word_number = 0;
Dwarf_Unsigned number = 0;
size_t shift = 0;
/* The byte_length value will be a small non-negative integer. */
unsigned byte_length = 0;
if (leb128 >=endptr) {
return DW_DLV_ERROR;
}
/* The following unrolls-the-loop for the first two bytes and
unpacks into 32 bits to make this as fast as possible.
word_number is assumed big enough that the shift has a defined
result. */
byte = *leb128;
if ((byte & 0x80) == 0) {
if (leb128_length) {
*leb128_length = 1;
}
*outval = byte;
return DW_DLV_OK;
} else {
unsigned byte2 = 0;
if ((leb128+1) >=endptr) {
return DW_DLV_ERROR;
}
byte2 = *(leb128 + 1);
if ((byte2 & 0x80) == 0) {
if (leb128_length) {
*leb128_length = 2;
}
word_number = byte & 0x7f;
word_number |= (byte2 & 0x7f) << 7;
*outval = word_number;
return DW_DLV_OK;
}
/* Gets messy to hand-inline more byte checking. */
}
/* The rest handles long numbers. Because the 'number'
may be larger than the default int/unsigned,
we must cast the 'byte' before
the shift for the shift to have a defined result. */
number = 0;
shift = 0;
byte_length = 1;
for (;;) {
unsigned b = byte & 0x7f;
if (shift >= (sizeof(number)*BITSPERBYTE)) {
/* Shift is large. Maybe corrupt value,
maybe some padding high-end byte zeroes
that we can ignore. */
if (!b) {
++byte_length;
if (byte_length > BYTESLEBMAX) {
/* Erroneous input. */
if (leb128_length) {
*leb128_length = BYTESLEBMAX;
}
return DW_DLV_ERROR;
}
++leb128;
/* shift cannot overflow as
BYTESLEBMAX is not a large value */
shift += 7;
if (leb128 >=endptr) {
return DW_DLV_ERROR;
}
byte = *leb128;
continue;
}
/* Too big, corrupt data given the non-zero
byte content */
return DW_DLV_ERROR;
}
number |= ((Dwarf_Unsigned)b << shift);
if ((byte & 0x80) == 0) {
if (leb128_length) {
*leb128_length = byte_length;
}
*outval = number;
return DW_DLV_OK;
}
shift += 7;
byte_length++;
if (byte_length > BYTESLEBMAX) {
/* Erroneous input. */
if (leb128_length) {
*leb128_length = BYTESLEBMAX;
}
break;
}
++leb128;
if (leb128 >=endptr) {
return DW_DLV_ERROR;
}
byte = *leb128;
}
return DW_DLV_ERROR;
}
/* Public Interface: Decode an unsigned LEB128 value. */
int
dwarf_decode_leb128(char* leb, Dwarf_Unsigned* leblen,
Dwarf_Unsigned* outval, char* endptr)
{
return _dwarf_decode_u_leb128_chk((Dwarf_Small*)leb,
leblen, outval,
(Dwarf_Small*)endptr);
}
int
_dwarf_decode_s_leb128_chk(Dwarf_Small * leb128,
Dwarf_Unsigned * leb128_length,
Dwarf_Signed *outval,Dwarf_Byte_Ptr endptr)
{
Dwarf_Unsigned byte = 0;
unsigned int b = 0;
Dwarf_Signed number = 0;
size_t shift = 0;
int sign = FALSE;
/* The byte_length value will be a small non-negative integer. */
unsigned byte_length = 1;
/* byte_length being the number of bytes
of data absorbed so far in
turning the leb into a Dwarf_Signed. */
if (!outval) {
return DW_DLV_ERROR;
}
if (leb128 >= endptr) {
return DW_DLV_ERROR;
}
byte = *leb128;
for (;;) {
b = byte & 0x7f;
if (shift >= (sizeof(number)*BITSPERBYTE)) {
/* Shift is large. Maybe corrupt value,
maybe some padding high-end byte zeroes
that we can ignore (but notice sign bit
from the last usable byte). */
sign = b & 0x40;
if (!byte || byte == 0x40) {
/* The value is complete. */
break;
}
if (b == 0) {
++byte_length;
if (byte_length > BYTESLEBMAX) {
/* Erroneous input. */
if (leb128_length) {
*leb128_length = BYTESLEBMAX;
}
return DW_DLV_ERROR;
}
++leb128;
/* shift cannot overflow as
BYTESLEBMAX is not a large value */
shift += 7;
if (leb128 >=endptr) {
return DW_DLV_ERROR;
}
byte = *leb128;
continue;
}
/* Too big, corrupt data given the non-zero
byte content */
return DW_DLV_ERROR;
}
/* This bit of the last (most-significant
useful) byte indicates sign */
sign = b & 0x40;
number |= ((Dwarf_Unsigned)b) << shift;
shift += 7;
if ((byte & 0x80) == 0) {
break;
}
++leb128;
if (leb128 >= endptr) {
return DW_DLV_ERROR;
}
byte = *leb128;
byte_length++;
if (byte_length > BYTESLEBMAX) {
/* Erroneous input. */
if (leb128_length) {
*leb128_length = BYTESLEBMAX;
}
return DW_DLV_ERROR;
}
}
if (sign) {
/* The following avoids undefined behavior. */
unsigned shiftlim = sizeof(Dwarf_Signed) * BITSPERBYTE -1;
if (shift < shiftlim) {
Dwarf_Signed y = (Dwarf_Signed)
(((Dwarf_Unsigned)1) << shift);
Dwarf_Signed x = -y;
number |= x;
} else if (shift == shiftlim) {
Dwarf_Signed x= (((Dwarf_Unsigned)1) << shift);
number |= x;
} else {
/* trailing zeroes case */
Dwarf_Signed x= (((Dwarf_Unsigned)1) << shiftlim);
number |= x;
}
}
if (leb128_length) {
*leb128_length = byte_length;
}
*outval = number;
return DW_DLV_OK;
}
/* Public Interface: Decode a signed LEB128 value. */
int
dwarf_decode_signed_leb128(char* leb, Dwarf_Unsigned* leblen,
Dwarf_Signed* outval, char* endptr)
{
return _dwarf_decode_s_leb128_chk((Dwarf_Small *)leb,
leblen, outval,
(Dwarf_Small*)endptr);
}
|