1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
function [G1,C,impact,fmat,fwt,ywt,gev,eu]=gensys(g0,g1,c,psi,pi,div)
% function [G1,C,impact,fmat,fwt,ywt,gev,eu]=gensys(g0,g1,c,psi,pi,div)
% System given as
% g0*y(t)=g1*y(t-1)+c+psi*z(t)+pi*eta(t),
% with z an exogenous variable process and eta being endogenously determined
% one-step-ahead expectational errors. Returned system is
% y(t)=G1*y(t-1)+C+impact*z(t)+ywt*inv(I-fmat*inv(L))*fwt*z(t+1) .
% If z(t) is i.i.d., the last term drops out.
% If div is omitted from argument list, a div>1 is calculated.
% eu(1)=1 for existence, eu(2)=1 for uniqueness. eu(1)=-1 for
% existence only with not-s.c. z; eu=[-2,-2] for coincident zeros.
% By Christopher A. Sims
% Corrected 10/28/96 by CAS
%
% Copyright (C) 1996-2012 Christopher A. Sims
%
% This free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% It is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% If you did not received a copy of the GNU General Public License
% with this software, see <http://www.gnu.org/licenses/>.
%
eu=[0;0];
realsmall=1e-6;
fixdiv=(nargin==6);
n=size(g0,1);
[a b q z v]=qz(g0,g1);
if ~fixdiv, div=1.01; end
nunstab=0;
zxz=0;
for i=1:n
% ------------------div calc------------
if ~fixdiv
if abs(a(i,i)) > 0
divhat=abs(b(i,i))/abs(a(i,i));
% bug detected by Vasco Curdia and Daria Finocchiaro, 2/25/2004 A root of
% exactly 1.01 and no root between 1 and 1.02, led to div being stuck at 1.01
% and the 1.01 root being misclassified as stable. Changing < to <= below fixes this.
if 1+realsmall<divhat & divhat<=div
div=.5*(1+divhat);
end
end
end
% ----------------------------------------
nunstab=nunstab+(abs(b(i,i))>div*abs(a(i,i)));
if abs(a(i,i))<realsmall & abs(b(i,i))<realsmall
zxz=1;
end
end
div ;
nunstab;
if ~zxz
[a b q z]=qzdiv(div,a,b,q,z);
end
gev=[diag(a) diag(b)];
if zxz
disp('Coincident zeros. Indeterminacy and/or nonexistence.')
eu=[-2;-2];
% correction added 7/29/2003. Otherwise the failure to set output
% arguments leads to an error message and no output (including eu).
G1=[];C=[];impact=[];fmat=[];fwt=[];ywt=[];gev=[];
return
end
q1=q(1:n-nunstab,:);
q2=q(n-nunstab+1:n,:);
z1=z(:,1:n-nunstab)';
z2=z(:,n-nunstab+1:n)';
a2=a(n-nunstab+1:n,n-nunstab+1:n);
b2=b(n-nunstab+1:n,n-nunstab+1:n);
etawt=q2*pi;
% zwt=q2*psi;
[ueta,deta,veta]=svd(etawt);
md=min(size(deta));
bigev=find(diag(deta(1:md,1:md))>realsmall);
ueta=ueta(:,bigev);
veta=veta(:,bigev);
deta=deta(bigev,bigev);
% ------ corrected code, 3/10/04
eu(1) = length(bigev)>=nunstab;
% ------ Code below allowed "existence" in cases where the initial lagged state was free to take on values
% ------ inconsistent with existence, so long as the state could w.p.1 remain consistent with a stable solution
% ------ if its initial lagged value was consistent with a stable solution. This is a mistake, though perhaps there
% ------ are situations where we would like to know that this "existence for restricted initial state" situation holds.
%% [uz,dz,vz]=svd(zwt);
%% md=min(size(dz));
%% bigev=find(diag(dz(1:md,1:md))>realsmall);
%% uz=uz(:,bigev);
%% vz=vz(:,bigev);
%% dz=dz(bigev,bigev);
%% if isempty(bigev)
%% exist=1;
%% else
%% exist=norm(uz-ueta*ueta'*uz) < realsmall*n;
%% end
%% if ~isempty(bigev)
%% zwtx0=b2\zwt;
%% zwtx=zwtx0;
%% M=b2\a2;
%% for i=2:nunstab
%% zwtx=[M*zwtx zwtx0];
%% end
%% zwtx=b2*zwtx;
%% [ux,dx,vx]=svd(zwtx);
%% md=min(size(dx));
%% bigev=find(diag(dx(1:md,1:md))>realsmall);
%% ux=ux(:,bigev);
%% vx=vx(:,bigev);
%% dx=dx(bigev,bigev);
%% existx=norm(ux-ueta*ueta'*ux) < realsmall*n;
%% else
%% existx=1;
%% end
% ----------------------------------------------------
% Note that existence and uniqueness are not just matters of comparing
% numbers of roots and numbers of endogenous errors. These counts are
% reported below because usually they point to the source of the problem.
% ------------------------------------------------------
[ueta1,deta1,veta1]=svd(q1*pi);
md=min(size(deta1));
bigev=find(diag(deta1(1:md,1:md))>realsmall);
ueta1=ueta1(:,bigev);
veta1=veta1(:,bigev);
deta1=deta1(bigev,bigev);
%% if existx | nunstab==0
%% %disp('solution exists');
%% eu(1)=1;
%% else
%% if exist
%% %disp('solution exists for unforecastable z only');
%% eu(1)=-1;
%% %else
%% %fprintf(1,'No solution. %d unstable roots. %d endog errors.\n',nunstab,size(ueta1,2));
%% end
%% %disp('Generalized eigenvalues')
%% %disp(gev);
%% %md=abs(diag(a))>realsmall;
%% %ev=diag(md.*diag(a)+(1-md).*diag(b))\ev;
%% %disp(ev)
%% % return;
%% end
if isempty(veta1)
unique=1;
else
unique=norm(veta1-veta*veta'*veta1)<realsmall*n;
end
if unique
%disp('solution unique');
eu(2)=1;
else
fprintf(1,'Indeterminacy. %d loose endog errors.\n',size(veta1,2)-size(veta,2));
%disp('Generalized eigenvalues')
%disp(gev);
%md=abs(diag(a))>realsmall;
%ev=diag(md.*diag(a)+(1-md).*diag(b))\ev;
%disp(ev)
% return;
end
tmat = [eye(n-nunstab) -(ueta*(deta\veta')*veta1*deta1*ueta1')'];
G0= [tmat*a; zeros(nunstab,n-nunstab) eye(nunstab)];
G1= [tmat*b; zeros(nunstab,n)];
% ----------------------
% G0 is always non-singular because by construction there are no zeros on
% the diagonal of a(1:n-nunstab,1:n-nunstab), which forms G0's ul corner.
% -----------------------
G0I=inv(G0);
G1=G0I*G1;
usix=n-nunstab+1:n;
C=G0I*[tmat*q*c;(a(usix,usix)-b(usix,usix))\q2*c];
impact=G0I*[tmat*q*psi;zeros(nunstab,size(psi,2))];
fmat=b(usix,usix)\a(usix,usix);
fwt=-b(usix,usix)\q2*psi;
ywt=G0I(:,usix);
% -------------------- above are output for system in terms of z'y -------
G1=real(z*G1*z');
C=real(z*C);
impact=real(z*impact);
% Correction 10/28/96: formerly line below had real(z*ywt) on rhs, an error.
ywt=z*ywt;
|