File: mtpdf.m

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (48 lines) | stat: -rw-r--r-- 1,715 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
function y = mtpdf(x,xm,C,v,constIx)
% y = mtpdf(x,xm,C,v)
%    The pdf value for multivariate Student t distribution
%
% x:  p-by-draws matrix of values evaluated at where p=size(x,1) is # of variables
% xm: p-by-draws matrix of the mean of x
% C:  p-by-p Choleski square root of PDS S, which is the covariance matrix
%          in the normal case so that S = C*C'
% v (>0):  scaler -- the degrees of freedom
% constIx:  index for the constant.  1: constant (normalized); 0: no constant (unnormalized)
%----------
% y:  p-by-draws matrix of pdf's for multivariate Student t distribution with v degrees of freedom
%
%   Christian P. Robert, "The Bayesian Choice," Springer-Verlag, New York, 1994,
%      p. 382.
%
%   December 1998 by Tao Zha
%
% Copyright (C) 1997-2012 Tao Zha
%
% This free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% It is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% If you did not received a copy of the GNU General Public License
% with this software, see <http://www.gnu.org/licenses/>.
%

[p,nx]=size(x);
z = C\(x-xm);


if constIx
   dSh=sum(log(diag(C)));   % (detSigma)^(1/2)
   %* Use gammaln function to avoid overflows.
   term = exp(gammaln((v + p) / 2) - gammaln(v/2) - dSh);
   y = (term*(v*pi)^(-p/2)) * (1 + sum(z.*z,1)/v).^(-(v + p)/2);
   y = y';
else
   y = (1 + sum(z.*z,1)/v).^(-(v + p)/2);
   y = y';
end