1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
|
/*
* Cisco router simulation platform.
* Copyright (c) 2005,2006 Christophe Fillot (cf@utc.fr)
*/
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <assert.h>
#include "cpu.h"
#include "vm.h"
#include "dynamips.h"
#include "memory.h"
#include "device.h"
#define DEBUG_DEV_ACCESS 0
/* Get device by ID */
struct vdevice *dev_get_by_id(vm_instance_t *vm,u_int dev_id)
{
if (!vm || (dev_id >= VM_DEVICE_MAX))
return NULL;
return(vm->dev_array[dev_id]);
}
/* Get device by name */
struct vdevice *dev_get_by_name(vm_instance_t *vm,char *name)
{
struct vdevice *dev;
if (!vm)
return NULL;
for(dev=vm->dev_list;dev;dev=dev->next)
if (!strcmp(dev->name,name))
return dev;
return NULL;
}
/* Device lookup by physical address */
struct vdevice *dev_lookup(vm_instance_t *vm,m_uint64_t phys_addr,int cached)
{
struct vdevice *dev;
if (!vm)
return NULL;
for(dev=vm->dev_list;dev;dev=dev->next) {
if (cached && !(dev->flags & VDEVICE_FLAG_CACHING))
continue;
if ((phys_addr >= dev->phys_addr) &&
((phys_addr - dev->phys_addr) < dev->phys_len))
return dev;
}
return NULL;
}
/* Find the next device after the specified address */
struct vdevice *dev_lookup_next(vm_instance_t *vm,m_uint64_t phys_addr,
struct vdevice *dev_start,int cached)
{
struct vdevice *dev;
if (!vm)
return NULL;
dev = (dev_start != NULL) ? dev_start : vm->dev_list;
for(;dev;dev=dev->next) {
if (cached && !(dev->flags & VDEVICE_FLAG_CACHING))
continue;
if (dev->phys_addr > phys_addr)
return dev;
}
return NULL;
}
/* Initialize a device */
void dev_init(struct vdevice *dev)
{
memset(dev,0,sizeof(*dev));
dev->fd = -1;
}
/* Allocate a device */
struct vdevice *dev_create(char *name)
{
struct vdevice *dev;
if (!(dev = malloc(sizeof(*dev)))) {
fprintf(stderr,"dev_create: insufficient memory to "
"create device '%s'.\n",name);
return NULL;
}
dev_init(dev);
dev->name = name;
return dev;
}
/* Remove a device */
void dev_remove(vm_instance_t *vm,struct vdevice *dev)
{
if (dev == NULL)
return;
vm_unbind_device(vm,dev);
vm_log(vm,"DEVICE",
"Removal of device %s, fd=%d, host_addr=0x%llx, flags=%d\n",
dev->name,dev->fd,(m_uint64_t)dev->host_addr,dev->flags);
if (dev->flags & VDEVICE_FLAG_REMAP) {
dev_init(dev);
return;
}
if (dev->flags & VDEVICE_FLAG_SPARSE) {
dev_sparse_shutdown(dev);
if (dev->flags & VDEVICE_FLAG_GHOST) {
vm_ghost_image_release(dev->fd);
dev_init(dev);
return;
}
}
if (dev->fd != -1) {
/* Unmap memory mapped file */
if (dev->host_addr) {
if (dev->flags & VDEVICE_FLAG_SYNC) {
memzone_sync_all((void *)dev->host_addr,dev->phys_len);
}
vm_log(vm,"MMAP","unmapping of device '%s', "
"fd=%d, host_addr=0x%llx, len=0x%x\n",
dev->name,dev->fd,(m_uint64_t)dev->host_addr,dev->phys_len);
memzone_unmap((void *)dev->host_addr,dev->phys_len);
}
if (dev->flags & VDEVICE_FLAG_SYNC)
fsync(dev->fd);
close(dev->fd);
} else {
/* Use of malloc'ed host memory: free it */
if (dev->host_addr)
free((void *)dev->host_addr);
}
/* reinitialize the device to a clean state */
dev_init(dev);
}
/* Show properties of a device */
void dev_show(struct vdevice *dev)
{
if (!dev)
return;
printf(" %-18s: 0x%12.12llx (0x%8.8x)\n",
dev->name,dev->phys_addr,dev->phys_len);
}
/* Show the device list */
void dev_show_list(vm_instance_t *vm)
{
struct vdevice *dev;
printf("\nVM \"%s\" (%u) Device list:\n",vm->name,vm->instance_id);
for(dev=vm->dev_list;dev;dev=dev->next)
dev_show(dev);
printf("\n");
}
/* device access function */
void *dev_access(cpu_gen_t *cpu,u_int dev_id,m_uint32_t offset,
u_int op_size,u_int op_type,m_uint64_t *data)
{
struct vdevice *dev = cpu->vm->dev_array[dev_id];
#if DEBUG_DEV_ACCESS
cpu_log(cpu,"DEV_ACCESS","%s: dev_id=%u, offset=0x%8.8x, op_size=%u, "
"op_type=%u, data=%p\n",dev->name,dev_id,offset,op_size,op_type,data);
#endif
return(dev->handler(cpu,dev,offset,op_size,op_type,data));
}
/* Synchronize memory for a memory-mapped (mmap) device */
int dev_sync(struct vdevice *dev)
{
if (!dev || !dev->host_addr)
return(-1);
return(memzone_sync((void *)dev->host_addr,dev->phys_len));
}
/* Remap a device at specified physical address */
struct vdevice *dev_remap(char *name,struct vdevice *orig,
m_uint64_t paddr,m_uint32_t len)
{
struct vdevice *dev;
if (!(dev = dev_create(name)))
return NULL;
dev->phys_addr = paddr;
dev->phys_len = len;
dev->flags = orig->flags | VDEVICE_FLAG_REMAP;
dev->fd = orig->fd;
dev->host_addr = orig->host_addr;
dev->handler = orig->handler;
dev->sparse_map = orig->sparse_map;
return dev;
}
/* Create a RAM device */
struct vdevice *dev_create_ram(vm_instance_t *vm,char *name,
int sparse,char *filename,
m_uint64_t paddr,m_uint32_t len)
{
struct vdevice *dev;
u_char *ram_ptr;
if (!(dev = dev_create(name)))
return NULL;
dev->phys_addr = paddr;
dev->phys_len = len;
dev->flags = VDEVICE_FLAG_CACHING;
if (!sparse) {
if (filename) {
dev->fd = memzone_create_file(filename,dev->phys_len,&ram_ptr);
if (dev->fd == -1) {
perror("dev_create_ram: mmap");
free(dev);
return NULL;
}
dev->host_addr = (m_iptr_t)ram_ptr;
} else {
dev->host_addr = (m_iptr_t)m_memalign(4096,dev->phys_len);
}
if (!dev->host_addr) {
free(dev);
return NULL;
}
} else {
dev_sparse_init(dev);
}
vm_bind_device(vm,dev);
return dev;
}
/* Create a ghosted RAM device */
struct vdevice *
dev_create_ghost_ram(vm_instance_t *vm,char *name,int sparse,char *filename,
m_uint64_t paddr,m_uint32_t len)
{
struct vdevice *dev;
u_char *ram_ptr;
if (!(dev = dev_create(name)))
return NULL;
dev->phys_addr = paddr;
dev->phys_len = len;
dev->flags = VDEVICE_FLAG_CACHING|VDEVICE_FLAG_GHOST;
if (!sparse) {
dev->fd = memzone_open_cow_file(filename,dev->phys_len,&ram_ptr);
if (dev->fd == -1) {
perror("dev_create_ghost_ram: mmap");
free(dev);
return NULL;
}
if (!(dev->host_addr = (m_iptr_t)ram_ptr)) {
free(dev);
return NULL;
}
} else {
if (vm_ghost_image_get(filename,&ram_ptr,&dev->fd) == -1) {
free(dev);
return NULL;
}
dev->host_addr = (m_iptr_t)ram_ptr;
dev_sparse_init(dev);
}
vm_bind_device(vm,dev);
return dev;
}
/* Create a memory alias */
struct vdevice *dev_create_ram_alias(vm_instance_t *vm,char *name,char *orig,
m_uint64_t paddr,m_uint32_t len)
{
struct vdevice *dev,*orig_dev;
/* try to locate the device */
if (!(orig_dev = dev_get_by_name(vm,orig))) {
fprintf(stderr,"VM%u: dev_create_ram_alias: unknown device '%s'.\n",
vm->instance_id,orig);
return NULL;
}
if (!(dev = dev_remap(name,orig_dev,paddr,len))) {
fprintf(stderr,"VM%u: dev_create_ram_alias: unable to create "
"new device %s.\n",vm->instance_id,name);
return NULL;
}
vm_bind_device(vm,dev);
return dev;
}
/* Initialize a sparse device */
int dev_sparse_init(struct vdevice *dev)
{
u_int i,nr_pages;
size_t len;
/* create the sparse mapping */
nr_pages = normalize_size(dev->phys_len,VM_PAGE_SIZE,VM_PAGE_SHIFT);
len = nr_pages * sizeof(m_iptr_t);
if (!(dev->sparse_map = malloc(len)))
return(-1);
if (!dev->host_addr) {
memset(dev->sparse_map,0,len);
} else {
for(i=0;i<nr_pages;i++)
dev->sparse_map[i] = dev->host_addr + (i << VM_PAGE_SHIFT);
}
dev->flags |= VDEVICE_FLAG_SPARSE;
return(0);
}
/* Shutdown sparse device structures */
int dev_sparse_shutdown(struct vdevice *dev)
{
if (!(dev->flags & VDEVICE_FLAG_SPARSE))
return(-1);
free(dev->sparse_map);
dev->sparse_map = NULL;
return(0);
}
/* Show info about a sparse device */
int dev_sparse_show_info(struct vdevice *dev)
{
u_int i,nr_pages,dirty_pages;
printf("Sparse information for device '%s':\n",dev->name);
if (!(dev->flags & VDEVICE_FLAG_SPARSE)) {
printf("This is not a sparse device.\n");
return(-1);
}
if (!dev->sparse_map) {
printf("No sparse map.\n");
return(-1);
}
nr_pages = normalize_size(dev->phys_len,VM_PAGE_SIZE,VM_PAGE_SHIFT);
dirty_pages = 0;
for(i=0;i<nr_pages;i++)
if (dev->sparse_map[i] & VDEVICE_PTE_DIRTY)
dirty_pages++;
printf("%u dirty pages on a total of %u pages.\n",dirty_pages,nr_pages);
return(0);
}
/* Get an host address for a sparse device */
m_iptr_t dev_sparse_get_host_addr(vm_instance_t *vm,struct vdevice *dev,
m_uint64_t paddr,u_int op_type,int *cow)
{
m_iptr_t ptr,ptr_new;
u_int offset;
offset = (paddr - dev->phys_addr) >> VM_PAGE_SHIFT;
ptr = dev->sparse_map[offset];
*cow = 0;
/*
* If the device is not in COW mode, allocate a host page if the physical
* page is requested for the first time.
*/
if (!dev->host_addr) {
if (!(ptr & VDEVICE_PTE_DIRTY)) {
ptr = (m_iptr_t)vm_alloc_host_page(vm);
assert(ptr);
dev->sparse_map[offset] = ptr | VDEVICE_PTE_DIRTY;
return(ptr);
}
return(ptr & VM_PAGE_MASK);
}
/*
* We have a "ghost" base. We apply the copy-on-write (COW) mechanism
* ourselves.
*/
if (ptr & VDEVICE_PTE_DIRTY)
return(ptr & VM_PAGE_MASK);
if (op_type == MTS_READ) {
*cow = 1;
return(ptr & VM_PAGE_MASK);
}
/* Write attempt on a "ghost" page. Duplicate it */
ptr_new = (m_iptr_t)vm_alloc_host_page(vm);
assert(ptr_new);
memcpy((void *)ptr_new,(void *)(ptr & VM_PAGE_MASK),VM_PAGE_SIZE);
dev->sparse_map[offset] = ptr_new | VDEVICE_PTE_DIRTY;
return(ptr_new);
}
/* Get virtual address space used on host for the specified device */
size_t dev_get_vspace_size(struct vdevice *dev)
{
/* if the device is simply remapped, don't count it */
if (dev->flags & VDEVICE_FLAG_REMAP)
return(0);
if (dev->host_addr || (dev->flags & VDEVICE_FLAG_SPARSE))
return(dev->phys_len >> 10);
return(0);
}
/* dummy console handler */
static void *dummy_console_handler(cpu_gen_t *cpu,struct vdevice *dev,
m_uint32_t offset,u_int op_size,
u_int op_type,m_uint64_t *data)
{
switch(offset) {
case 0x40c:
if (op_type == MTS_READ)
*data = 0x04; /* tx ready */
break;
case 0x41c:
if (op_type == MTS_WRITE) {
printf("%c",(u_char)(*data & 0xff));
fflush(stdout);
}
break;
}
return NULL;
}
/* Create a dummy console */
int dev_create_dummy_console(vm_instance_t *vm)
{
struct vdevice *dev;
if (!(dev = dev_create("dummy_console")))
return(-1);
dev->phys_addr = 0x1e840000; /* 0x1f000000; */
dev->phys_len = 4096;
dev->handler = dummy_console_handler;
vm_bind_device(vm,dev);
return(0);
}
|