File: Compresser.C

package info (click to toggle)
dxpc 3.9.2-1
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 1,140 kB
  • ctags: 1,253
  • sloc: cpp: 12,036; sh: 2,823; makefile: 78
file content (175 lines) | stat: -rw-r--r-- 4,653 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#include "dxpcconf.h"

#include <string.h>
#include "X-headers.H"
#include "ClientChannel.H"
#include "EncodeBuffer.H"
#include "DecodeBuffer.H"
#include "util.H"
#include <assert.h>
#include <limits.h>

#include "Compresser.H"

typedef struct cEntry
{
    int cLevel;
    lzo_compress_t cFnc;
    lzo_uint cWorkMem;
    lzo_decompress_t dFnc;
} cEntry;

// The table including all supported LZO algorithms.
// lzo1x is the recommeded algortihm, but only comes
// with two compression levels: 1 & 999. lzo1c is used to fill
// in the gaps. 
static cEntry _knownAlgorithms[] = {
    {1, lzo1x_1_compress, LZO1X_MEM_COMPRESS, lzo1x_decompress},
    {2, lzo1c_2_compress, LZO1C_MEM_COMPRESS, lzo1c_decompress},
    {3, lzo1c_3_compress, LZO1C_MEM_COMPRESS, lzo1c_decompress},
    {4, lzo1c_4_compress, LZO1C_MEM_COMPRESS, lzo1c_decompress},
    {5, lzo1c_5_compress, LZO1C_MEM_COMPRESS, lzo1c_decompress},
    {6, lzo1c_6_compress, LZO1C_MEM_COMPRESS, lzo1c_decompress},
    {7, lzo1c_7_compress, LZO1C_MEM_COMPRESS, lzo1c_decompress},
    {8, lzo1c_8_compress, LZO1C_MEM_COMPRESS, lzo1c_decompress},
    {9, lzo1c_9_compress, LZO1C_MEM_COMPRESS, lzo1c_decompress},
    {99, lzo1c_99_compress, LZO1C_99_MEM_COMPRESS, lzo1c_decompress},
    {999, lzo1x_999_compress, LZO1X_999_MEM_COMPRESS, lzo1x_decompress},
    {0, 0, 0}
};

Compresser::Compresser(int compressionLevel) : 
    lzoCompressionWorkspace(0),
    lzoCompressionBuffer(0), 
    lzoCompressionBufferSize(0),
    compressionFnc(0)
{
    cEntry *alg = getCEntry(compressionLevel);

    if (alg)
    {
        lzoCompressionWorkspace = new lzo_byte[alg->cWorkMem];
        if (lzoCompressionWorkspace)
        {
            // memset here supresses valgrind warning in the bowels
            // of lzo.
            memset(lzoCompressionWorkspace, 0, alg->cWorkMem);
            compressionFnc = alg->cFnc;
        }
        else
        {
            *logofs << "Insufficient memory for image compression level "
                << compressionLevel << "\n";

        }
    }
    else
    {
        *logofs << "Unknown image compression level " << compressionLevel
            << "\n";
    }
}

Compresser::~Compresser()
{
    if (lzoCompressionWorkspace)
    {
        delete[]lzoCompressionWorkspace;
        lzoCompressionWorkspace = 0;
    }

    if (lzoCompressionBuffer)
    {
        delete[]lzoCompressionBuffer;
        lzoCompressionBuffer = 0;
        lzoCompressionBufferSize = 0;
    }
}

CompressionType
    Compresser::compressBuffer(const unsigned char *buffer,
                               const unsigned int size,
                               EncodeBuffer & encodeBuffer)
{
    if (!compressionFnc || !lzoCompressionWorkspace || size < 64)
    {
        return NO_STREAM_COMPRESSION;
    }

    // Algorithm stolen from LZO FAQ. 
    unsigned int max_compressed_size = size + (size / 64) + 16 + 3;

    if (max_compressed_size > lzoCompressionBufferSize)
    {
        if (lzoCompressionBuffer)
        {
            delete[]lzoCompressionBuffer;
        }

        lzoCompressionBuffer = new lzo_byte[max_compressed_size];
        if (lzoCompressionBuffer)
        {
            lzoCompressionBufferSize = max_compressed_size;
        }
        else
        {
            lzoCompressionBufferSize = 0;
        }
    }

    if (!lzoCompressionBuffer)
    {
        return NO_STREAM_COMPRESSION;
    }

    lzo_uint compressedSize = max_compressed_size;
    lzo_byte *compressedImage = lzoCompressionBuffer;

    if (compressionFnc(buffer, size,
                       compressedImage, &compressedSize,
                       lzoCompressionWorkspace) == LZO_E_OK)
    {
        assert(compressedSize <= max_compressed_size);
	assert(compressedSize <= UINT_MAX);
        encodeBuffer.encodeValue(LZO_COMPRESSION, COMPRESSION_TYPE_BITS);
        encodeBuffer.encodeValue((unsigned)compressedSize, sizeof(unsigned) * 8);
        encodeBuffer.encodeValue(size, sizeof(unsigned) * 8);
        encodeBuffer.encodeRawMem(compressedImage, compressedSize);

        return LZO_COMPRESSION;
    }
    return NO_STREAM_COMPRESSION;
}

int Compresser::isValidCompressionLevel(int compressionLevel)
{
    return getCEntry(compressionLevel) != 0;
}

cEntry *Compresser::getCEntry(int compressionLevel)
{
    cEntry *alg = _knownAlgorithms;

    while (alg->cLevel && alg->cLevel != compressionLevel)
    {
        alg++;
    }

    if (alg->cLevel)
    {
        return alg;
    }
    return 0;
}

lzo_decompress_t Compresser::getDecompresser(int compressionLevel)
{
    cEntry *alg;

    alg = getCEntry(compressionLevel);
    if (alg)
    {
        return alg->dFnc;
    }
    return 0;
}