1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
function [Pi,H0multi,Hpmulti,H0invmulti,Hpinvmulti,sgh] ...
= fn_rnrprior_covres_dobs(nvar,q_m,lags,xdgel,mu,indxDummy,hpmsmd,indxmsmdeqn,nexo,asym0,asymp)
% Differs from fn_rnrprior_covres_dobs_tv(): no linear restrictions (Ui and Vi) have applied yet to this function, but
% linear restrictions are incorported in fn_rnrprior_covres_dobs_tv().
%
% Only works for the nexo=1 (constant term) case. To extend this to other exogenous variables, see fn_dataxy.m. 01/14/03.
% Differs from fn_rnrprior_covres.m in that dummy observations are included as part of the explicit prior. See Forcast II, pp.68-69b.
% More general than fn_rnrprior.m because when hpmsmd=0, fn_rnrprior_covres() is the same as fn_rnrprior().
% Allows for prior covariances for the MS and MD equations to achieve liquidity effects.
% Exports random Bayesian prior of Sims and Zha with asymmetric rior (but no linear restrictions yet)
% See Waggoner and Zha's Gibbs sampling paper and TVBVAR NOTES p. 71k.0.
%
% nvar: number of endogenous variables
% q_m: quarter or month
% lags: the maximum length of lag
% xdgel: T*nvar endogenous-variable matrix of raw or original data (no manipulation involved) with sample size including lags.
% Order of columns: (1) nvar endogenous variables; (2) constants will be automatically put in the last column.
% Used only to get variances of residuals for mu(1)-mu(5) and for dummy observations mu(5) and mu(6).
% mu: 6-by-1 vector of hyperparameters (the following numbers for Atlanta Fed's forecast), where
% mu(5) and mu(6) are NOT used here. See fn_dataxy.m for using mu(5) and mu(6).
% mu(1): overall tightness and also for A0; (0.57)
% mu(2): relative tightness for A+; (0.13)
% mu(3): relative tightness for the constant term; (0.1). NOTE: for other
% exogenous terms, the variance of each exogenous term must be taken into
% acount to eliminate the scaling factor.
% mu(4): tightness on lag decay; (1)
% mu(5): weight on nvar sums of coeffs dummy observations (unit roots); (5)
% mu(6): weight on single dummy initial observation including constant
% (cointegration, unit roots, and stationarity); (5)
% indxDummy: 1: uses dummy observations to form part of an explicit prior; 0: no dummy observations as part of the prior.
% hpmsmd: 2-by-1 hyperparameters with -1<h1=hpmsmd(1)<=0 for the MS equation and 0<=h2=hpmsmd(2)<1 the MD equation. Consider a1*R + a2*M.
% The term h1*var(a1)*var(a2) is the prior covariance of a1 and a2 for MS, equivalent to penalizing the same sign of a1 and a2.
% The term h2*var(a1)*var(a2) is the prior covariance of a1 and a2 for MD, equivalent to penalizing opposite signs of a1 and a2.
% This will give us a liquidity effect.
% indxmsmdeqn: 4-by-1 index for the locations of the MS and MD equation and for the locations of M and R.
% indxmsmdeqn(1) for MS and indxmsmdeqn(2) for MD.
% indxmsmdeqn(3) for M and indxmsmdeqn(4) for R.
% nexo: number of exogenous variables (if not specified, nexo=1 (constant) by default).
% The constant term is always put to the last of all endogenous and exogenous variables.
% asym0: nvar-by-nvar asymmetric prior on A0. Column -- equation.
% If ones(nvar,nvar), symmetric prior; if not, relative (asymmetric) tightness on A0.
% asymp: ncoef-1-by-nvar asymmetric prior on A+ bar constant. Column -- equation.
% If ones(ncoef-1,nvar), symmetric prior; if not, relative (asymmetric) tightness on A+.
% --------------------
% Pi: ncoef-by-nvar matrix for the ith equation under random walk. Same for all equations
% H0multi: nvar-by-nvar-by-nvar; H0 for different equations under asymmetric prior
% Hpmulti: ncoef-by-ncoef-by-nvar; H+ for different equations under asymmetric prior
% H0invmulti: nvar-by-nvar-by-nvar; inv(H0) for different equations under asymmetric prior
% Hpinvmulti: ncoef-by-ncoef-by-nvar; inv(H+) for different equations under asymmetric prior
% sgh: nvar-by-1 standard deviations of residuals for each equation.
%
% Tao Zha, February 2000. Revised, September 2000, February, May 2003.
%
% Copyright (C) 1997-2012 Tao Zha
%
% This free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% It is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% If you did not received a copy of the GNU General Public License
% with this software, see <http://www.gnu.org/licenses/>.
%
if (nargin<=8), nexo=1; end
ncoef = nvar*lags+nexo; % number of coefficients in *each* equation, RHS coefficients only.
H0multi=zeros(nvar,nvar,nvar); % H0 for different equations under asymmetric prior
Hpmulti=zeros(ncoef,ncoef,nvar); % H+ for different equations under asymmetric prior
H0invmulti=zeros(nvar,nvar,nvar); % inv(H0) for different equations under asymmetric prior
Hpinvmulti=zeros(ncoef,ncoef,nvar); % inv(H+) for different equations under asymmetric prior
%*** Constructing Pi for the ith equation under the random walk assumption
Pi = zeros(ncoef,nvar); % same for all equations
Pi(1:nvar,1:nvar) = eye(nvar); % random walk
%
%@@@ Prepared for Bayesian prior
%
%
% ** monthly lag decay in order to match quarterly decay: a*exp(bl) where
% ** l is the monthly lag. Suppose quarterly decay is 1/x where x=1,2,3,4.
% ** Let the decay of l1 (a*exp(b*l1)) match that of x1 (say, beginning: 1/1)
% ** and the decay of l2 (a*exp(b*l2)) match that of x2 (say, end: 1/5),
% ** we can solve for a and b which are
% ** b = (log_x1-log_x2)/(l1-l2), and a = x1*exp(-b*l1).
if q_m==12
l1 = 1; % 1st month == 1st quarter
xx1 = 1; % 1st quarter
l2 = lags; % last month
xx2 = 1/((ceil(lags/3))^mu(4)); % last quarter
%xx2 = 1/6; % last quarter
% 3rd quarter: i.e., we intend to let decay of the 6th month match
% that of the 3rd quarter, so that the 6th month decays a little
% faster than the second quarter which is 1/2.
if lags==1
b = 0;
else
b = (log(xx1)-log(xx2))/(l1-l2);
end
a = xx1*exp(-b*l1);
end
%
% *** specify the prior for each equation separately, SZ method,
% ** get the residuals from univariate regressions.
%
sgh = zeros(nvar,1); % square root
sgsh = sgh; % square
nSample=size(xdgel,1); % sample size-lags
yu = xdgel;
C = ones(nSample,1);
for k=1:nvar
[Bk,ek,junk1,junk2,junk3,junk4] = sye([yu(:,k) C],lags);
clear Bk junk1 junk2 junk3 junk4;
sgsh(k) = ek'*ek/(nSample-lags);
sgh(k) = sqrt(sgsh(k));
end
% ** prior variance for A0(:,1), same for all equations!!!
sg0bid = zeros(nvar,1); % Sigma0_bar diagonal only for the ith equation
for j=1:nvar
sg0bid(j) = 1/sgsh(j); % sgsh = sigmai^2
end
% ** prior variance for lagged and exogeous variables, same for all equations
sgpbid = zeros(ncoef,1); % Sigma_plus_bar, diagonal, for the ith equation
for i = 1:lags
if (q_m==12)
lagdecay = a*exp(b*i*mu(4));
end
%
for j = 1:nvar
if (q_m==12)
% exponential decay to match quarterly decay
sgpbid((i-1)*nvar+j) = lagdecay^2/sgsh(j); % ith equation
elseif (q_m==4)
sgpbid((i-1)*nvar+j) = (1/i^mu(4))^2/sgsh(j); % ith equation
else
error('Incompatibility with lags, check the possible errors!!!')
%warning('Incompatibility with lags, check the possible errors!!!')
%return
end
end
end
%
if indxDummy % Dummy observations as part of the explicit prior.
ndobs=nvar+1; % Number of dummy observations: nvar unit roots and 1 cointegration prior.
phibar = zeros(ndobs,ncoef);
%* constant term
const = ones(nvar+1,1);
const(1:nvar) = 0.0;
phibar(:,ncoef) = const; % the first nvar periods: no or zero constant!
xdgelint = mean(xdgel(1:lags,:),1); % mean of the first lags initial conditions
%* Dummies
for k=1:nvar
for m=1:lags
phibar(ndobs,nvar*(m-1)+k) = xdgelint(k);
phibar(k,nvar*(m-1)+k) = xdgelint(k);
% <<>> multiply hyperparameter later
end
end
phibar(1:nvar,:) = 1*mu(5)*phibar(1:nvar,:); % standard Sims and Zha prior
phibar(ndobs,:) = mu(6)*phibar(ndobs,:);
[phiq,phir]=qr(phibar,0);
xtxbar=phir'*phir; % phibar'*phibar. ncoef-by-ncoef. Reduced (not full) rank. See Forcast II, pp.69-69b.
end
%=================================================
% Computing the (prior) covariance matrix for A0, no data yet.
% As proved in pp.69a-69b, Forecast II, the following prior covariance of A0
% will remain the same after the dummy observations prior is incorporated.
% The dummy observation prior only affects the prior covariance of A+|A0.
% See pp.69a-69b for the proof.
%=================================================
%
%
% ** set up the conditional prior variance sg0bi and sgpbi.
sg0bida = mu(1)^2*sg0bid; % ith equation
sgpbida = mu(1)^2*mu(2)^2*sgpbid;
sgpbida(ncoef-nexo+1:ncoef) = mu(1)^2*mu(3)^2;
%<<>> No scaling adjustment has been made for exogenous terms other than constant
sgppbd = sgpbida(nvar+1:ncoef); % corresponding to A++, in a Sims-Zha paper
Hptd = zeros(ncoef);
Hptdi=Hptd;
Hptd(ncoef,ncoef)=sgppbd(ncoef-nvar);
Hptdinv(ncoef,ncoef)=1./sgppbd(ncoef-nvar);
% condtional on A0i, H_plus_tilde
if nargin<10 % the default is no asymmetric information
asym0 = ones(nvar,nvar); % if not ones, then we have relative (asymmetric) tightness
asymp = ones(ncoef-1,nvar); % for A+. Column -- equation
end
%**** Asymmetric Information
%asym0 = ones(nvar,nvar); % if not ones, then we have relative (asymmetric) tightness
%asymp = ones(ncoef-1,nvar); % pp: plus without constant. Column -- equation
%>>>>>> B: asymmetric prior variance for asymp <<<<<<<<
%
%for i = 1:lags
% rowif = (i-1)*nvar+1;
% rowil = i*nvar;
% idmatw0 = 0.5; % weight assigned to idmat0 in the formation of asymp
% if (i==1)
% asymp(rowif:rowil,:)=(1-idmatw0)*ones(nvar)+idmatw0*idmat0; % first lag
% % note: idmat1 is already transposed. Column -- equation
% else
% %asymp(rowif:rowil,1:nvar) = (1-idmatw0)*ones(nvar)+idmatw0*idmat0;
% % <<<<<<< toggle +
% % Note: already transposed, since idmat0 is transposed.
% % Meaning: column implies equation
% asymp(rowif:rowil,1:nvar) = ones(nvar);
% % >>>>>>> toggle -
% end
%end
%
%>>>>>> E: asymmetric prior variance for asymp <<<<<<<<
%=================================================
% Computing the final covariance matrix (S1,...,Sm) for the prior of A0,
% and final Gb=(G1,...,Gm) for A+ if asymmetric prior or for
% B if symmetric prior for A+
%=================================================
%
for i = 1:nvar
%------------------------------
% Introduce prior information on which variables "belong" in various equations.
% In this first trial, we just introduce this information here, in a model-specific way.
% Eventually this info has to be passed parametricly. In our first shot, we just damp down
% all coefficients except those on the diagonal.
%*** For A0
factor0=asym0(:,i);
sg0bd = sg0bida.*factor0; % Note, this only works for the prior variance Sg(i)
% of a0(i) being diagonal. If the prior variance Sg(i) is not
% diagonal, we have to the inverse to get inv(Sg(i)).
%sg0bdinv = 1./sg0bd;
% * unconditional variance on A0+
H0td = diag(sg0bd); % unconditional
%=== Correlation in the MS equation to get a liquidity effect.
if (i==indxmsmdeqn(1))
H0td(indxmsmdeqn(3),indxmsmdeqn(4)) = hpmsmd(1)*sqrt(sg0bida(indxmsmdeqn(3))*sg0bida(indxmsmdeqn(4)));
H0td(indxmsmdeqn(4),indxmsmdeqn(3)) = hpmsmd(1)*sqrt(sg0bida(indxmsmdeqn(3))*sg0bida(indxmsmdeqn(4)));
elseif (i==indxmsmdeqn(2))
H0td(indxmsmdeqn(3),indxmsmdeqn(4)) = hpmsmd(2)*sqrt(sg0bida(indxmsmdeqn(3))*sg0bida(indxmsmdeqn(4)));
H0td(indxmsmdeqn(4),indxmsmdeqn(3)) = hpmsmd(2)*sqrt(sg0bida(indxmsmdeqn(3))*sg0bida(indxmsmdeqn(4)));
end
H0tdinv = inv(H0td);
%H0tdinv = diag(sg0bdinv);
%
H0multi(:,:,i)=H0td;
H0invmulti(:,:,i)=H0tdinv;
%*** For A+
if ~(lags==0) % For A1 to remain random walk properties
factor1=asymp(1:nvar,i);
sg1bd = sgpbida(1:nvar).*factor1;
sg1bdinv = 1./sg1bd;
%
Hptd(1:nvar,1:nvar)=diag(sg1bd);
Hptdinv(1:nvar,1:nvar)=diag(sg1bdinv);
if lags>1
factorpp=asymp(nvar+1:ncoef-1,i);
sgpp_cbd = sgppbd(1:ncoef-nvar-1) .* factorpp;
sgpp_cbdinv = 1./sgpp_cbd;
Hptd(nvar+1:ncoef-1,nvar+1:ncoef-1)=diag(sgpp_cbd);
Hptdinv(nvar+1:ncoef-1,nvar+1:ncoef-1)=diag(sgpp_cbdinv);
% condtional on A0i, H_plus_tilde
end
end
%---------------
% The dummy observation prior affects only the prior covariance of A+|A0,
% but not the covariance of A0. See pp.69a-69b for the proof.
%---------------
if indxDummy % Dummy observations as part of the explicit prior.
Hpinvmulti(:,:,i)=Hptdinv + xtxbar;
Hpmulti(:,:,i) = inv(Hpinvmulti(:,:,i));
else
Hpmulti(:,:,i)=Hptd;
Hpinvmulti(:,:,i)=Hptdinv;
end
end
|